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Abstract—When a magnetic source is moved and/or oscillating above
a conductive linear plate a traveling time varying magnetic field is
created in the airgap. This field induces eddy currents in the plate that
can simultaneously create normal and tangential forces. The transient
fields and the forces created by the magnetic source are modeled using
a novel 2-D analytic based A-φ method in which the presence of the
source field is incorporated into the boundary conditions of the plate.
The analytic based solution is obtained by using the spatial Fourier
transform and temporal Laplace transform. The performance of the
method is compared with a 2-D transient finite element model with a
Halbach rotor source field. The derived transient force equations are
written in a general form so that they can be applied to any magnetic
source.

1. INTRODUCTION

There are a large number of papers in which the steady-state force
equations due to eddy currents in a linear conducting plate have
been derived [1–8]. However, very few authors have derived exact
analytic equations for transient eddy current forces. A number of
authors have used the thin-sheet approximation method to compute
the transient eddy current force response when translationally moving
a current filament above a conducting sheet [9–12]. However the thin-
sheet approximation assumes that the current distribution is constant
throughout the track thickness and this is not the case under almost
any transient condition and has been shown to be inaccurate when
there is a steady-state oscillating and translationally moving field [13].
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Langerholc derived transient force equations for a vertically
perturbed coil without the thin-sheet approximation. However, the
forces were computed by using the reflected field due to the eddy
currents onto the source coil [14] and therefore the derivation is
source dependent which makes it difficult to directly apply to problems
involving complicated magnetic sources. In this paper, the transient
forces are computed on the surface of the conducting plate. The
advantage of this approach is that forces due to a complicated source,
such as the Halbach rotor shown in Figure 1 [15] can be determined
with relative ease since the force integral only needs to be applied along
the surface of the conducting plate.

Numerical based transient eddy current methods based on
the finite element method (FEA) [16, 17] and boundary element
method [18] are readily available. However when trying to develop
advanced control strategies the numerical based software must be
coupled into other programs such as Matlab and/or Simulink and this
can lead to extremely long simulation times [19]. Therefore, analytic
based transient eddy current force models can be particularly useful
when trying to develop real-time transient based electromechanical
control strategies.

In this paper, the transient response due to a sudden change in
the source field will be derived under the assumption that the forces
are initially in a steady-state condition. The conducting region is
formulated in terms of the magnetic vector potential, Az, and the
non-conducting regions are formulated in terms of the magnetic scalar
potential, φ. The force is computed on the conducting boundary using
the Maxwell stress tensor method. The force equations are derived

Figure 1. Plot from a finite element analysis COMSOL model for a 4
pole-pair Halbach rotor rotating and translationally moving above an
aluminum plate. The field created by the Halbach rotor is shown as
well as the induced currents within the aluminum conductive plate.
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in a general way so that any magnetic or current source can be used.
It is shown that the force equations can be greatly simplified if the
transmitted field is written in terms of the source and reflected field on
the conductor plate boundary [20]. The force equations are validated
by verifying them with a transient model of a Halbach rotor that is
both rotating and translationally moving above a conductive plate as
illustrated in Figure 1. The Halbach rotor is assumed to be very long
and the conductor plate width is assumed to be significantly greater
than the source width.

The results present in this paper will be useful for gaining a deeper
understanding of the transient effects encountered in eddy current
damping [21], braking [22], and maglev transportation [19, 23, 24] as
well as for Lorentz force eddy current non-destructive testing [25]
applications.

2. GOVERNING EQUATIONS

2.1. Conducting Plate Region, Ω2

The 2-D governing equation in the linear conductive region is

∂2Az

∂x2
+

∂2Az

∂y2
= µ0σ

∂Az

∂t
(1)

2.2. Non-conducting Regions, Ω1, Ω3

Within the non-conducting regions, with a source field present, the
total magnetic flux density, B, can be expressed as the sum of a source
field

Bs = Bs
x(x, y, t)x̂ + Bs

y(x, y, t)ŷ (2)

and a reflected flux density Br due to induced eddy currents, such that

B(x, y, t) = Bs(x, y, t) + Br(x, y, t) (3)

The reflected field can be further written in terms of the scalar
potential, φn, defined as

Br = −µ0∇φn in Ωn. (4)

where n = 1, 3 for region 1 and 3 respectively. After taking the
divergence of both sides of (3) the formulation in the non-conducting
region will reduce to

∂2φn

∂x2
+

∂2φn

∂y2
= 0 in Ωn. (5)
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Therefore, as ∇·Bs = 0 it is not necessary to model the source within
the non-conducting region [26]. The source field will show up only on
the conductive boundary. The model for the analytic based solution is
shown in Figure 2 and is composed of a conducting region Ω2 and two
non-conducting regions Ω1, Ω3.

