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MEASUREMENTS AND EVALUATIONS OF MULTI-
ELEMENT ANTENNAS BASED ON LIMITED CHANNEL
SAMPLES IN A REVERBERATION CHAMBER

X. Chen*

Chalmers University of Technology, Gothenburg 412 96, Sweden

Abstract—In this paper, evaluations of diversity gains and capacities
of multi-element antenna based on limited channel samples in a
reverberation chamber (RC) are studied. It is shown that, for a
large antenna array, the classical sample estimation based on finite
channel samples tends to underestimate its diversity gain and capacity.
An improved (yet slightly more complicated) eigenvalue estimation
method is applied in both diversity gain and capacity calculations,
which effectively alleviates the estimation bias. The findings of the
present paper are applicable for measurements where the maximum
independent channel samples per antenna element are limited. Apart
from simulations, we also evaluate the performances of the classical and
improved eigenvalue estimators based on measurements in a RC. Based
on the results of this paper, the performance of the RC measurement
(with limited samples) for multi-element antennas can be readily
enhanced.

1. INTRODUCTION

Multi-antenna systems have been getting more and more popularity
over the past decades due to their potential capability of improv-
ing communication performances (i.e., better reliability and/or higher
throughput) in multipath fading environments [1]. As a result, the di-
versity gain and capacity become two popular parameters for charac-
terizations of multi-element antennas in multipath environments. Lots
of works have been carried out for measuring diversity gains and/or
capacities of multi-antenna systems [2–11]. Most of the previous stud-
ies assumed sufficient channel samples so that the sample estimation
errors of eigenvalues of channel covariance matrices were negligible.
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This paper, however, focuses on the scenarios where the channel sam-
ple numbers are comparable in magnitude to antenna numbers (which
is thereafter referred to as limited channel samples per antenna ele-
ment, or simply limited channel samples). In these cases, errors of
eigenvalue sample estimations result in noticeable errors in the calcu-
lations of diversity gains and capacities.

In real-world multipath environments as well as multipath
emulators, the maximum available independent samples are usually
limited by measurement instruments and scattering environments.
For examples, spatial realizations of an indoor measurement are
usually constraint to a limited number in order to avoid the large-
scale fading [1]. Another example is the ring-type multipath fading
emulator [12, 13], where the sample number depends on the number
of probe antennas (each requires a complete radio-frequency chain).
Reverberation chambers (RCs) have been used as multipath emulators
over the past decade [7, 14, 15]. For RC measurements, the maximum
independent samples are physically limited by the chamber volume and
the effectiveness of its mode-stirrers. A common practice to increase
channel samples is to treat the channel samples at different frequencies
within a certain bandwidth as different channel realizations of the same
random process. Note that the frequency bandwidth must be carefully
chosen so that the channel statistics are not changed by this technique.
However, for typical indoor measurements, coherence bandwidths of
indoor channels are relatively large compared with the measuring
frequency step [1]. Hence the equivalent independent channel sample
in an indoor environment (or a RC) is usually limited.

In this paper, we focus on the maximum ratio combining (MRC)
diversity gain and outage capacity of single-input and multiple-output
(SIMO) systems, and analyze the effects of the eigenvalue estimation
errors (due to limited channel samples) on the evaluations of the
diversity gain and capacity of a SIMO system. It is found that
the classical sample estimation of eigenvalues (with limited channel
samples) results in underestimations for both diversity gain and
capacity. This finding implies that, given a fixed measurement
setup with limited maximum sample number, the diversity and
capacity measurement accuracies degrade (with increasingly severe
underestimations) as the number of antennas increases.

In order to alleviate the underestimation problem, an enhanced
eigenvalue estimator is applied, which results in better estimations
of the diversity gain and capacity, although the enhanced estimator
is a bit mathematically involved. In practical measurements, two
important factors are measurement time and measurement accuracy.
Usually there is a trade-off between them. With this enhanced
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estimator, it is possible to reduce the measurement sample number
(and therefore the measurement time) while keeping an acceptable
measurement accuracy, or vice versa. Furthermore, given a fixed
RC, measurements at relatively low operating frequencies of certain
antennas under test suffer from limited maximum independent samples
due to the inherent insufficiency in independent electromagnetic modes
in the chamber. The enhanced eigenvalue estimator can be used to
enhance the measurement accuracy in this case as well.

The goal of this work is to enhance the measurement performance
of the RC in the case of limited channel samples (while the results are
also applicable for the ring-type multipath emulators [12]). Results in
this paper can be particularly useful for improving the measurement
accuracy (or reducing measurement time) of the above-mentioned
multipath emulators.

