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Abstract—In this paper, a finite-difference based method is presented
to simulate the electromagnetic field generated by arbitrarily-oriented
coil antennas in three-dimensional (3-D) complex underground media.
The media have multiple layers in both the vertical and horizontal
direction and can be fully anisotropic. The developed finite-difference
method uses a staggered grid to approximate a vector equation in
terms of the scattered electric field. The resultant linear sparse matrix
is solved iteratively using a generalized minimal residual (GMRES)
algorithm and an incomplete LU precondition technique is applied
to improve the convergence behavior of the linear equation, thus
accelerate the solution. The developed algorithm is validated by
numerical examples and then applied to the simulation and study of the
popular triaxial induction tools in electrical well logging engineering for
anisotropy detection.

1. INTRODUCTION

Study of electromagnetic field generated by coil antennas in complex
underground environment is very important in geophysical exploration.
As we know, hydrocarbon (oil or gas) reservoir has high resistivity/low
conductivity compared to other non-reservoir rocks. Thus from
the resistivity profile of an underground formation, geologists can
determine reservoir layers and hydrocarbon contents in the rock.
The resistivity profile of an underground formation is usually
obtained from its electromagnetic (EM) field response of the electrical
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logging tools. These days, as thick-layered hydrocarbon reservoirs
are gradually getting exhausted, detection and exploration of thin
laminated reservoirs are becoming more and more important. Thin
laminated sand-shale reservoirs usually demonstrate anisotropy in
electric properties, characterized by the horizontal and vertical
resistivity/conductivity. Detection of the electrical anisotropy of
geologic formations is a problem that has attracted the attention
of geophysicists for nearly 70 years [1]. The recently developed
triaxial induction tools can detect the anisotropy of the media.
In the tool, the transmitters and receivers are small coil antennas
oriented at orthogonal directions. The anisotropic media respond
to different components of the transmitter–receiver combinations,
therefore the tool is able to measure formation resistivities with
anisotropy. For faithful interpretation of data acquired in complex
geologic settings, it is critical to accurately predict the behavior
of induced electromagnetic (EM)response of these coil antennas in
three-dimensional (3-D) geometries comprising borehole, invasions in
the horizontal direction and multiple layers in the vertical direction.
Efficient solution of Maxwell’s equations in such 3-D anisotropic
media is still a challenging problem and receives increasing interests.
Existing 3-D EM modeling techniques applied in well logging problems
include finite-element techniques [2–5], integral equation method [6–
8], finite-difference methods [9–15], the closely related finite-volume
method [16, 17] etc.. Each kind of method has its own advantages
and disadvantages. Among these methods, finite-element methods are
most flexible in modeling complicated geometry. However they are not
as straightforward to implement as finite-difference methods. Integral
equation method can be highly efficient for relatively simple models,
but their computational complexity and memory requirement increase
quickly with the increase of cell numbers. The recently developed
fast algorithms [8] alleviate this problem by speeding up the solution
and reducing the memory storage but the method is still restricted
to isotropic media. Finite-difference methods are simple in concept
and straightforward in implementation. Various techniques have been
developed to make the method more efficient and flexible, making the
method one of the most popular techniques in the geophysical EM
simulations.

In this paper, we present a finite-difference based simulation
method to calculate the electrical and magnetic fields resulting from
an inductive source embedded in a 3D fully anisotropic medium. The
generalized anisotropy of the medium is described by a symmetric 3×3
tensor. In this algorithm, we use an edge-centered, staggered-grid finite
difference method to solve the Maxwell’s equations in the quasi-static
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frequency domain. An averaged conductivity tensor [10] is used for
each cell so that relatively coarser mesh can be used. The generalized
minimized residual (GMRES) [18] is used to solve the resultant matrix
equation and the incomplete LU (ILU) precondition [19, 20] is applied
to improve the convergence property of the equation. The developed
code is very efficient and it enables simultaneous multi-spacing and
multi-frequency computing of the tool responses to arbitrary 3D
anisotropic formations.