2.3. Boundary Conditions

The boundary interface conditions for the tangential and normal field
components along the Γ12 interface can be expressed in terms of a
reflected, transmitted and source field. This is illustrated in Figure 3.
The x-component of the reflected, Br

x, and transmitted, Bt
x, eddy

current flux density components are related by

Bt
x(x, b, t) = Bs

x(x, b, t) + Br
x(x, b, t) on Γ12 (6)

Similarly, the y-component reflected Br
y and transmitted, Bt

y flux
density components are related by

Bt
y(x, b, t) = Bs

y(x, b, t) + Br
y(x, b, t) on Γ12 (7)

In terms of magnetic vector, Az and scalar φ1 (6) and (7) are [8]

∂Az(x, y, t)
∂y

∣∣∣∣
y=b

= Bs
x(x, b, t)− µ0

∂φ1(x, b)
∂x

on Γ12 (8)

−∂Az(x, b, t)
∂x

= Bs
y(x, b, t)− µ0

∂φ1(x, y)
∂y

∣∣∣∣
y=b

on Γ12 (9)

The source is located only in region Ω1 therefore the boundary
conditions on Γ23 are

−µ0
∂φ3(x, 0)

∂x
=

∂Az(x, y, t)
∂y

∣∣∣∣
y=0

on Γ23 (10)

Figure 2. Illustration of the con-
ductive (Ω2) and non-conductive
(Ω1, Ω3) regions and boundaries
used by the analytic based model.

BrBs

Bt

Γ23

Γ12Ω1

Ω2

Ω3

Figure 3. Separation of the eddy
current fields into reflected and
transmitted fields can greatly re-
duce the computational complex-
ity.
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−µ0
∂φ3(x, y)

∂y

∣∣∣∣
y=0

= −∂Az(x, 0, t)
∂x

on Γ23 (11)

The source field is assumed to be centrally located at x = 0 and the
plate is sufficiently long to ensure that the field is zero at the conductive
plate ends (x = ±L)

Bs
x(±L, y, t) = 0, on Γ2 (12)

Bs
y(±L, y, t) = 0, on Γ2 (13)

Az(±L, y, t) = 0, on Γ2 (14)

Also, on the outer non-conducting boundaries, one has

φ1 = 0, on Γ1 (15)
φ2 = 0, on Γ3 (16)

2.4. Source Field

In this paper, the source field is assumed to be created by a 2-D Halbach
rotor which can simultaneously rotate and translationally move. The
analytic solution for the 2-D Halbach rotor was derived in [27]. In
terms of the vector potential it is given by [8]

As
z(r, θ) =

C

P

ej(ωe1t+Pθ)

rP
(17)

where

C =
(

2BrP

P + 1

) (1 + µr)r2P
o

(
rP+1
o − rP+1

i

)

(1− µr)2r2P
i − (1 + µr)2r2P

o

(18)

Br = magnet residual flux density, µr = relative permeability, ro =
outer rotor radius, ri = inner rotor radius, P = rotor pole-pairs and
ωe1 = rotor angular electrical velocity. The rotor angular velocity is
related to the mechanical angular velocity by ωe1 = ωmP . The magnet
eddy current losses are neglected in the analysis but as the Halbach
magnets are highly segmented, these losses will be relatively low [28].
Recalling from complex analysis that

1
x− jy

=
ejθ

r
(19)

where r = (x2 + y2)1/2; then by comparing (17) with (19) one can
express (17) in Cartesian coordinates

As
z(x, y) =

Cejωe1t

P (x− jy)P
(20)
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Figure 4. Halbach rotor source fields with y-axis offset.

The rotor magnetic flux density components for a four pole-pair, P = 4,
rotor are then given by

Bs
x(x, y) =

∂As
z

∂y
=

jC

(x− jy)5
ejωe1t (21)

Bs
y(x, y) = −∂As

z

∂x
=

C

(x− jy)5
ejωe1t (22)

The rotor field derivation above assumes that the rotor is centered
at (x, y) = (0, 0). While the conductive plate problem has (x, y) =
(0, 0) at the base of the plate. This is shown in Figure 4. Therefore, a
y coordinate offset is required, including this offset (22) and (21) can
be written as

Bs
y(x, y) =

C

(x− vx1t− j(y − yo))5
ejωe1t (23)

Bs
x(x, y) = jBs

y(x, y) (24)
where yo = ro + gi + b is defined as the distance from the center
of the rotor to the bottom of the conductive plate, and gi is the
air-gap distance between the rotor surface and the conducting plate.
In addition, a translational velocity, vx1, has been added into (23)
and (24).