2. THEORY

Eigenvalues of the covariance matrix of a multi-element antenna come
into play in both diversity gain and capacity evaluations. In order
to investigate the effects of an antenna array on the diversity gain
and capacity, we consider a SIMO system with an ideal antenna
at the transmitter and the multi-element antenna under test at the
coherent receiver. Since the channel in an unloaded RC is usually
in complex Gaussian distribution [16], we assume Rayleigh-fading
channels throughout this paper.

2.1. Diversity Gain

The MRC effective diversity gain of a multi-element antenna is defined
in [17] as

Geff =
F−1(γ)
F−1

ref (γ)

∣∣∣∣∣
1%

(1)

where (·)−1 denotes functional inversion, F is the cumulative
distribution function (CDF) of the instantaneous signal-to-noise ratio
(SNR), γ, of the MRC output, and Fref is the CDF of an ideal antenna,

Fref(γ) = 1− exp(−γ). (2)
The CDF of an MRC diversity antenna with spatial correlations

is given by Lee [18]

F (γ) = 1−
M∑

i=1

λM−1
i exp (−γ/λi)

M∏
k 6=i

(λi − λk)
(3)
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where M is the number of antenna elements, and λi (i = 1 . . . M)
denotes the ith eigenvalue of the covariance matrix

R = E[hhH ] (4)
where E denotes the expectation. The superscript H is the Hermitian
operator, and h is the M × 1 composite fading channel vector including
the overall antenna effect. Assume that h = R1/2hw, where hw consists
of M independent and identically distributed (i.i.d.) proper (complex)
Gaussian random variables with unity variance. We hereafter refer
to (3) as Lee’s (CDF) formula.

It seems that Lee’s formula would result in large numerical errors
when any two eigenvalues are close to each other due to its apparent
singularity. However, it is shown in [19] that the limit of Lee’s formula
converges to the true CDF as eigenvalues converge to each other. In
other words, Lee’s formula is computational robust (in stochastic sense)
as long as (4) is approximated by its sample mean based on finite
channel samples,

R̂ =
1
N

N∑

n=1

hnhH
n (5)

where hn is the nth realization of random channel vector h, and N is
the number of channel samples. Therefore, we shall use Lee’s formula
throughout this paper.

2.2. Capacity

The capacity of a SIMO system is given by [20]

C = log2

[
det

(
I + γhhH

)]
(6)

where I is the identity matrix. After simple mathematical
manipulations, (6) can be rewritten as [21]

C = log2

(
1 + γλTz

)
(7)

where the superscript T denotes the transpose operator. λ is an M×1
vector consisting of all λi, and z is a column vector consisting of M
i.i.d. standard exponential random variables.

2.3. Sample Eigenvalue

Definition of Majorization [22]: For two real-valued M ×1 vectors
a and b in descending order, a majorizes b, denoted as a Â b, if∑m

i=1 ai ≥
∑m

i=1 bi (m = 1, . . . ,M − 1) and
∑M

i=1 ai =
∑M

i=1 bi.
Assume that a and b are two eigenvalue vectors associated with

covariance matrices Ra and Rb, Ra is more correlated than Rb if a Â b.
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Note that throughout this paper without loss of generality eigenvalue
vectors are assumed to be in descending order.

For the sake of convenience, we refer R̂ defined in (5) as the
sample covariance, and its corresponding eigenvalue estimates, λ̂i

(i = 1 . . .M), as sample eigenvalues. Although R̂ is unbiased
maximum likelihood (ML) estimator of R, λ̂i are biased estimates of
λi. Especially, when N is comparable in magnitude to M , estimates of
small eigenvalues are biased down, while estimates of large eigenvalues
are biased up [23]. Therefore, the sample eigenvalue vector majorizes
the true eigenvalue vector, λ̂ Â λ, and consequently the sample
covariance matrix is more correlated than the true covariance matrix.

It is well known that receiver correlations in such a coherent
SIMO system is detrimental, thus evaluations of the diversity gain
and capacity based on limited channel samples tend to underestimate
their true counterparts.

2.4. Enhanced Eigenvalue Estimator

A lot of work has been devoted to enhance the eigenvalue estimation
(see [24] and references therein). While most studies focused on the
case where channel sample number N was sufficiently larger than the
antenna number M , [24] proposed an enhanced estimator that works
also for the cases where N is close to M . After small modification (to
match the problem in hand), the enhanced estimator becomes

λ̂enh
i = N(λ̂i − µi) (8)

with µi as the solutions of
M∑

i=1

λ̂i

λ̂i − µi

= N. (9)

Both eigenvalue estimators are applied in evaluations of the
diversity gain and the capacity by simulations and measurements in
the following sections.

