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Abstract—Traditional detection approaches for the dim moving
target are addressed under the background of homogeneous sea clutter.
However, the realistic clutter commonly appears inhomogeneous,
resulting in the low detectability. A heterogeneous multiple-scan
detection framework is described in this paper, which combines the
inhomogeneous coherent integration in the dwell of single scan and
the non-coherent integration of the results from single-scan process
across the multiple scans. In the inhomogeneous coherent integration,
the Heterogeneous Single-scan Coherent Detector (HSCD) is derived,
resorting to the two-step Generalized Likelihood Ratio Test (GLRT)
criterion and a hybrid covariance matrix estimation scheme, where
the nonhomogeneous Kelly detector and the inhomogeneous Adaptive
Matched Filter (AMF) are also considered. Additionally, the Viterbi-
Like (VL) algorithm is employed as the non-coherent integration
strategy. Finally, the numerical simulations with Monte Carlo
method analyze the performance of the nonhomogeneous multiple-scan
detectors under amplitude and distribution clutter heterogeneity.

1. INTRODUCTION

Detection for slowly moving targets in heavy noise environment is
considered as a challenging problem in many applications, including
optics, sonar and radar [1–3]. Classically, the broad-sense noise may
contain thermal noise, clutter, and possibly jamming. Concretely
the heavy clutter in the oceanic environment, illuminated by High-
Resolution (HR) radar system [4–6] where the conventional Gaussian or
Rayleigh model is no longer met, causes the unacceptable performance
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degradation, and thereby many multiple-scan methods are proposed
in the literatures for the purpose of improving the detectability for
dim targets. The multiple-scan signal averaging method is provided to
diminish noise (not clutter), leading the improvement of both Signal-
to-Noise Ratio (SNR) and detection performance [7]. The researchers
address the effect of the scan rate on the detection performance with
the scan-to-scan processors in approximate Gaussian clutter [8, 9].
Recently, a multiple-scan application, so-called Radon transform, is
presented to test against the HR sea-clutter data [10].

However, these mentioned methods concentrate on the homoge-
neous assumption for the sea background, and the inhomogeneous
environments with unknown covariance matrices are more commonly
encountered. The heterogeneity is generally with respect to inhomo-
geneous reflectivity (e.g., amplitude and/or spectral variation, clutter
edges, moving discretes) in reality [11]. Therefore, the heterogeneous
clutter model is deemed to be more suitable for non-flat areas [12, 13].
Precisely in HR radar system, an attempt to take into account non-
homogeneity is to assume that the primary and secondary data sam-
ples share the same covariance matrix structure up to an unknown
scaling factor, so-called partially homogeneous [14]. A more widely
used and physically motivated model for nonhomogeneous clutter is
the compound-Gaussian model [15]. In practical, it is great potential
to exhibit various heterogeneous clutter models for complicated and
inhomogeneous sea clutter, and unfortunately there does not yet exist
a specific multiple-scan method to process this case of heterogeneous
sea clutter.

Therefore, a heterogeneous multiple-scan detection framework is
described in this paper. It is to detect the existence of weak target
embed in the Cell Under Test (CUT) with the decision scheme,
which combines the inhomogeneous coherent integration in the dwell
of single scan and the non-coherent integration of the results from
single-scan process across the multiple scans. In the inhomogeneous
coherent integration, the Heterogeneous Single-scan Coherent Detector
(HSCD) is provided, according to the two-step Generalized Likelihood
Ratio Test (GLRT) criterion. At the same time, for the purpose of
comparison, the Adaptive Matched Filter (AMF) and Kelly detector
with a Hybrid estimate scheme of covariance matrix, also referred
to as components of multiple-scan detectors, namely HAMF and
HKelly respectively, are considered as the heterogeneous coherent
processors. Precisely, the hybrid covariance matrix estimator can be
capable of adapting the nonhomogeneous sea clutter with unknown
Power Spectrum Density (PSD). In the non-coherent integration, the
procedure, namely the Viterbi-Like (VL) method [16], based upon the
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Viterbi algorithm [17], is the reduced-complexity and power-efficient
methodology of best searching weak moving target in the trellis.