This paper is organized as follows. First, we derive the governing
partial differential equation (PDE) which describes low-frequency EM
induction in anisotropic media. Then, the finite-difference method for
staggered grids is used to solve the governing PDE. The detailed finite-
difference equation for a fully anisotropic formation is presented. In the
numerical results section, some examples are presented to demonstrate
the efficiency and capability of the present method. Then the method
is applied to study the EM response of a triaxial induction tool which
comprises three orthogonal transmitter coils and three orthogonal
receiver coils in 3-D anisotropic media.

2. FORMULATION

2.1. Governing Equations

Consider an infinitely small arbitrarily oriented coil antenna located in
a multi-layered anisotropic media, as shown in Figure 1.

The governing equations for EM induction in the 3-D geometry
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Figure 1. A coil antenna in an underground multi-layered anisotropic
media.
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are Faraday’s law and Ampere’s law
∇×E=−iωB (1a)
∇×H=Ji + Js + iωD (1b)

where Js is the source current density and Ji is the induced current
density. In the above equations, a time-harmonic dependence of eiωt

is assumed and suppressed. The induced current density Ji is related
to the electric field by

Ji = σ̄E (2)

The total electric field E can be expressed as the sum of a primary
field E0 from Js embedded in a background reference medium and
a scattered field E′ arising from the conductivity and permittivity
variations which deviate from the background medium. In geophysical
applications, we usually prefer a scattered-field formulation instead of
a total-field one since the former computations are more robust and
accurate, particularly when the measurements are made very close to
the source. A total-field solution usually requires very fine meshes,
resulting in large demands of computational resources. In addition, it
is impossible to obtain accurate in-phase responses from the total-field
solution since the direct-coupled field is dominant in the total field.

Setting E = E′ in (1) and combining (1)–(3) yield a single, second
order partial-differential equation (PDE) in terms of the scattered
electric field:

∇×∇×E′ + iωµ0 (σ̄ + iωε)E′ = −jωµ0J0 (3)
The term J0 is the effective source current density for the scattered
fields,

J0 = [(σ̄ (r)− σ0I) + jω (ε (r)− ε0) I]E0 (4)

where I is the 3 × 3 identity matrix. It is noted that both the
conductivity and permittivity are position-dependant and can be fully
anisotropic, i.e.,:

σ̄ (r) =

[
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

]
, ε̄ (r) =

[
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

]
(5)

2.2. Finite-difference Solution

Next, we use the finite-difference method based on the staggered Yee
grid [21] to solve (3). The solution domain is discretized into Cartesian
cells and the scattered electric field components Ex, Ey and Ez are
defined on the edges of the cells. The magnetic-field component Hx is
staggered in y and z, Hy in x and z, and Hz in x and y, as shown in
Figure 2.
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Figure 2. The staggered grid used for the finite-difference method.

Combining (3) and (4) and expanding the curl operations yield
the following coupled expressions for the scattered electric field:

∂
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(6)

In this paper, a 13-point centered finite-difference stencil [10]
is used to approximate the curl-curl operator in (3). The above
differential equation is converted to a linear system equation as follows,

KE = S (7)
where the matrix K is the system matrix of dimension 3NxNyNz ×
3NxNyNz for a model with 3NxNyNz cells. E is a vector of length
3NxNyNz containing the secondary electric filed values Es

x, Es
y, Es

z for
all nodes. S (length 3NxNyNz) is the secondary-source vector given
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by the right-hand side of (6). The system matrix K is a sparse matrix
with up to 13 nonzero entries per line. The entries depend on the grid
spacing and the frequency-dependent properties of the media.

