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Abstract—An extrinsic Fabry-Perot cavity in optical fiber is used
to achieve surface imaging at infrared wavelengths. The micro-cavity
is realized by approaching a single mode fiber with a numerical
aperture NA to a sample and it is fed by a low-coherence source.
The measurement of the reflected optical intensity provides a map
of the sample reflectivity, whereas from the analysis of the reflected
spectrum in the time/spatial domain, we disentangle the topography
and contrast phase information, in the limit of nearly homogeneous
sample with complex permittivity having Im(ε) ¿ Real(ε). The
transverse resolution is not defined by the numerical aperture NA of
the fiber and consequently by the conventional Rayleigh limit (about
0.6λ/NA), but it is a function of the transverse field behavior of the
electromagnetic field inside the micro-cavity. Differently, the resolution
in the normal direction is limited mainly by the source bandwidth and
demodulation algorithm. The system shows a compact and simple
architecture. An analytical model for data interpretation is also
introduced.

1. INTRODUCTION

Fabry-Perot cavities have always received a great deal of interest in
the realization of interferometric sensors due to their high sensitivity,
simple structure and immunity to electromagnetic interference [1–7].
In recent works, Fabry-Perot micro-cavities were applied to measure
the refractive index of optical glasses [8], or to realize wide-range
displacement sensors with sub-nanometer resolution for Confocal Laser
Microscopy [9]. Thanks to their capability to be integrated in different
sub-systems, they have allowed the design of miniaturized multi-
cavity biosensors in the study of self-assembled thin-film layers [10].
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In addition, the widespread use in the field of scanning probe
microscopy, as sensors of micro-cantilever displacement, has lead
to an improvement in the electromagnetic analysis of the cavity
behavior in presence of multi reflections, angular misalignments or
highly reflective surfaces [11]. As a matter of fact, recent works [12]
have been reported analytical models describing the asymmetrical
spectral response, the sensitivity, the fringe contrast and the dynamic
range of low-coherence interferometers based on fiber Fabry-Perot.
In this paper, we describe a scanning probe microscopy technique
based on optical fiber micro-cavity, in which a cleaved single mode
fiber is approached to a sample. The fiber is used as a probe for
image reconstruction. Although this system features some analogies
with similar scanning techniques, such as Synthetic Aperture Radars,
Spectral Optical Coherence Tomography (OCT) or Scanning Near-
Field Optical Microscopy (SNOM) [13, 14], it has some aspects that
distinguish it from these. In SNOM microscopy, for example, the
images are acquired through a tapered fiber optic with sub-wavelength
aperture that is placed at nanometer distance over the sample and
the interaction is due to near-field emitted from the tip. Differently,
in OCT, the optical beam is collimated or focused on a sample
through lens. The reflected signal from the surface under investigation
interferes with a reference beam. The OCT systems allow to recover
the scattering profile, according to models based on the interference of
the reference signal with scattered field from the object [14].

In a fiber micro-cavity system, the interaction between the sample
and probe occurs at distance of tens of microns whereas a cleaved fiber
is used as probe, allowing to work without any lens. With respect
to the OCT approach, no reference beam is present and interfering
signal directly comes from the micro-cavity in which the diffracted
field experiences multiple reflections and interferences. Only in the
limit of very low reflective surfaces, the interfering signal can be
described by the same analytical model on which are based OCT
systems. For this reason, it is not possible for example to apply
directly the same algorithm used in OCT to predict the behavior
of the micro-cavity response by varying the sample topography or
surface refractive index. The same reasoning applies when studying
the focusing effect produced through the interference of field diffracted
from the fiber facet inside the cavity. The contrast phase images,
reflectivity and topographic information can be investigated by means
of the optical fiber itself without the use of lens. The absence of lens
and bulky components is a factor that allows to realize a compact and
mechanically robust architecture, as highlighted in a recent paper [15],
where a lens-free holographic microscopy was proposed. Changes of