3. FOURIER-LAPLACE ANALYTIC SOLUTION

The governing equations for the problem regions are given by (1)
and (5). These equations must satisfy the boundary conditions (8)–
(16). The transient solution to this problem has been obtained by
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using the spatial Fourier transform on x defined as

Az(ξ, y, t) =

∞∫

−∞
Az(x, y, t)e−jξxdx (25)

φn(ξ, y) =

∞∫

−∞
φn(x, y)e−jξxdξ (26)

and the Laplace transform on time, t, which is defined as

Az(ξ, y, s) =

∞∫

0

Az(ξ, y, t)e−stdt (27)

3.1. Fourier and Laplace Transformed Problem Regions

By utilizing (25) the Fourier transform of (1) for the conducting region
is

∂2Az(ξ, y, t)
∂y2

= µ0σ
∂Az(ξ, y, t)

∂t
+ ξ2Az(ξ, y, t) (28)

Using the definition of the temporal Laplace transform, (27), (28)
reduces down to

∂2Az(ξ, y, s)
∂y2

= γ2Az(ξ, y, s)− µ0σAss
z (ξ, y, t0) (29)

where
γ2 = ξ2 + µ0σs (30)

and Ass
z (ξ, y, t0) is an initial steady-state solution within the conductive

region at an initial time t0. This steady-state vector potential solution
for a source field operating at frequency ωe0 and moving with velocity
vx0 above a conductive plate is given by [8]

Ass
z (ξ, y, t0) = T (ξ, y, s0)Bs0(ξ, b)ejωe0t0 (31)

T (ξ, y, s) is the transmission function defined as

T (ξ, y, s) =
(γ + ξ)eγy + (γ − ξ)e−γy

eγb(γ + ξ)2 − e−γb(γ − ξ)2
(32)

and

s0 = jωe0 + vx0ξ (33)
Bs0(ξ, b) = Bs0

x (ξ, b) + jBs0
y (ξ, b) (34)
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The solution to (29) is given by

Az(ξ, y, s) =
Ass

z (ξ, y, t0)
s− s0

+ M(ξ, s)eyγ + N(ξ, s)e−yγ (35)

where the unknowns M(ξ, s) and N(ξ, s) need to be determined.
Fourier transforming the non-conducting region governing equation,
(5), yields

∂2φn(ξ, y)
∂y2

= ξ2φn(ξ, y) in Ωn (36)

where n = 1 and 3. Solving (36) and noting that when moving away
from the conductive plate along the y-axis in Ω1 and Ω3 the field must
reduce to zero, one obtains the solutions

φ1(ξ, y, s) = X1(ξ, s)e−ξy in Ω1 (37)

φ3(ξ, y, s) = X3(ξ, s)eξy in Ω3 (38)

The changing field with respect to time external to the conducting
plate depends on the X1 and X3 terms.

3.2. Fourier and Laplace Transformed Boundary Conditions

Fourier and Laplace transforming the top conducting boundary
condition given by (8) and (9) one obtains

−jµ0ξφ1(ξ, b, s) + Bs
x(ξ, b, s) =

∂Az(ξ, y, s)
∂y

∣∣∣∣
y=b

on Γ12(39)

−µ0
∂φ1(ξ, y, s)

∂y

∣∣∣∣
y=b

+ Bs
y(ξ, b, s) = −jξAz(ξ, b, s) on Γ12 (40)

Substituting the vector and scalar potential solution (35), (37) into
(39), (40) and eliminating φ1 yields

Bs1(ξ, b, s) =
Bss(ξ, b, t0)

s− s0
+(ξ+γ)M(ξ, s)ebγ+(ξ−γ)N(ξ, s)e−bγ (41)

where

Bss(ξ, b, t0) =
∂Ass

z (ξ, y, t0)
∂y

+ ξAss
z (ξ, y, t0) (42)

Bs(ξ, b, s) = Bs
x(ξ, b, s) + jBs

y(ξ, b, s) (43)

Equation (43) is a complex scalar term and not the vector term defined
by (2). Evaluating (42) it is determined that