In the derivation of the linear equations, a conductivity averaging
scheme is used to obtain the conductivity at the center of the cell
edge (where the electric field is defined). Following the scheme in [10],
the conductivity at the center of the edge is expressed as a weighted
sum of the conductivities of the four adjoining cells. The Dirichlet
condition is applied to the scattered electric field components on
the outmost boundary of the finite-difference mesh. The detailed
expression of the matrices can be found in the Appendix. It should
be noted that the system equation is non-symmetric originally. By
multiplying (A1) by ∆xi+1/2∆yj∆zk, (A2) by ∆xi∆yj+1/2∆zk, and
(A3) by ∆xi∆yj∆zk+1/2, we can obtain the symmetric form of the
system equation, where ∆xi, ∆yj , ∆zk are the length of grid cells i,
j, and k; ∆xi+1/2, ∆yj+1/2 and ∆zk+1/2 are the distances between the
centers of cells i + 1 and i, j + 1 and j, and k + 1 and k, respectively.

The linear system in (7) is solved efficiently using a generalized
minimal residual (GMRES) algorithm [18] and the incomplete LU
preconditioner (ILU) [19, 20] is used to improve the convergence of the
matrix equation. Once the electric field is obtained from Equation (7),
the magnetic field can be calculated from Faraday’s law

H=
1

−jωµ

[(
∂Ez

∂y
− ∂Ey

∂z

)
x̂+

(
∂Ex

∂z
− ∂Ez

∂x

)
ŷ+

(
∂Ey

∂x
− ∂Ex

∂y

)
ẑ
]

. (8)

In the implementation, the partial derivatives in (8) are replaced by
the corresponding differences that can be computed by interpolating
the electric field to the observation points and several vicinity points.

Equation (7) usually converges slow, especially when the
conductivity contrast in the formation is large. To overcome this
difficulty, we use an incomplete LU preconditioner (ILU) to improve
the convergence property of the matrix equation [19, 20].

2.3. Electromagnetic Field Response of Triaxial Induction
Tools

Solving (3), we can obtain the scattered field. Then the total field
is the sum of the primary field and the scattered field. Equation (3)
is valid for transmitter coils oriented at arbitrary direction. For a
triaxial induction tool as shown in Figure 3(a), it usually comprises
three orthogonal transmitter coils and three orthogonal receiver coils,
as shown in Figure 3(b). Since the transmitter coils are infinitely
small, it can be treated as an equivalent magnetic dipole oriented at
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(b)(a)

Figure 3. A triaxial induction tool and its general coil structure. (a) A
triaxial induction tool in an anisotropic formation. (b) The general coil
structure of an induction tool.

the normal direction to the coil surface. The magnetic dipole source
M = (Mx,My,Mz) are characterized by the source current I(ω) as

M = −jωµ0I(ω)aδ(r − rs) (9)

where rs is the position of the transmitter coil, a = (ax, ay, az) are
the areas of the current-carrying loop projected into the (y, z), (x, z),
and (x, y) planes, respectively. The primary fields generated by the
transmitter coil are computed in a homogeneous background medium
with the conductivity and permittivity given at the source point. The
total radiation field of the tilted coil is the summation of the fields from
the x-directed, y-directed and z-directed components of the source. For
the homogeneous background model, explicit expressions for the EM
fields in the frequency domain can be derived.

2.4. Averaged Conductivity Tensor

Since the underground formation we consider is usually very
complicated, including the borehole, dipping beds, invasions and
anisotropic media, a fine mesh is necessary to model the complicated
structures and interfaces between different media. However, a fine
mesh requires large computer resource. A feasible way to alleviate
this difficulty is to use reasonably coarse mesh to model the geometry
and use the averaged conductivity for each cell to model the electrical
property of the media. This is a good compromise between accuracy
and computational complexity. So in most cases, the grid used in the
finite-difference method is independent on the electrical property of the
formation and different media can be included in a single rectangular
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Figure 4. Partitioning of a cell for calculating the average
conductivity tensor.

cell by using the averaged conductivity. In this paper, a technique
similar to the one described in [10] is used to calculate the average
conductivity tensor.