Progress In Electromagnetics Research, Vol. 133, 2013 349

the surface permittivity and cavity dimensions lead to a variation of
the cavity response. The main problem to be addressed in the micro-
cavity systems (or interferometers) is the signal demodulation. All
the main electromagnetic parameters change periodically making the
relation between them and the physical quantity to be measured, non-
linear. Many algorithms can be used for the image reconstruction,
also borrowed from Spectral Optical Radars, Synthetic Aperture or
Ground Penetrating Radars [13, 14, 16]; however they are usually
based on models that consider a single scattered wave problem and
they cannot be applied directly to the proposed system, due to the
presence of multi-reflections inside the cavity. In this work, the
spectrum acquired at each point is analyzed in the time domain
(which corresponds to a space domain considering the speed of light as
known parameter), following a method similar to the one introduced in
Scanning Microwave Microscopy [17, 18]. By recording the behavior of
the peak of the cavity response in the time domain, we can acquire both
topography and contrast phase information. The latter is a function
of the effective refractive index of the sample, as well as of the surface
topography. The link between these parameters and cavity dimension,
together with the sample permittivity, are investigated by means of
an analytical model. In addition, for the fiber scanning system, the
transverse resolution is not defined by the numerical aperture NA of
the fiber and, consequently, by the conventional Rayleigh limit (about
0.6λ/NA), but it is a function of the transverse field behavior of the
electromagnetic field inside the micro-cavity. In fact a small feature
of the sample will be detected when its size is of the order of the field
dis-homogeneity, not of NA. Interferences inside the cavity shape the
field distribution in the time domain in a such a way that, at a given
instant, the incident spot is characterized by a reduced transverse field
distribution with respect to the fiber mode diameter. In the following
sections it will be described the experimental set-up and how the
images are acquired and analyzed, as well as an analytical model of
the cavity. Some experimental results are finally reported.

2. MODELLING OF OPTICAL MICRO-CAVITY

When the cleaved fiber approaches the sample, a micro-cavity is
formed and a spectrum of waves diffracted from the fiber facet
interfere after reflecting from the sample surface, giving rise to a
stable spectrum and field configuration in the time. A change of
cavity dimension and sample permittivity reflects on changes of the
cavity time domain response, that can be studied by means of an
analytical model. In the following, we will describe the model used
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for describing the reflected signal from the cavity and its dependence
on the geometrical and dielectric variations. In presence of a low
reflectivity surface, the electromagnetic analysis of the optical fiber
extrinsic Fabry-Perot cavity can be done approximately by using
a two-beam approximation, in which only two interfering beams
are considered: i.e., the reflected signal at the fiber interface and
back-reflected signal from the external surface [1, 7, 8], while higher
order interferences are neglected. Although this approach gives a
simple and compact analytical expression for the interference signal
that couple-back to the fiber, it does not characterize rigorously
the electromagnetic behavior of the cavity, in which a multi-beam
interference takes place.

Interference concerns not only the beams generated by multiple
reflections at interfaces, but also mutual interference between the
plane waves diffracted by the fiber facet. The need for a detailed
characterization appears more clearly when the surface is highly
reflective, as focused in many papers [12, 19]. The high finesse extrinsic
fiber cavities, required in high sensitivity sensor applications, can be
analyzed assuming the transfer function of asymmetric F-P cavity
with a normal incidence and zero absorption in the mirror and in the
medium [8, 9]. The divergence of the beam radiated by the fiber is
accounted for through a loss factor, neglecting the mutual interference
of the scattered waves. In some works, this approach was improved
by introducing the effects of diffracted waves from the fiber and the
coupling coefficient between fiber facet and air [1, 11, 12]. In this paper,
the response of the extrinsic cavity is derived by applying a continuity
condition of the tangential electric and magnetic fields at the interface
between cleaved fiber and air gap. Due to symmetry of the fundamental
mode and the waveguide geometry, the electromagnetic field at the
interface fiber-air is only function of the transverse coordinate r
and, according to Hankel transformation, it can be de-composed in
cylindrical waves [20]:

f (ρ) =

∞∫

0

H0 (λ) J0 (λρ) λ dλ H0 (λ) =

∞∫

0

f (ρ) J0 (λρ) ρ dρ (1)

with J0 representing the zero-order Bessel function. The propagation
inside a single mode optical fiber can be described with good accuracy
through a Linearly Polarized wave with the transverse electric (Ex =
e0) and magnetic (Hy) fields linked by the admittance Y0(kr) [21].
Imposing tangential field continuity for the electric and magnetic
components at interface fiber-air produces:
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∞∫

0

r (kr) e (r, k) dkr + e0 (r, k) (1 + Γ0 (k))