Therefore, under this framework, the three heterogeneous
multiple-scan detectors are provided, including the VL-HSCD, VL-
HAMF and VL-HKelly consisted of VL method and HSCD, HAMF,
HKelly, respectively. Finally, we address the analysis in the
performance assessment of the detectors (VL-HSCD, VL-HAMF, and
VL-HKelly) for different target types including both Swerling 0 and
Swerling 1 [18] and various nonhomogeneous scenarios, especially
amplitude-heterogeneity and distribution-heterogeneity using the
Monte Carlo method.

The paper is organized as follows. Section 2 contains the signal
models of both the target and heterogeneous sea clutter. The
inhomogeneous multiple-scan detector is introduced in Section 3. In
Section 4, the numerical simulation results are presented with Monte
Carlo. And the conclusions are provided in Section 5.

2. SIGNAL MODEL

In this paper, we assume that the radar transmits a coherent train of
N Coherent Processing Interval (CPI) pulses in single scan and that
the receiver properly demodulates filters and samples the incoming
waveform. The observation vector zls ∈ CN×1 (C being the complex
field), mutually independent between scans, is corresponded to the
output of the lth range cell and the sth azimuth cell, given by

zls = [zls(1), zls(2), . . . , zls(N)]T ∈ CN×1 (1)

where (·)T denotes the transposition operation. Then the problem of
detecting a target that occupies in the lkth range cell and skth azimuth
cell of the kth scan (k = 1, . . . , K) can be formulated in terms of the
following binary hypothesis test without loss of generality:

H0 : zlksk
= clksk

, l ∈ {1, . . . , L}, s ∈ {1, . . . , S}

H1 :
{zlksk

=alksk
plksk

+clksk
, l= lk∈{1, . . . , L}, s=sk∈{1, . . . , S}

zlksk
=clksk

, l∈{1, . . . , L}\{lk}, s∈{1, . . . , S}\{sk}
(2)

where alksk
denotes the unknown parameter, accounting for the target

and the channel propagation effects, and plksk
indicates the known

steering vector. The clutter clksk
is modeled as the compound-

Gaussian vector according to both the theoretical modeling of sea
backscatter [19] and the statistical analysis of the recorded live data
of HR sea clutter [20], which can be mathematically described as
Spherically Invariant Random Process (SIRP) of the produce of two
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components, texture and speckle, represented as

clksk
= ζlksk

xlksk
(3)

with the covariance matrices Mlksk
= E[clksk

cH
lksk

] and MXlksk
=

E[xlksk
xH

lksk
], where (·)H denotes conjugate transpose of the argument

and E[·] is the statistical expectation. The speckle xlksk
is a complex,

circle, zero mean stationary Gaussian vector with covariance matrix
MXlksk

, and the texture ζlksk
is a nonnegative real stochastic variable

and its distribution is commonly determined by some parameters.
In heterogeneous environment, especially amplitude-heterogeneous

condition, the power in each resolution cell of clutter is assumed to be
various, particularly the case of partially homogeneous environment.
In the situation of distribution-heterogeneity, one case is that the pa-
rameters of the distribution of texture component are not the same in
test and training samples. Another case is that the PSD of speckle
component is changed in every clutter cell, also referred to as spectral
heterogeneity.

3. NONHOMOGENEOUS MULTIPLE-SCAN DETECTOR

The problem of detecting a radar target of interest in a clutter-
dominated environment can be posed in terms of the binary hypothesis
test (2). Typically, the optimum solution to the problem (2) is
to determine the likelihood ratio test in the Neyman-Pearson sense,
given the prior knowledge of both the parameter alksk

and the clutter
covariance matrix Mlksk

. However, the prior information is commonly
unknown in practice. Hence, GLRT criterion is employed as the
suitable mean to circumvent the drawback of the prior uncertainty.