We consider a generalized anisotropic medium, whose conductivity
is described by a symmetric 3 × 3 tensor given in (5). To derive
the averaged conductivity tensor for each rectangular cell, the cell is
first divided into Nx × Ny × Nz subcells in the Cartesian coordinate
system, as shown in Figure 4. Each subcell is assumed to have
a constant conductivity tensor denoted by ¯̄σ(i,j,k). Without loss of
generality, we consider the derivation of the entries 〈σxx〉 and 〈σyx〉
of the averaged conductivity, other entries can be obtained following
a similar procedure. To derive 〈σxx〉, we apply a voltage V0 across
the cell in the x-direction, as shown in Figure 4. By assuming the
electric field to be uniform across each subcell and the electric current
continuous across the subcell boundaries vertical to the x-direction, we
can write out the x-directed electric field E

(i,j,k)
x in each subcell as

E(i,j,k)
x =

Nx

Nx∑
i′=1

(
σ

(i,j,k)
xx /σ

(i′,j,k)
xx

)V0/∆x. (10)

The average x-directed current density for the cell can be
expressed as a summation of the densities of all the subcells with the
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same superscript i. If we choose i = 1, the average current is,

〈Jx〉 =

Ny∑
j=1

Nz∑
k=1

σ
(1,j,k)
xx E

(1,j,k)
x

NyNz
(11)

Then the average conductivity entry 〈σxx〉 be written as,

〈σxx〉 = 〈Jx〉/(V0/∆x) =

Ny∑
j=1

Nz∑
k=1

(
Nx/

Nx∑
i′=1

(
1/σ

(i′,j,k)
xx

))

NyNz
(12)

Equation (12) implies that the averaged conductivity 〈σxx〉 is obtained
by first combining in series the Nx subcells with the same superscript
i in a line and then combining in parallel the Nx×Ny lines of subcells.

Next, we derive the expression of the off-diagonal entry 〈σyx〉.
For a generalized anisotropic medium, the conductivity σ(i,j,k)

yx
of each

subcell is non-zero, which means that any voltage applied in the x-
direction may cause a current flowing in the y-direction. The current
density Jy in each subcell due to Ex is given by

J (i,j,k)
y = σ(i,j,k)

yx E(i,j,k)
x (13)

The average y-directed current density is the average of those of all the
Nx ×Ny ×Nz subcells, that is

〈Jy〉 =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

σ
(i,j,k)
yx E

(i,j,k)
x

NxNyNz
(14)

Substituting (15) into (14), the average conductivity 〈σyx〉 can be
obtained by,

〈σyx〉=〈Jy〉/(V0/∆x)=

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

σ
(i,j,k)
yx

(
1/
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(
σ
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xx
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NyNz
(15)

Following the above procedure, we can derive other average
conductivity entries 〈σyy〉, 〈σzz〉, 〈σxz〉 and 〈σyz〉. To preserve the
symmetric character of the average conductivity tensor, we set the
average conductivity entries 〈σαβ〉 to be the average of the calculated
〈σαβ〉 and 〈σβα〉, that is

〈σαβ〉=〈σβα〉=1
2

(〈σαβ〉+〈σβα〉) α=x, y, z β=x, y, z α6=β (16)
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Figure 5. Two models constructed for an internal consistency check.
(a) Model 1. (b) Model 2.

3. NUMERICAL RESULTS

Based on the above theory, we developed a code to simulate the
electromagnetic field response of arbitrarily oriented coil antennas
in complicated anisotropic media and further extended it to the
simulation of triaxial induction tool responses. To validate the code,
we first present an internal consistency check.

Consider a 1-D layered structure as shown in Figure 5. Layer 1, 3
and 5 are isotropic media with resistivity of 50 ohm-m, 0.5 ohm-m and
1.0 ohm-m, respectively. Layer 2 is anisotropic medium and has a
vertical resistivity of 11 ohm-m and a horizontal resistivity of 1.9 ohm-
m. Layer four has a vertical resistivity of 2.0 ohm-m and a horizontal
resistivity of 1.0 ohm-m. The depth of each layer is shown in the
figure. In the fist model, we assume the principal axes of the resistivity
tensor of the media coincide with the x-y-z coordinate system and the
transmitter and receiver coils are tilted 60◦, as shown in Figure 5(a). In
the second model, we tilt the principal axes of the media and aligning
the source in the z-direction while the multi-layered formation is tiled
in the x′-y′-z′ reference frame, as shown in Figure 5(b). The two models
are expected to give the same results although the implementation of
the codes are different, thus providing an internal consistency check
for the developed code.