Bss(ξ, b, t0) = Bs0(ξ, b)ejωe0t0 (44)
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where Bs0(ξ, b) was defined by (34). The Fourier transform for the
bottom boundary conditions (10)–(11) is

−jµ0ξφ3(ξ, 0, s) =
∂Az(ξ, y, s)

∂y

∣∣∣∣
y=0

, on Γ23 (45)

−µ0
∂φ3(ξ, y, s)

∂y

∣∣∣∣
y=0

= −jξAz(ξ, 0, s), on Γ23 (46)

substituting the value of vector and scalar potential solution, (38),
into (45), (46) and eliminating φ3 gives

M(ξ, s) = N(ξ, s)
ξ + γ

γ − ξ
(47)

3.3. The Solution of the Governing Equation

Substituting (47) and (44) into (41) one obtains

N(ξ, s) =
(γ − ξ)

[
Bs1(ξ, b, s)(s− s0)−Bs0(ξ, b)ejωe0t0

]

(s− s0) [eγb(γ + ξ)2 − e−γb(γ − ξ)2]
(48)

Substituting (47) and (48) into (35) gives

Az(ξ, y, s)=T (ξ, y, s)
[
Bs1(ξ, b, s)−Bs0(ξ, b)ejωe0t0

(s− s0)

]
+

Ass
z (ξ, y, t0)
s− s0

(49)

The second term in (49) is the steady-state solution and the first term
is the transient solution due to the change in source field. If the new
value of the source field in the time domain is assumed to be

Bs1(ξ, b, t) = Bs1(ξ, b)es1t (50)

where
s1 = j(ωe1 + vx1ξ) (51)

Then after Laplace transforming (50) the solution (49) can be
written as

Az(ξ, y, s)=
[
Bs1(ξ, b)
s− s1

−Bs0(ξ, b)ejωe0t0

s− s0

]
T (ξ, y, s)+

Ass
z (ξ, y, t0)
s− s0

(52)

The translational motion of the magnetic source has been
accounted for by moving the magnetic source. While the steady-state
model accounts for the motion of the source by including the velocity
term within the transmission function. Either approach is possible
when modeling the problem transiently [29].
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3.4. Reflected and Transmitted Flux Density in Ω1

The reflected eddy current field can be determined by solving for X1(ξ)
in Ω1. Substituting (37) into (40) and rearranging gives

X1(ξ, s) =
−1
µ0ξ

[
jξAz(ξ, b, s) + Bs

y(ξ, b, s)
]
eξb (53)

Substituting (53) into (37) one obtains

φ1(ξ, y, s) =
−1
µ0ξ

[
jξAz(ξ, b, s) + Bs

y(ξ, b, s)
]
eξ(b−y) (54)

From (54) it can be noted that the reflected flux density values Br
x and

Br
y are given by

Br
x(ξ, y, s) = j

[
jξAz(ξ, b, s) + Bs

y(ξ, b, s)
]
eξ(b−y) (55)

Br
y(ξ, y, s) = − [

jξAz(ξ, b, s) + Bs
y(ξ, b, s)

]
eξ(b−y) (56)

Thus, the reflected flux density components are related in Ω1 by

Br
y(ξ, y, s) = jBr

x(ξ, y, s) (57)

The transient reflected fields at y = b is obtain by taking the inverse
Laplace transform of (55) and (56)

Br
x(ξ, b, t) = j

[
jξAz(ξ, b, t) + Bs

y(ξ, b, t)
]

(58)

Br
y(ξ, b, t) = − [

jξAz(ξ, b, t) + Bs
y(ξ, b, t)

]
(59)

where the transient vector potential Az(ξ, b, t) is derived in Section 5.

3.5. Source Field

The Fourier transform for the source field (23) and (24) is evaluated
on the top conductor surface, y = b, this yields

Bs
x(ξ, b, t) =

π

12
Cξ4e−(ro+g1)ξej(ωe1−ξvx1)tu(ξ) (60)

Bs
y(ξ, b, t) = −jBs

x(ξ, b, t) (61)

where u(ξ) is the step function [30]. Laplace transforming (60) and (61)
gives

Bs
x(ξ, y, s) =

1
2

Bs1(ξ, b)
s− s1

(62)

where

Bs
y(ξ, y, s) = −jBs

x(ξ, y, s) (63)

Bs1(ξ, b) =
π

6
Cξ4e−(ro+g1)ξu(ξ) (64)
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The steady-state source function at initial time t = t0 used in (31) is
given as