For the case at hand, the canonical GLRT detection strategy yields

Λ(Z) = max
D∈Ska,al1s1

,...,alKsK

max
Ml1s1

,...,MlKsK

fH1

max
Ml1s1

,...,MlKsK

fH0

H1

≷
H0

γ (4)

where

fH1 = f(Z|Ml1s1 , . . . ,MlKsK
, al1s1 , . . . , alKsK

,H1) (5)
fH0 = f(Z|Ml1s1 , . . . ,MlKsK

,H0) (6)

with Z = {zl1s1 , . . . , zlKsK
}, where D = {(l1, s1), . . . , (lK , sK)} ∈ Ska

is the sequence of points occupied by a prospective target in the
searching domain, and γ is the detection threshold to be set according
to the desired value of the probability of false-alarm (Pfa).
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At the design stage, considering the mutual independence of the
signal zlksk

between scans, and after some algebra, the test (4) can be
substituted as

Λ(Z) = max
D∈Ska

K∑

k=1

ln
max

Mlksk
,alksk

f(zlksk
|Mlksk

, alksk
,H1)

max
Mlksk

f(zlksk
|Mlksk

,H0)

= max
D∈Ska

K∑

k=1

lnΛ(zlksk
)

H1

≷
H0

γ1 (7)

where γ1 is used for the appropriate modification of the original
threshold in (4), and Λ(zlksk

), such as HSCD, HAMF or HKelly, is
deemed as the test statistic of the kth scan. Moreover, VL algorithm
is introduced to choose the trajectory D of possible target and to realize
the maximization of the multiple-scan decision function (7).

3.1. Heterogeneous Signal-scan Coherent Detector (HSCD)

As discussed before, the sea clutter is modeled as the compound-
Gaussian process, which can be mathematically described as a
significant simplification of SIRP specified based upon a first- and
second-order characterization only [21]. More precisely, the clutter
clksk

is a zero-mean wide-sense stationary stochastic process, and
considering the expression (3), its N -order Probability Density
Function (PDF) is shown as

fclksk
(clksk

) =
1

πN‖MXlksk
‖hN

(
cH

lksk
M−1

Xlksk
clksk

)
(8)

and

hN

(
cH

lksk
M−1

Xlksk
clksk

)
=
∫ ∞

0
ζ−2N
lksk

exp


−

cH
lksk

M−1
Xlksk

clksk

ζ2
lksk


f(ζlksk

)dζlksk
(9)

where ‖ · ‖ denotes the determinant of a square matrix.
Combining the Equations (8) and (9), Λ(zlksk

) can be expressed
as

Λ(zlksk
) = max

alksk

max
MXlksk

∫ ∞

0
ζ−2N
lksk

exp

(
−Ω1(lksk)

ζ2
lksk

)
f(ζlksk

)dζlksk

max
MXlksk

∫ ∞

0
ζ−2N
lksk

exp

(
−Ω0(lksk)

ζ2
lksk

)
f(ζlksk

)dζlksk

(10)
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where
Ω1(lksk) = (zlksk

− alksk
plksk

)HM−1
Xlksk

(zlksk
− alksk

plksk
) (11)

Ω0(lksk) = zH
lksk

M−1
Xlksk

zlksk
(12)

Obviously, it is difficult to implement the integration of the
detector (10) without special f(ζlksk

). Consequently, K-distributed
clutter [22] with the modulating variate ζlksk

, as the most popular
model for compound-Gaussian clutter, is taken into account in
this paper for two reasons: physical plausibility and mathematical
convenience, while the PDF of f(ζlksk

) is a generalized Gamma
distribution, shown as

f(ζlksk
) =

b

2v−1Γ(v)
(bζlksk

)2v−1 exp

(
−b2ζ2

lksk

2

)
(13)

where v and b denote the shape and scale parameter respectively with
b =

√
2v.

Subsequently, the expression (9) under K-distributed clutter
yields

hN

(
cH

lksk
M−1

Xlksk
clksk

)

=
bv+N

(
cH

lksk
M−1

Xlksk
clksk

) v−N
2

2v−1Γ(v)
KN−v

(
b
√

cH
lksk

M−1
Xlksk

clksk

)
(14)

with the modified second-kind Bessel function KN−v(·) and the
Eulerian Gamma function Γ(·).

The Equation (10) at the case can be expressed as

Λ(zlksk
) =

max
alksk

,MXlksk

Ω1(lksk)
v−N

2 KN−v

(
b
√

Ω1(lksk)
)

max
MXlksk

Ω0(lksk)
v−N

2 KN−v

(
b
√

Ω0(lksk)
) (15)

The reference [23] shows that it is difficult to jointly maximize
with respect to alksk

and unknown MXlksk
, and a closed-form solution

is nonexistent. In order to overcome the drawback, we resort to the
two-step GLRT design procedure.