3. SIMULATIONS

Random matrix theory suggests that most of the convergence results
for asymptotically large antenna arrays can be applied to four- or eight-
element arrays with good approximations [25]. Therefore, instead of
using a very large array, an eight-element array is chosen (M = 8) in
the section for simulations. It is shown in [26] that capacities depend
on correlations only via Frobenius norms of covariance matrices. As
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a simple corollary, capacities depend on correlation magnitudes rather
than (complex) correlations themselves. For this reason, without loss
of generality an 8 × 8 real-valued covariance matrix with a Frobenius
norm of 4.35 is chosen. To study effects of limited channel samples, N is
chosen from the set of {10, 20, 50}. Note that the estimation accuracy
only depends on the asymptotic ratio of N to M . We numerically
generate N complex Gaussian channel realizations of h according to
the descriptions in Section 2.1.
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Figure 1. MRC output CDFs of the eight-element array with true
eigenvalues, sample eigenvalues, and enhanced eigenvalue estimates.
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The empirical CDF of the MRC output SNR and the
corresponding effective diversity gain for one simulation run are
shown in Figure 1 and Figure 2, respectively. For comparisons, the
corresponding estimates using the sample eigenvalue and the enhanced
eigenvalue estimators are also plotted in both figures. It is shown
that the sample eigenvalue estimator underestimates the diversity gain
while the enhanced eigenvalue estimator reduces the estimation bias
of the diversity gain, and that as the sample number increases (for a
fixed antenna number) both estimators give better estimates.

In order to study the statistics of both estimators, the same
simulation procedure is repeated for 1000 times, based on which the
histograms of the diversity gain estimates for different N values are
calculated and shown in Figure 3. Note that the histograms throughout
this paper are calculated using the “hist” function in MATLAB with
a bin width of 0.1. Note also that the “frequency” in the y-axis of
Figure 3 is a terminology denoting the number of estimates within
a certain bin in the x-axis of the same figure. The corresponding
mean values and standard deviations (STDs) of the diversity gain
estimates are shown in Table 1 for two cases with N = 10 and
N = 50, respectively. It can be seen that both estimators tend
to underestimate the true diversity gain yet with increasing sample
number (per antenna element) the underestimation vanishes, and that
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Table 1. MRC diversity gain estimates (M = 8, N = 10, 50).

N = 10 N = 50

Mean STD Mean STD

True

eigenvalues
23.19 0 23.19 0

Sample

eigenvalues
21.95 0.59 22.97 0.24

Enhanced

estimates
22.65 0.59 23.13 0.24
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Figure 4. Empirical CDFs of capacities of the eight-port antenna
with true eigenvalues, sample eigenvalues, and enhanced eigenvalue
estimates.

the enhanced estimator reduces the estimation bias, while its STD is
very close to that of the sample eigenvalue estimator.

Figure 4 shows the empirical CDF of the “true” capacity and
capacity estimates with both eigenvalue estimators for one simulation
run at two practical SNR values (i.e., SNR = 10dB and SNR = 25 dB).
Note that in order to obtain the empirical CDF, 4000 i.i.d. realizations
of standard exponential random variable vector z in (7) are generated
numerically, while the eigenvalue estimates are calculated using both
estimators with the number of channel samples N drawn from the set
of {10, 20, 50}. It is shown from Figure 4 that the sample eigenvalue
estimator underestimates the capacity while the enhanced eigenvalue
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estimator reduces the estimation bias, and that as the sample number
increases (for a fixed antenna number) both estimators give better
estimates.

Similarly, to study the statistic of capacity estimates, the same
simulation procedure is repeated for 1000 simulation runs at 10- and
25-dB SNRs. For better illustrations and without loss of generality,
the 10% outage capacity, C10%, is chosen for comparisons.

C10% is defined as the largest possible data rate R such that the
outage probability does not exceed 10% [26]

C10% = max {R : Pout(R) ≤ 10%} (10)

where the outage probability can be well approximated by the empirical
CDF shown in Figure 4.

The histograms of the 10% outage capacity estimates using both
estimators are calculated and shown in Figure 5 for different N
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Table 2. 10% outage capacity
estimates (M = 8, N = 10).

10-dB SNR 25-dB SNR
Mean STD Mean STD

True
eigenvalues

4.70 0 9.63 0

Sample
eigenvalues

4.32 0.18 9.24 0.19

Enhanced
estimates

4.54 0.18 9.46 0.19

Table 3. 10% outage capacity
estimates (M = 8, N = 50).