Bs0(ξ, b, t0) =
π

6
Cξ4e−(ro+g0)ξu(ξ)e−jωoto (65)

4. FORCE AND POWER LOSS

The tangential force, Fx, and normal force, Fy, can be determined
by evaluating the stress tensor equations along the conductor surface
(y = b). Due to Parseval’s theorem this integration can be evaluated in
the Fourier domain thereby avoiding the need to first obtain the inverse
Fourier transform [6, 31]. The tangential and normal force equations
are

Fx =
w

4πµ0
Re

∞∫

−∞
Bt

xBt∗
y dξ on Γ12 (66)

Fy =
w

8πµ0
Re

∞∫

−∞

[
Bt

yB
t∗
y − Bt

xBt∗
x

]
dξ on Γ12 (67)

the star superscript denotes complex conjugation and w is the width
of the problem (into the page). The force equations can be greatly
simplified if they are written in terms of the reflected and source fields.

4.1. Tangential and Normal Force, Fx, Fy

By substituting (6) and (7) into (66) the tangential force can be written
in terms of the source and reflected field

Fx =
w

4πµ0
Re

∫ ∞

−∞

[
Br

xBs∗
y + Bs

xBr∗
y + Bs

xBs∗
y + Br

xBr∗
y

]
dξ (68)

Substituting (57) into (68) and noting that

Re
[
Bs

xBr∗
y

]
= Re

[
Br

yB
s∗
x

]
(69)

gives

Fx =
w

4πµ0
Re

∫ ∞

−∞

[
Br

y(B
s∗
x − jBs∗

y ) + Bs
xBs∗

y − j|Br
x|2

]
dξ (70)

it can be noted that the real part of last term is zero. Substituting (59)
into (70) and using the fact that

Re[Bs
yB

s∗
x ] = Re[Bs∗

y Bs
x] (71)

Re[jBs
yB

s∗
y ] = 0 (72)
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enables (68) to reduce down to

Fx = − w

4πµ0
Re

∫ ∞

−∞
[jξAzB

s∗dξ], on Γ12 (73)

Substituting (6) and (7) into (67) and rearranging gives

Fy =
w

8πµ0
Re

∞∫

−∞

[
Bs∗

y Br
y + Br∗

y Bs
y −Bs∗

x Br
x −Br∗

x Bs
x + |Bs

y|2

+|Br
y |2 − |Bs

x|2 − |Br
x|2

]
dξ, on Γ12 (74)

Using the relation (57) it can be noted that
Re[|Br

y |2] = Re[ |Br
x|2] (75)

Re[Bs∗
y Br

y ] = Re[Bs
yB

r∗
y ] (76)

Re[Bs∗
x Br

x] = Re[Bs
xBr∗

x ] (77)
utilizing these relationships (74) can be written as

Fy =
w

8πµ0
Re

∞∫

−∞

[−2Br
x(Bs∗

x − jBs∗
y ) + |Bs

y|2 − |Bs
x|2

]
dξ (78)

Substituting (58) into (78) and rearranging yields

Fy =
w

8πµ0
Re

∞∫

−∞

[
2ξAzB

s∗ − j2Bs
yB

s∗
x − |Bs

y|2 − |Bs
x|2

]
dξ (79)

Noting that as Bs
y and Bs

x are complex the following is true

Re
[
j2Bs

yB
s∗
x + |Bs

y|2 + |Bs
x|2

]
= |Bs|2 (80)

Using (80) allows the normal force to be written as

Fy =
w

8πµ0
Re

∞∫

−∞

[
2ξAzB

s∗ − |Bs|2] dξ, on Γ12 (81)

By comparing (73) with (81) it can be concluded that both the normal
and tangential force can be calculated from the single integral

F (t)=
w

8πµ0

∞∫

−∞

[
2ξAz(ξ, b, t)Bs∗(ξ, b, t)−|Bs(ξ, b, t)|2] dξ, on Γ12 (82)

such that the normal and tangential force will be
Fy(t) = Re[F (t)] (83)
Fx(t) = Im[F (t)] (84)

This eliminates the need to evaluate separate force equations thus
reducing the calculation time by half.
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4.2. Power Loss, PLoss

The work done per unit time, per unit volume is given by [32]
dW

dt
= −

∫

Γ12

S · dΓ12 − dUem

dt
(85)

where S is the Poynting vector
S = E×B (86)

and Uem is the total magnetic energy stored in the conductor region

Uem =
∫

Ω

1
2
B2

µ0
dΩ (87)