Step 1: we derive the detector (15) assuming that the structure of
covariance matrix is known, and thereby we can obtain the Maximum
Likelihood Estimation (MLE) of alksk

, shown as

âlksk
=

pH
lksk

M−1
Xlksk

zlksk

pH
lksk

M−1
Xlksk

plksk

(16)
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Under the condition of high sea-state where the value of v is
small (v → 0.1), as well as considering the scale parameter b =

√
2v,

the modified second-kind Bessel function can admit the asymptotic
development

KN−v(µ) ≈ Γ(N − v)
2

(
2
µ

)N−v

(17)

Combining the Equations (13), (16) and (17), the decision function
Λ(zlksk

) of HSCD can be expressed as

Λ(zlksk
)≈

zH
lksk

M−1
Xlksk

zlksk
pH

lksk
M−1

Xlksk
plksk

zH
lksk

M−1
Xlksk

zlksk
pH

lksk
M−1

Xlksk
plksk

−
∣∣∣pH

lksk
M−1

Xlksk
zlksk

∣∣∣
2 (18)

where | · | denotes the modulus of a complex number.
Step 2: the true covariance matrix MXlksk

is substituted for its
estimate resorting to the suitable method. In this paper, the hybrid
method [24], employing both the primary and secondary data, can be
capable of estimating the unknown covariance matrix MXlksk

under
various conditions of inhomogeneous clutter. Firstly, we assume two
independent data sets: the primary data set (Bpr)lksk

of size N × JT

extracted from the CUT and the secondary data set (Bse)lksk
of size

N × Jt drawn from adjacent range gates around CUT. Furthermore,
define the combined data set Blksk

= [(Bpr)lksk
, (Bse)lksk

] of the
size N × J with J = JT + Jt, and (tJT

)lksk
= [ejφ1 , . . . , ejφJT ]Tlksk

denotes a length JT vector containing the initial phases φ1, . . . , φJT
.

Finally, the covariance matrix MXlksk
can be expressed in terms of the

primary and secondary data covariances matrices estimates Ξlksk
=

1
JT−1 [(Bpr)lksk

(Bpr)H
lksk

− rlksk
rH
lksk

] and Θlksk
= 1

Jt
(Bse)lksk

(Bse)H
lksk

,
shown as

MXlksk
=

1
JT + qJt − 1

[(JT − 1)Ξlksk
+ qJtΘlksk

] (19)

with rlksk
= Blksk

t∗lksk
where tlksk

= 1
JT

[(tJT
)T
lksk

, 0T
Jt×1]

T and the
conjugated operator (·)∗. The parameter q scales the contribution of
the secondary data depending on the degree of heterogeneity (0 ≤ q ≤
1). In reality, the secondary samples would most likely exhibit different
degrees of heterogeneity. Lumping the entire training data into the
covariance matrix Θlksk

prior to the non-homogeneity detection can,
for instance, lead to the entire set being discarded as a result of the
highly biased data. Hence, the expression (19) is somewhat basic and
inflexible.

In order to consider the degree of heterogeneity of each training
sample, the inhomogeneous measure matrix Qlksk

is given by Qlksk
=
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[
IJT×JT

oJT×Jt

oJt×JT
diag(q)Jt×Jt

]

lksk

where the operation diag(q)Jt×Jt forms a

matrix with the elements of q placed on the diagonal and off-diagonal
elements equal to 0, and IJT×JT

is the JT × JT unit matrix. Specially,
the elements qJi , Ji = J1, . . . , Jt in the matrix diag(q)Jt×Jt employ
the same definition as the parameter q and 0 ≤ qJi ≤ 1. The
Generalized Inner Product (GIP) method [25] or the prior information
of topography can decide the value of qJi . The hybrid covariance
matrix estimate MXlksk

with generalized variable scale can then be
rewritten as

MXlksk
=

1
tr(Qlksk

)− 1

[
Blksk

Qlksk
BH

lksk
− rlksk

rH
lksk

]
(20)

Relevant to our scope, the hybrid method turns out to achieve the
asymptotically Constant False Alarm Rate (CFAR) [24].