10-dB SNR 25-dB SNR
Mean STD Mean STD

True
eigenvalues

4.70 0 9.63 0

Sample
eigenvalues

4.63 0.08 9.56 0.08

Enhanced
estimates

4.69 0.08 9.61 0.08

values. Corresponding mean values and STDs of the 10% outage
capacity estimates are shown in Table 2 and Table 3 for N = 10
and N = 50 cases, respectively. It is shown that both estimators
tend to underestimate the actual 10% outage capacity yet with
increasing sample number (per antenna element) the underestimation
vanishes, and that the enhanced estimator reduces the estimation
bias, while it has a similar STD as the sample eigenvalue estimator
does. Furthermore, it can be seen that estimators’ performances are
approximately the same at 10- and 25-dB SNRs.

4. MEASUREMENTS

The multi-element antenna under test is a circular array consisting
of six identical quarter-wavelength monopoles that are vertically and
uniformly mounted above a circular ground plane. The ground plane
has a radius of 14 cm. The monopoles have physical length of 8.3 cm
(resonating at around 900MHz). The adjacent monopoles have a
separation of 4.6 cm. Note that this small separation is chosen in order
to have noticeable correlations among the monopoles.

It has been shown that the MRC diversity gain and ergodic
capacity of multi-element antennas can be easily determined based
on RC measurements [10]. The RC is basically a metal cavity with
many excited modes that are stirred to create a multipath fading
environment [16]. The chamber used in the present paper is Bluetest
HP RC with a size of 1.75 × 1.25 × 1.8m3 (see Figure 6). It has
two plate mode-stirrers, a turn-table platform, and three antennas
mounted on three orthogonal walls (that are referred to as wall
antennas hereafter). The wall antennas are actually wideband half-
bow-tie antennas. During the measurement, the platform (with a
radius of 0.3 m), on which the multi-element antenna under test was
mounted, was moved to 20 positions equally spaced by 18◦, and for each
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Figure 6. Drawing of the Bluetest RC with two mechanical plate
stirrers, platform, three wall antennas and six-monopole array.

platform position the two plates simultaneously moved to 10 positions
(equally spanned on the total distances that they can travel along the
walls). All the mechanical step-wise movements were controlled by
a computer. At each stirrer position (i.e., platform/plate position)
and for each wall antenna a full frequency sweep over 11 MHz centred
around 900 MHz was performed by the vector network analyzer (VNA),
during which the channel transfer functions at different frequencies
were sampled. The frequency step was set to 1 MHz always. Thus there
were 11 frequency points. To be consistent with the previous analysis
and simulations, we consider only the SIMO case, i.e., samples from
the three wall antennas are treated as one random process for each
of receive antenna element. Therefore, there are 600 channel transfer
function samples per frequency point for each receive antenna element.

In order to calibrate out the large-scale fading, or attenuation,
in the chamber (so that only small-scale fading comes into play) [1],
a reference measurement was performed a priori, where the average
power transfer function is measured using a reference antenna with
known radiation efficiency. The reference level, Pref , was obtained by
dividing the average power function by the radiation efficiency of the
reference antenna. Then the multi-element antenna under test, in this
case a six-monopole array (see also Figure 6), was measured. During
this measurement, the three wall antennas were assumed to be three
the transmit antenna with three different spatial (and polarization)
realizations; and the monopole array was assumed to be the receive
antenna.

The measured channel vector hmeas is a function of frequency and
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stirrer positions (including wall antenna samples). The normalized
(measured) channel vector is

h = hmeas

/√
Pref (11)

where the reference power level, Pref is described above.
Due to the strong scattering inside the chamber, line-of-sight

(LOS) components usually have negligible power level compared with
that of scattered components in the RC, provided that the chamber
is not heavily loaded and that the transmit and receive antennas are
not pointed towards each other [27, 28] or that they are simply non-
directive antennas [29]. Therefore h in (11) can be well approximated
as a zero mean Gaussian vector [16]. Note that the radiation efficiency
of the wall antenna is also calibrated out by (11). Since the wall
antennas are separated sufficiently away from each other and that they
are orthogonally polarized, their correlations are negligible. Therefore,
the measurement setup together with normalization (11) allows for
examining the monopole array’s effects on diversity gain and capacity
without the effects of the wall antennas.