In [8] the steady-state power transferred through the conductive plate
was computing by evaluating the Poynting vector along Γ12. However,
the same method is not possible for the transient case because the
total energy stored in the system which is given by the first term on
the right side of (86) is not constant during the transient condition.
In 2-D the transient power loss in the conducting plate can be more
directly evaluated by using integral over the conduction plate surface

Ploss(t) =
w

4πσ

∞∫

−∞

∫ b

0
Re [Jz(x, y, t)J∗z (x, y, t)] dΩ (88)

Using Parseval’s theorem the power loss can be directly evaluated in
the Fourier domain

Ploss =
w

4πσ

∞∫

−∞

∫ b

0
Re [JzJ

∗
z ] dydξ (89)

the current density, Jz(ξ, y, t) is calculated using
Jz(ξ, y, t) = σ[vxBy(ξ, y, t)−Ez(ξ, y, t)] (90)

and By(ξ, y, t) and Ez(ξ, y, t) are derived in Section 5.

5. TIME DOMAIN SOLUTION

In order to determine the force as a function of time (52) needs to be
inverse Laplace transformed. Following the approach given in [33, 34]
the transmission function, (32), can be rearranged and algebraically
manipulated to yield

T (ξ, y, s) =

(
2k cos(2ky/b)
bξ2 sin(2k)

+
sin(2ky/b)
ξ sin(2k)

)

(−λk + cot(k)) (λk + tan(k))
(91)
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Figure 5. An example of the tan and cot roots calculation for ξ = 250
and b = 6.3mm.

where λ = 2/ξb and k = −jγb the advantage of using (91) rather than
(32) is that the roots in the denominator can be easily determined [34].
They are given by

tan(k) = −λk (92)
cot(k) = λk (93)

The nth root of (92) is denoted by kn
t and it lies between nπ + π/2

and nπ + π. The nth root of (93) denoted by kn
c , lies between nπ and

nπ + π/2. An example plot of the roots of (92) and (93) for ξ = 250
and b = 6.3 mm is shown in Figure 5. The poles kn

t and kn
c both are

purely located at negative values, and are given by

sn
i = −

[(
2kn

i

b

)2

+ ξ2

]
1

µoσ
(94)

where the subscript i = t or c. With the roots of (91) identified the
expression for the field transmission coefficient for the nth root can be
written as

T k(ξ, y, kn
i )=

(
2kn

i cos(2kn
i y/b)

bξ2 sin(2kn
i )

+
sin(2kn

i y/b)
ξ sin(2kn

i )

)

(−λkn
i + cot(kn

i )) (λkn
i + tan(kn

i ))
(95)
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The roots of (95) have been evaluated numerically by using the
Heaviside expansion theorem [34, 35]. With the inverse of (95)
determined the vector potential, (52), can be fully inverse transformed,
this yields

Az(ξ, y, t)=Bs1(ξ, b)T (ξ, y, s1)es1t+
9∑

m=0

[
An

t (ξ, y)esn
t t+An

c (ξ, y)esn
c t

]
(96)

where, sn
t and sn

c are given by (94) and

An
t (ξ, y) = − 8kn

t

µ0σb2

(
2kn

t cos(2kn
t y/b)

bξ2 sin(2kn
t )

+
sin(2kn

t y/b)
ξ sin(2kn

t )

)

(cot(kn
t ) − λkn

t )(λ + sec2(kn
t ))(

Bs1

(sn
t − s1)

− Bs0

(sn
t − s0)

)
(97)

An
c (ξ, y) =

8kn
c

µ0σb2

(
2kn

c cos(2kn
c y/b)

bξ2 sin(2kn
c )

+
sin(2kn

c y/b)
ξ sin(2kn

c )

)

(cot(kn
c ) − λkn

c )(λ + sec2(kn
c ))(

Bs1

(sn
t − s1)

− Bs0

(sn
t − s0)

)
(98)

This is the transient solution of the vector potential for a step change
in the translational velocity from vx0 to vx1 and/or a step change
in the electrical angular frequency from ωe0 to ωe1. The change in
airgap between the source and the conductive plate is also accounted
for in (96). The first term is the steady-state solution of the vector
potential at vx1 and ωe1 and the following two terms are the transient
decaying response terms due to the step change.