3.2. Viterbi-like (VL) Algorithm

The Viterbi algorithm is an established optimization technique for
discrete Markovian systems, extensively used in telecommunications
and speech recognition. In practice, it is essentially a batch algorithm
of a fixed-lag processing mode for merging of paths in the trellis with
the physically admissible state transitions stored in the processor. The
modified Viterbi algorithm, namely the VL algorithm, processes the
entirely potential trajectories of the slowly moving target in the slow
scan HR radar typically operating with scanning rates of about 6–
60 rpm [9], illustrated in Figure 1.

The VL algorithm is utilized as the non-coherent integration
scheme, and the iterative equation of the algorithm can be used to
handle the possible path of the target in the test (7), shown as

d(k) = maxu(k − 1, k) + d(k − 1) (21)

where u (k − 1, k) is the incremental or transition cost of the target
from the (k−1)th scan to the kth scan which is the nonlinear logarithm
operation of the transition probability, and d(k) can be stated as the
cumulative or path cost, which is also done the nonlinear operation to
the maximum of the likelihood function of the path [26].

Hence, the test (7) turns into




Λ(Z) = d(K)
H1

≷
H0

γ

d(k) = d(k − 1) + max{ln[Λ(zlksk
)]}g, k = 2, . . . , K

(22)
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Range

Frame

Figure 1. Potential target trajectories in multiple-scan detection.

with the searching cell number g in single scan, while it is ergodicly
proposed for the initial value d(1) = lnΛ(zl1s1). Clearly, it is seen
that the detection for the moving target is changed to determine the
test (22).

4. SIMULATION

Since lacking of enough real HR sea-clutter for multiple-scan detection,
we are forced to employ the simulation model to handle the
comparative performance analysis of the heterogeneous multiple-scan
detectors, VL-HSCD, VL-HKelly and VL-HAMF, for weak target
under the inhomogeneous background. And fortunately, the simulation
model (especially K-distributed clutter) can be substituted for sea
clutter availably and convictively [19, 20].

Within the multiple-scan detection framework, the expressions of
traditional single-scan detectors are as follows:

AMF detector:

ΛAMF(zlksk
) =

∣∣∣pH
lksk

M−1
Xlksk

zlksk

∣∣∣
2

pH
lksk

M−1
Xlksk

plksk

(23)
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Kelly detector:

ΛKelly(zlksk
) =

∣∣∣pH
lksk

M−1
Xlksk

zlksk

∣∣∣
2

(
1 + 1

Ke
zH
lksk

M−1
Xlksk

zlksk

)(
pH

lksk
M−1

Xlksk
plksk

) (24)

with Ke = 20 [27]. Precisely, the unknown MXlksk
is obtained with

the hybrid covariance matrix estimation, and then these detectors can
be renamed as HAMF detector and HKelly detector, respectively. The
HKelly detector and the HSCD exhibit approximately computational
complexity, while the HAMF detector achieves the relatively low
complexity, and its floating-point operations (flops) is O(N2) flops less
than that of the other two detectors.

Additionally, SCRlksk
as the single-scan Signal-to-Clutter Ratio

(SCR) is defined as

SCRlksk
=
|alksk

|2pH
lksk

M−1
Xlksk

plksk

σ2
lksk

(25)

with σ2
lksk

is the power of clutter cell.
Therefore, the multiple-scan SCR can be obtained as

SCR =
K∑

k=1

SCRlksk
=

K∑

k=1

|alksk
|2pH

lksk
M−1

Xlksk
plksk

σ2
lksk

(26)

Since the closed-form expressions for both the Pfa and the
probability of detection (Pd) are not available, we resort to standard
Monte Carlo technique. More precisely, in order to evaluate the
threshold necessary to ensure a preassigned value of Pfa and to
compute Pd, we resort to 100/Pfa, Pfa = 10−4, K = 6, g = 5,
PRF = 1000 Hz, N = 16, radar resolution of 10 m, target speed of
approximately 10 m/s, scanning rate of 60 rpm, JT ≤ K and Jt ≥ 20.
Given Pfa, the threshold of multiple-scan detection also relates with
the parameter K and the possible trajectory of the target in the
entire surveillance scene. Hence, the drawback of the multiple-scan
detection is the tremendous calculated amount while the fast algorithm
is considered as the subject of future work.