In the first model, there is no need to simulate the averaged
conductivity tensor since the meshes coincide with the boundaries
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of the layers. But the axial component of the magnetic field is a
combination of the field generated by an x-directed source and a z-
directed source. In the second model, the meshes do not coincide
with the formation boundaries any longer, so we need to calculate
the averaged conductivity tensor for all the cells. It should be noted
that the conductivity tensors for each cell in the original principle
coordinate system x-y-z should be transformed to the new coordinate
system x′-y′-z′ before they are used to get the averaged conductivity
tensors. The transformation can be performed by multiplying the
original conductivity tensor with a rotation matrix R,

σ̄′ = RT diag (σxx, σyy, σzz)R (17)
The rotation matrix R can be expressed by

R =

[cos θ cosφ − sinφ sinθ cosφ
cos θ sinφ cosφ sin θ sinφ
− sin θ 0 cos θ

]
(18)
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where θ and φ are the two Euler angles corresponding to the dip
and strike angles of the laminations. After rotation, the conductivity
tensor will be a full tensor in the coordinate system x′-y′-z′ in stead
of a diagonal tensor in the original coordinate system x-y-z. Figure 6
shows the calculated magnetic field Hxx (both the transmitter coil and
receiver coils are in the x direction) and Hzz (both the transmitter
and receiver coils are in the y direction) at different vertical depth for
a pair of transmitter and receiver spaced by 1.016m and working at
20 kHz. Perfect agreement is observed between the results from the
two different models, verifying the implementation of finite-difference
method and the averaged conductivity tensor calculation.

In Figure 6, besides the results for the anisotropic case, we also
present the Hxx and Hzz for the isotropic case, namely, Layer 2 and
Layer 4 are also isotropic with resistivity being 1.0 ohm-m and 1.9 ohm-
m, respectively. From Figures 6(c) and (d), we can see that the z-
directed coupling Hzz are the same in the isotropic and anisotropic
cases, implying that Hzz has no sensitivity to the vertical resistivity.
On the contrary, Figures 6(a) and (b) shows that the x-directed
coupling Hxx can detect the anisotropy property of the media.

Next, we consider a 7-layer anisotropic formation model as shown
in Figure 7. The medium in Layer 1, 3, 5 and 7 is anisotropic and has a
horizontal resistivity of 1 ohm-m and a vertical resistivity of 10 ohm-m.
There are invasions in Layer 2, 4 and 6. Diameters of the borehole and
invasion are 21.59 cm and 30.48 cm, respectively. The mud resistivity in
the borehole is 0.4 ohm-m. Other parameters are given in the figure.
We use a tool consisting of three collocated orthogonal transmitter
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response of a 2-coil triaxial tool at 100 kHz. (a) Hxx. (b) Hyy. (c) Hzz.
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coils and three collocated orthogonal receiver coils to measure the
magnetic field profile of the model. The transmitter and receiver coils
are oriented at the x-, y- and z-direction. The dipping angle (the angle
between the tool axis and the normal to the layer boundaries) is 30◦.
The spacing between the transmitter and receiver is 1.8m. Figure 8
shows the calculated imaginary part of the Hxx, Hyy and Hzz responses
at 100 kHz. The results from [15] are also presented in the figure for
comparison. Good agreements are observed, validating the present 3D
FDM code. In these figures, we also present the 1D result calculated
by an analytical method [22] with the borehole and invasion neglected.
It can be seen that the in the layers where there are no invasions,
the 1D and 3D results are very close to each other since the borehole
effect is not obvious in this case. However, in Layers 2, 4 and 6 where
invasions exist, the 1D and 3D results have discrepancy, implying that
3D simulation is necessary to get accurate results and more information
of surrounding media.