The transient electric field intensity, Ez within the plate can also
be obtained from Az it is given by

Ez(ξ, y, t) = −dAz(ξ, y, t)
dt

= −s1B
s1(ξ, b)T (ξ, y, s1)es1t

−
9∑

m=0

(
sn
t An

t (ξ)esn
t t + sn

c An
c (ξ)esn

c t
)

(99)

and the magnetic flux density within the conductive region is given by

By(ξ, y, t) = −∂Az(ξ, y, t)
∂x

= −jξAz(ξ, y, t) (100)

Bx(ξ, y, t) =
∂Az(ξ, y, t)

∂y
(101)
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The complete equation for the transient Bx(ξ, y, t) field within the
conductor can be obtained by substituting (96) into (101) as shown
in [15].

6. VALIDATION USING FINITE ELEMENT ANALYSIS

The equations presented for this general analytic based model were
compared with an FEA model capable of modeling both translational
and rotational motion and a JMAG FEA model capable of modeling
only rotational motion (Figure 6). The derivation of the FEA model
formulation is presented in the appendix. The parameters used in

Figure 6. Vector potential fields for the transient JMAG model. The
JMAG model could not model both rotational and translational motion
of the rotor simultaneously. This model was used to verify the results
shown in Figure 8.

Table 1. Simulation parameters.

Rotor

Outer radius, ro 50mm
Inner radius, ri 34.2mm

Magnet (NdFeB), Br 1.42 T
Magnet relative permeability, µr 1.055

Pole-pairs, P 4
Rotor width, w 50mm

Conductive
plate

Conductivity of aluminum plate, σ 2.459× 107 Sm−1

Thickness, b 6.3mm
Air-gap between rotor

and conducting plate, g
9.5mm

Conductive plate length, L 0.2m
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the comparison are given in Table 1. Figure 7 shows the comparison
for the lift and thrust forces when vx1 = 0 m/s and a step change in
angular velocity from 0 RPM to 3000 RPM occurs at time t = 0 s;
this is then followed by a second step change in velocity from 0 m/s
to 10m/s at 15 ms with angular velocity 3000 RPM. The reduction
in lift and thrust force after 15 ms corresponds to the decrease in slip
value. Figure 8 shows a force and power loss comparison for the case
when vx1 = 0m/s and a step change in angular speed from 0 to 3000
RPM occurs followed by a step change to 5000 RPM at t = 15ms.
The airgap between the rotor and conductive plate is held constant in
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Figure 7. Transient lift and thrust force comparison for a step change
in angular velocity from 0 RPM to 3000 RPM with velocity 0 m/s at
t = 0ms and a second step change of velocity from 0 m/s to 10 m/s at
t = 15ms with angular velocity = 3000 RPM.
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(c) power loss for an RPM step change from 0 RPM to 3000 RPM at
t = 0ms and step change from 3000 RPM to 5000 RPM at t = 15 ms,
velocity = 0 m/s.
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these simulations. The integral in (82) was evaluated using the Gauss-
Kronrod quadrature numerical method from ξ = 0 to 250 (the source
field is negligible for ξ > 250 and is zero for ξ < 0 due to the step
function in (64)).

7. CONCLUSIONS

A general 2-D analytic based transient formulation for a magnetic
source moving above a conductive plate has been derived. The
formulation is written in a general form so that any magnetic source can
be utilized. The derived field and force equations need to be computed
by evaluating a single integral. The conductive region was solved for
the vector potential whereas the air region was solved for the magnetic
scalar potential. The inverse Laplace transform of the vector potential
was obtained by using the Heaviside expansion theorem. The transient
solution for the normal and tangential forces along the surface of the
conductive plate were obtained by using Maxwell’s stress tensor and
Parseval’s theorem. The use of Parseval’s theorem circumvented the
need for inverse Fourier transforming. The derived equations were
validated by comparing them with two different 2-D FEA transient
models.

APPENDIX A.

Assuming that the conductive plate is translationally moving with
velocity, vx (rather than the source field) then (1) will have a convective
term present within the conductive plate such that

∂2Az

∂x2
+

∂2Az

∂y2
= µ0σ

∂Az

∂t
+ µ0σvx

∂Az

∂x
(A1)

If the source in the non-conducting region is analytically modeled then
the problem region will simplify down to a conducting region, Ω2, and
non-conducting regions, Ωn (n = 1, 3) as shown in Figure 2. The
boundary conditions given in (12)–(16) are also assumed to apply.