Assuming that the speckle component of the generated clutter
data has an exponential correlation structure covariance matrix, hence,
MXlksk

can be expressed as

[MXlksk
]ij = ε

|i−j|
lksk

, 0 ≤ i, j ≤ N (27)

where εlksk
is the one-lag correlation coefficient. In addition, the

targets are considered as Swerling 0 and Swerling 1 to adapt multiple
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types of targets in real stage. Considering that the knowledge about
the Radar Cross Section (RCS) of the target, related to the detection
performance, may be possibly lose in some scan, the meaning of L is
shown as:

• L = 6: It expresses that in 6 scans, the RCS information of the
target is not absent across the whole searching.

• L = 5: It denotes that in the whole 6 scans, the RCS information
of the target is missing once.

4.1. Amplitude Heterogeneity

Amplitude heterogeneity denotes the case where clutter power changes
over the resolution cells due to the variation of clutter reflectivity,
commonly occurred with shadowing or clutter edges. In this case,
the parameters of clutter distribution, such as v and ε, are assumed
to be homogeneous, and thereby the index of v or ε is dropped
for brevity when the parameter of each clutter cell is no change.
Then, the numerical results illustrate the detection performances of
non-homogeneous multiple-detectors for two type targets under this
heterogeneity.

Figures 2 and 3 show that the detection performance of the
heterogeneous multiple-scan processors for Swerling 0 target (Figure 2)
is slightly better than that for Swerling 1 target (Figure 3) under
the same amplitude heterogeneity, where the other parameters of each
clutter cell are v = 0.4 and ε = 0.9. It indicates that the fluctuating
RCS of the target exhibits a little influence on multiple-scan detection.
At the same time, VL-HSCD outperforms the other detectors for
Swerling 0 target (about 4 dB better at Pd = 0.9 in Figure 2) and
Swerling 1 target (about 5 dB better at Pd = 0.9 in Figure 3) since
it is derived under the background of the compound-Gaussian model.
Although in the searching process, part information of the target is
absent (L = 5), the robust VL-HSCD also has the relatively small
performance loss, compared with the other heterogeneous detectors.
Additionally, when the correlation coefficient is altered, related to the
PSD of the sea clutter, the detection performance is similar to that of
ε = 0.9 and thereby is not shown in the paper.

Next, when the shape parameter of clutter increases from v = 0.4
to v = 0.6, it can be immediately seen the performance degradation of
VL-HSCD in Figures 4 and 5. For HR sea clutter of K distribution,
the values of shape parameter are generally observed in the region
[0.1, ∞) [28]. When the shape parameter is equal to infinity, the
K distribution reduces to a Rayleigh distribution in amplitude,
and on the contrary, it can be seen that the smaller v is, the
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Figure 2. Pd versus SCR under
amplitude heterogeneity with v =
0.4 and ε = 0.9 for Swerling 0
target.

 20  15  10  5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCR, dB

P d

 

 

VL HSCD (L=6)

VL HSCD (L=5)

VL HKelly (L=6)

VL HKelly (L=5)

VL HAMF (L=6)

VL HAMF (L=5)

- - - -

Figure 3. Pd versus SCR under
amplitude heterogeneity with v =
0.4 and ε = 0.9 for Swerling 1
target.
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Figure 4. Pd versus SCR under
amplitude heterogeneity with v =
0.6 and ε = 0.9 for Swerling 0
target.
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Figure 5. Pd versus SCR under
amplitude heterogeneity with v =
0.6 and ε = 0.9 for Swerling 1
target.

greater difference between K distribution and Rayleigh distribution
presents [29]. Additionally, U.S. Naval Research Laboratory does
research on different sea-state scenarios using the HR X-band radar
with vertical polarization and 0.5◦ beamwidth antenna in 1967. The
observed results indicate that the higher sea-state is, the farther
the distribution of sea clutter diverges from Rayleigh distribution.
Hence, the results indicate that the VL-HSCD is more appropriate
for the amplitude heterogeneity of high sea-state. The reason is
that this heterogeneous multiple-scan detector is derived on the basis
of the compound-Gaussian background, and thereby it suffers some
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performance loss when the disturbance is close to the complex Gaussian
clutter. Similarly, the performance of the VL-HSCD is better than that
of the others in this case where the improvement is between about 1
and 2 dB at Pd = 0.9, and when the correlation coefficient is changed
(such as ε = 0.9 to ε = 0.95) with the same shape parameter v = 0.6,
there is almost no detection performance loss ( not shown in the paper).