In Figure 9, we compare the convergence rates of the linear system
with and without the ILU preconditioner. It is observed that without
preconditioner, a normalized residual norm (NRN) of 1% cannot be
achieved even after 200 iterations. However, with preconditioner, a
NRN of 0.1% can be achieved in only 6 iterations for Ifil = 400 or
9 iterations for Ifil = 100. Ifil represents the number of elements
in the ith row of the matrix L and U to be kept to construct the
precondition matrix. Large Ifil means faster convergence but more
memory requirements. Therefore the choice of Ifil must be a good
compromise between the memory and convergence.

As an application of arbitrarily oriented coil antennas, we consider
an example as shown in Figure 10. A transmitter-receiver pair spaced
2.4384m is located in a 3-layer media. The center layer is 6.096 m
thick and has a resistivity of 20 ohm-m. The upper and lower layer
has a resistivity of 2 and 5 ohm-m, respectively. The tool (transmitter-

z'

TR

2 ohm-m

5 ohm-m

20 ohm-m

0 m

6.096 m

Figure 10. A tilted transmitter-receiver pair in a 3-layer media.
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Figure 11. The response of a tilted transmitter-receiver pair in
a 3-layer isotropic/anisotropic media. (a) Amplitude attenuation.
(b) Phase shift.

receiver pair) is oriented parallel to the boundary, simulating a 90◦
horizontal well. The transmitter coil is pointed along the z′ axis while
the receiver is pointed at 45◦ with respective to the z′ axis and rotates
around the z′ axis in the measurement. Figure 11 shows the amplitude
attenuation and phase shift of the response (the ratio of the received
signal when the receiver is pointed 45◦ and −45◦ degree) as a function
of the true vertical depth at 100 kHz and 400 kHz. We can observe
the following fact from Figure 11. First, the peak values of both the
amplitude ratio and phase shift appear at the boundaries, determining
the boundaries of different media. Second, the peak values increase
as the frequency increases. Furthermore, when the tool approaches
a more conductive layer from below, the directional phase shift and
attenuation are positive. On the contrary, when the tool approaches
a more conductive layer from above, the directional phase shift and
attenuation are negative. This is a very important application in
geosteering. The polarity can be used while drilling as a simple
indicator to determine whether the directional driller should steer up
or down. In Figure 11, we also present the results of an anisotropic case
for comparison, in which the center layer has a horizontal resistivity
of 4 ohm-m and a vertical resistivity of 20 ohm-m. From the figure, we
can see that the existing of the anisotropy in the center layer changes
the polarity of the phase shift and attenuation, as shown by the dotted
curves between 6–8 m.
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4. CONCLUSION

In this paper, we presented a 3-D finite-difference simulation for the
electromagnetic field generated by arbitrarily oriented coil antennas in
complicated underground anisotropic media. The method is applied
to predict and study the electromagnetic response of triaxial induction
tools in multi-layered dipping anisotropic formations. The results
obtained by the present method are compared with the 1-D results
from a transmission line theory. It is concluded that 1-D simulation
shows obvious discrepancy with 3D simulation results in layers with
invasions and the discrepancy becomes larger as the invasion extends
deeper in the formation. This discrepancy also increases when the
shoulder-bed is anisotropic. Therefore, to fully understand the effects
of the borehole and invasions in a complicated multi-layered anisotropic
formation, the full 3D simulation is necessary although it is slower than
the 1D analytical simulation. The method can also be used to the
simulation and design of geosteering drilling tools.

APPENDIX A.

Using a 13-point centered finite-difference stencil to approximate
the curl-curl operators in (6) and applying a conductivity averaging
scheme, (6) can be converted into a set of linear equations for the x-,
y- and z-directed source
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