Similar to the simulations in the previous section, to study effects
of limited channel samples, N is chosen from the set of {10, 20, 50} out
of the total 600 samples. In order to study the statistic performances of
both estimators for the measurement-based MRC diversity evaluations
and due to the practical sampling limitation, the same evaluation
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procedure is repeated for 100 different sample sets (which is different
from the simulations where 1000 simulation runs were performed),
based on which the histograms of the diversity gain estimates for
different N values are calculated and shown in Figure 7. The
corresponding mean values and STDs of the diversity gain estimates
are shown in Table 4 for the cases of N = 20 and N = 50. The
true diversity gain can be accurately approximated using all the 600
samples [10]. It can be seen that the sample eigenvalue estimator tends
to underestimate the true diversity gain as expected. However, unlike
previous simulation results, the enhanced estimator overestimates
the actual value, which means that it can either underestimate or
overestimate the true value depending on its inherent bias-correction
ability. Nevertheless, the enhanced estimator has smaller bias than the
sample eigenvalue estimator does, while its STD is close to that of the
sample eigenvalue estimator.

In order to obtain reasonably accurate empirical capacity CDFs,
4000 i.i.d. realizations of standard exponential random variable vector
z in (7) are generated numerically, while the eigenvalue estimates are
calculated using both estimators with N measured channel samples
from the set of {10, 20, 50} out of the 600 samples. Similarly, to study
the statistic of the capacity estimates, the same evaluation procedure

Table 4. MRC diversity gain estimates (M = 6, N = 10, 50).

N = 10 N = 50

Mean STD Mean STD

Estimates of

600 samples
21.45 - 21.45 -

Sample

eigenvalues
20.41 0.28 21.21 0.14

Enhanced

estimates
21.79 0.29 21.53 0.16

Table 5. 10% outage capacity estimates (M = 6, N = 10).

10-dB SNR 25-dB SNR

Mean STD Mean STD

Estimates of

600 samples
4.24 - 9.15 -

Sample

eigenvalues
3.87 0.12 8.75 0.13

Enhanced

estimates
4.33 0.09 9.25 0.10
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is repeated for 100 different sample sets at 10- and 25-dB SNRs.
Again, the 10% outage capacity C10% is chosen for comparisons. The
histograms of 10% outage capacity estimates using both estimators are
calculated and shown in Figure 8 for different N values. Corresponding
mean values and STDs of the 10% outage capacity estimates are shown
in Table 5 and Table 6 for N = 10 and N = 50 cases, respectively. It
is shown that the sample eigenvalue estimator tends to underestimate
the actual 10% outage capacity yet with increasing sample number (per
antenna element) the underestimation vanishes, and that the enhanced
estimator (that overestimates the true outage capacity) reduces the
estimation bias while keeping a similar STD as that of the sample
eigenvalue estimator. Furthermore, it can be seen that the estimators’
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Table 6. 10% outage capacity estimates (M = 6, N = 50).

10-dB SNR 25-dB SNR

Mean STD Mean STD

Estimates of

600 samples
4.24 - 9.15 -

Sample

eigenvalues
4.17 0.05 9.07 0.05

Enhanced

estimates
4.26 0.05 9.17 0.05

performances are approximately the same at 10- and 25-dB SNRs.
Finally, although the findings in this section are from RC

measurements, the same results also apply to the ring-type multipath
emulator whose fading is generated by multiple probes [12], where the
sample number is limited. Nevertheless, for instructive purpose, we
have chosen the measurement setup such that enough independent
samples were gathered to accurately approximate the true diversity
gain and capacity values as benchmarks for comparisons of the
performances of the two estimators.

5. CONCLUSION

It is shown in this paper that the sample eigenvalue estimator for
the evaluations of diversity gains and capacities based on limited
channel samples (per antenna element) tend to underestimate the true
values. This is due to the fact that the sample eigenvalue vector of a
sample covariance matrix majorizes the true eigenvalue vector, rending
a more correlated sample covariance matrix. The estimation bias is
more profound when the number of channel samples is comparable
in magnitude to that of antennas. It is this artificial correlation
increase that causes the underestimations of the diversity gain and
capacity when the classical sample eigenvalue estimator is used. This
phenomenon is more apt in indoor measurements where the channel
coherence bandwidth is relatively large, which renders less equivalent
independent channel samples in frequency domain. To alleviate this
underestimation problem, an enhanced eigenvalue estimator is applied
in both diversity gain and capacity evaluations. We compare the
two estimators by simulations and RC measurements. Results shows
that the enhanced estimator tends to reduce the estimation bias while
keeping similar estimation variances (or STDs). Using the enhanced
estimator, the measurement performances of RCs can be enhanced in
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the following cases: 1) measuring multi-element antennas at relatively
low frequencies where the independent electromagnetic modes in the
chamber are limited; 2) measuring multi-element antennas with fewer
samples in order to reduce the measurement time.
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