4.2. Distribution Heterogeneity

Since the test and training cells have great potential in different sea-
states, we consider that the cells exhibit distinct shape parameters
and unchanged correlation coefficient ε = 0.9, standing for one case of
the distribution heterogeneity, and present the detection performance
of the nonhomogeneous multiple-scan processors, shown in Figures 6
and 7. Precisely, in this case, part of the training cells show the same
shape parameter as the test data and the other training cells exhibit
the different parameters as the test data. As observed in Figures 6
and 7, the VL-HSCD performs at least 7 dB better at Pd = 0.9
than the others and achieves the least performance loss when some
information of target is neglected. In the derivation of VL-HSCD, the
influence of the texture component, whose PDF contains the shape
and scale parameters, is involved by means of the integral operation
in the expression (9), resulting in the performance superiority of this
detector under the distribution heterogeneity in compound-Gaussian
clutter.

Otherwise, when the shape parameter is fixed, such as v = 0.4,
and the correlation coefficient of speckle component is changed in each
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Figure 6. Pd versus SCR
under distribution heterogeneity
with ε = 0.9 for Swerling 0 target.
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Figure 8. Pd versus SCR
under distribution heterogeneity
with v = 0.4 for Swerling 0 target.
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Figure 9. Pd versus SCR
under distribution heterogeneity
with v = 0.4 for Swerling 1 target.

cell, the detection results are shown in Figures 8 and 9, respectively.
Specially, the typical values of ε for radar sea-clutter are in the
range [0.9, 0.99] for different conditions [23]. Figure 8 illustrates the
detection performance for Swerling 0 target, while Figure 9 shows the
counterpart for Swerling 1 target.

In the environment of distribution heterogeneity, the detection
performance of VL-HSCD is superior to that of the others. The plots
in Figures 8 and 9 show that, for Pd = 0.9, there exists the loss
of more than 7 dB between the VL-HSCD and the other detectors.
VL-HSCD is completely insensitive to the fluctuation in the value
of ε, presenting the robustness to the correlation property of the sea
clutter. Meanwhile, when the absence of RCS meets in the searching
process, resorting to VL method, the performance degradation of all
inhomogeneous detectors is not serious, representing the robustness to
the searching method.

In fact, it is straightforwardly seen that the model of the sea clutter
is mainly determined by the shape parameter and the correlation
coefficient. Therefore, combining the cases, the adaptive heterogeneous
multiple-detector, VL-HSCD, achieves the high detectability for the
weak target under the various conditions of inhomogeneous clutter.

5. CONCLUSION

In this paper a framework of multiple-scan signal detection taking the
clutter heterogeneity into account which plagues practical radar target
detection, is presented and analyzed. For the uniformity environment,
the researchers already evaluate and develop the multiple-scan
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detection approaches to improve the performance of detecting the
weak target in the literatures. However, considering that the clutter
heterogeneity is commonly encountered in the realistic conditions, the
non-homogeneous multiple-scan detectors, such as VL-HAMF, VL-
HKelly and VL-HSCD, are ensured to detect the weak moving target.

Under the assumption for the different heterogeneous clutter
scenarios, the detection performance of the multiple-scan detectors,
VL-HAMF, VL-HKelly and VL-HSCD, are compared, and the
simulation results for the performance assessment based on Monte
Carlo method are presented. Specially, the detection performance
of VL-HSCD proposed in the paper is remarkably superior to that
of the others in both amplitude-heterogeneous and distribution-
heterogeneous cases. Even when some information of target is
disappeared, VL-HSCD outperforms the other detectors and achieves
the robustness to VL algorithm.
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