A.1. Conducting Plate Region, Ω2

Using Galerkin weighted residual method and Green’s identity (1) can
be written in the weak form as [24]∫

Ω2

∇Nz · ∇AzdΩ2 + µ0σ

∫

Ω2

Nz

(
vx

∂Az

∂x
+

∂Az

∂t

)
dΩ2

−
∫

Γ12

Nz(∇Az · nc1)dΓ12 −
∫

Γ23

Nz(∇Az · nc2)dΓ23 = 0 (A2)
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where Nz is the shape function and nc1, nc2 are the unit outward
normal vector on Γ12 and Γ23 respectively (refer Figure 2).

A.2. Non-conducting Regions, Ω1, Ω3

After using Green’s first identity, the weak form of (5) in Ω1 and Ω3

are [24]

−
∫

Ω1

∇φ1 · ∇w1dΩ1 +
∫

Γ12

w1(∇φ1 · nnc1)dΓ12 = 0 (A3)

−
∫

Ω3

∇φ3 · ∇w3dΩ3 +
∫

Γ23

w3(∇φ3 · nnc3)dΓ23 = 0 (A4)

where w1 and w2 are the weighting function and nnc1, nnc2 are the
unit outward normal vectors.

A.3. Boundary Conditions

The effect of the source field on the conductive region is accounted
for by incorporated it into the interface between the conductive and
non-conductive regions. The normal and tangential field components
on the conductive boundary, Γ12 are given by

−µ0∇φ1 · nnc + Bs · nnc = ∇×Az · nnc, on Γc (A5)
−nc × µ0∇φ + nc ×Bs = nc ×∇×Az, on Γc (A6)

In order to couple conducting and non-conducting regions, the scalar
boundary condition in (A3) needs to be expressed in terms of vector
potential. Using (A5), the boundary term in (A3) can be written as∫

Γ12

w1∇φ1 · nncdΓ12 =
∫

Γ12

w1

µ0
(Bs −∇×Az) · nncdΓ12 (A7)

Similarly the boundary condition in (A4) is replaced with [26]∫

Γ23

w3∇φ3 · nncdΓ23 =
∫

Γ23

w3

µ0
(−∇×Az) · nncdΓ23 (A8)

This then couples the scalar and vector equations together. The vector
potential boundary conditions in (A2) must also be replaced with scalar
terms. The boundary condition in (A2) in expanded form are∫

Γ12

Nz

[
∂Az

∂x
nc1x +

∂Az

∂y
nc1y

]
dΓ12 = 0 (A9)

∫

Γ23

Nz

[
∂Az

∂x
nc2x +

∂Az

∂y
nc2y

]
dΓ23 = 0 (A10)
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where nc1x and nc1y are the x and y normal vector components on the
conductive boundary. Expanding (A5) enables (A9) and (A10) to be
expressed in terms of scalar potential terms and source field as [26]∫

Γ12

Nz

[
(µ0

∂φ1

∂y
−Bs

y)ncx +(Bs
x − µ0

∂φ1

∂x
)ncy

]
dΓ12 = 0 (A11)

∫

Γ23

Nz

[
(µ0

∂φ1

∂y
)ncx + (−µ0

∂φ1

∂x
)ncy

]
dΓ23 = 0 (A12)

This then couples the scalar and vector formulations together within
the conducting formulation. Similarly, the boundary condition in (A3)
and (A4) are replaced with the vector potential terms (and source
terms) such that [26]∫

Γ12

w1

(
∂φ1

∂x
nnc1x +

∂φ1

∂y
nnc1y

)
dΓ12

=
∫

Γ12

w1

µ0

([
Bs1

x − ∂Az

∂y

]
nnc1x+

[
Bs1

y +
∂Az

∂x

]
nnc1y

)
dΓ12 (A13)

∫

Γ23

w3

(
∂φ3

∂x
nnc3x +

∂φ3

∂y
nnc3y

)
dΓ23

=
∫

Γ23

−w3

µ0

(
−∂Az

∂y
nnc3x − ∂Az

∂x
nnc3y

)
dΓ23 (A14)

Using (A2)–(A4) with the boundary condition coupling terms (A11)–
(A14) as well as outer boundary conditions (12)–(16), enables the
convective transient finite element A-φ model to be developed. A field
plot created by this presented FEA model is illustrated in Figure A1.

[Wb/m] [Wb/m]

Figure A1. Contour and surface field plot for the 2-D FEA Az-φ
model (developed in COMSOL). With this formulation the Halbach
rotor source is only present in the conducting boundary condition.
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