=

∞∫

0

a (kr)J0 (krr) kr

{
1 + Γ (kr) e−j2β(kr)d

}
dkr

−
∞∫

0

r (kr) e (r, k)Y (kr) dkr + e0 (r, k) (1− Γ0 (k))Y0 (k)

=

∞∫

0

a (kr)Y (kr) J0 (krr) kr

{
1− Γ (kr) e−2jβ(kr)d

}
dkr (2)

In the right-hand term the k-dependence is neglected whereas the
integral covers the whole spectrum of scattered waves that comprises
radiated and reactive energies, described by the amplitude a(kr). On
the other hand, within the optical waveguide only the guided field is
considered for simplicity, neglecting the reflecting continuum spectrum,
described by the amplitude r(kr) and transverse field distribution
e(r, kr). The reflection coefficient Γ(kr) is a function of the scattered
plane waves direction within the cavity, dielectric properties of the
medium, transverse dielectric thickness and polarization of diffracted
waves. Being the field scattered in the cavity described by an infinite
spectrum of cylindrical plane waves, for each plane wave (we assume
a fixed polarization along the x direction, see Fig. 1), the complex
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Figure 1. Extrinsic fiber optic micro-cavity scheme and equivalent
circuit model (Y0: admittance of the fundamental mode, Yin: input
admittance).
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reflection coefficient can be written as:

Γ (kr) = ejα(kr) = ejx−y α = x + jy (3)

in which the term y is introduced to account for losses introduced by
the material. Each cylindrical wave has a different reflection, that
can be computed through well know laws of oblique incidence of plane
waves on dielectrics [22]. According to (3), the surface scattering effects
are neglected. This implies that the model does not consider roughness
on sample surfaces [23, 24]. By combining Eqs. (2)–(3), the tangential
field continuity can be rewritten as:

e0 (r, k) (1 + Γ0 (k))

=

∞∫

0

a (kr) J0 (krr) 2 e−j(β(kr)d−α
2 ) cos (ϕ (kr)) krdkr

e0 (r, k) (1− Γ0 (k))Y0 (k)

=

∞∫

0

a (kr) Y (kr) J0 (krr) e−j(β(kr)d−α
2 ) (2j) sin (ϕ (kr)) krdkr

(4)

where the complex number ϕ is, for each wave, a function of the cavity
electrical-length and electromagnetic property of the sample:

ϕ = β (kr) d− α (kr)
2

By pre-multiplicating the first equations for J0(krr)r and exploiting
the following orthogonality condition:

∞∫

0

J0 (krρ) J0

(
k′rρ

)
ρ dρ =

δ (kr − k′r)
kr

(5)

we get the equation:

(1 + Γ0 (k))

∞∫

0

e0 (r, k) J0

(
k′rr

)
rdr

=

∞∫

0

a (kr)

∞∫

0

J0 (krr)J0

(
k′rr

)
r 2 e−j(β(kr)d−α

2 ) cos (ϕ (kr)) krdrdkr

(1 + Γ0 (k))H0 (e0) = a (kr) 2 e−j(β(kr)d−α
2 ) cos (ϕ (kr))

(6)
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On the other hand, the equation related to the magnetic field is pre-
multiplicated for e0(r) r and integrated in the spatial domain:

(1− Γ0 (k))Y0 (k)

∞∫

0

e0 (r) e0 (r) rdr =

∞∫

0

a (kr) Y (kr)

∞∫

0

J0 (krr)

e0 (r) e−j(β(kr)d−α
2 ) (2j) sin (ϕ (kr)) r kr drdkr (1− Γ0 (k))Y0 (k)

=

∞∫

0

a (kr) Y (kr) H0(e0) e−j(β(kr)d−α
2 ) (2j) sin (ϕ (kr)) krdkr

(7)

The latter is obtained by means of the normalization condition:
∞∫

0

e0 (r) e0 (r) r dr = 1 (8)

The ortho-normalization (8) implies that the power carried by the
mode is normalized to unity and the field is approximated as Linearly
Polarized mode (LP). Continuity of the tangential electric field (6)
gives the amplitude of the scattered waves:

a (kr) =
1
2

(1 + Γ0 (k))H0 (e0) (1 + j tan (ϕ (kr))) (9)

whereas by combining Eqs. (6) and (7), we get the expression of the
reflected wave:

Γ0 =
1− j

∞∫
0

β(kr)
β0

[H0(e0)]
2 tan (ϕ) krdkr

1 + j
∞∫
0

β(kr)
β0

[H0(e0)]
2 tan (ϕ) krdkr

Y (kr) =
β (kr)
ωµ0

β (kr) =
√

k2 − k2
r ϕ = β (kr) d− α (kr)

2

(10)

Above we have also inserted, for the sake of completeness, the
relationships defining every quantity. Each scattered wave has an
admittance Y (kr) and a propagation constant β(kr). The normalized
input complex admittance:

Yin (k)
Y0

= j

∞∫

0

β (kr)
β0

[H0(e0)]
2 tan (ϕ) krdkr (11)

defines magnitude and phase of the reflected wave, as well as the
resonance condition of the cavity.
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The presence of a dielectric surface, introduces losses in the optical
cavity (even in presence of ideal dielectric) and makes ϕ a complex
term:

j tan
(
ϕ′ + jϕ′′

)
=

j tan (ϕ′)− tanh (ϕ′′)
1− j tan (ϕ′) tanh (ϕ′′)

ϕ =
(

β (kr) d− x (kr)
2

)
− j

y (kr)
2

(12)

Both real and imaginary part of the complex admittance Yin are
functions of optical cavity and permittivity of the surface under test.
A change of the cavity dimension, due to a change in the surface
topography height, induces a shift of the resonances frequencies and
a contrast variation (see Fig. 2). The same effects appear in presence
of a surface permittivity variation in the scanned area. In this case,
however, if the medium is homogenous and loss-free, the frequency
shifts are less relevant with respect to the contrast variation of the
cavity spectrum. In the time domain these changes affect the cavity
response and in particular we observe a variation in the peak amplitude
and position. The surface imaging is performed by acquiring the
changes of these parameters, according to the algorithm described in
the next section. The accuracy and the results are strongly dependent
on the method used to demodulate the spectrum.
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Figure 2. Reflected spectrum behavior in presence of (a) sample
refractive index changes with a cavity dimension d = 50 µm and (b)
sample-fiber optic distance variations.
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3. EXPERIMENTAL SET-UP AND DATA ACQUISITION
SCHEME

Figure 3 describes the set-up used to realize the micro-cavity scanning
system. A SLED source at 850 nm (bandwidth FWHM = 40nm)
feeds a broad band directional coupler that directs provides separation
between transmitted and reflected waves. An addition coupler shifts
the wave into a port feeding a photo-detector and a spectrum analyzer.
The latter is split by a further coupler that directs the signal to a photo-
detector and an Optical Spectrum Analyzer (OSA). The OSA is an
high-resolution USB spectrometer with a bandwidth ranging from 650–
1080 nm. Combining the spectral range of its grating with the number
of detectors and the pixel resolution, it allows an optical resolution of
about 0.23 nm. The sample is placed on a piezo-scanner that controls
the position with nanometric resolution in the plane and in the normal
direction. The cleaved fiber (Numerical Aperture = 0.10–0.14, Mode
Field Diameter = 5.6µm) is mounted on a fixed head. The piezo
approaches the sample to the fiber making a cavity with a dimension
of tens of microns. The current detected by the diode is used as feed-
back for the scanner, allowing to work in a constant-height mode and to
control the position in the plane. For each scanning point intensity and
spectrum of the interferometric signal, reflected from the Fabry-Perot
cavity, are picked up by the photo-detector and OSA, respectively.

Data acquisition process is described in Fig. 4. Before starting
the scan and approaching the cleaved fiber to the sample, the reflected
spectrum is measured at a distance in which there is no interaction
between fiber facet and sample. These data are used to calibrate, as
in Spectral Optical Radars [14], each spectrum acquired.

PD PC

FEED-BACK 

SIGNAL 
PIEZO-SCANNER

DIRECTIONAL  

COUPLER

SM    

FIBER OPTIC

ISOLATOR SLED (850 nm)

OSA

Figure 3. Experimental set-up of the fiber optic micro-cavity scanning
microscope.
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Figure 4. Data acquisition scheme.

Calibration allows to reduce the effects of spurious reflections,
rising up in each junction of the fiber path, and the shape of broadband
source, both affecting time domain response, mainly for small cavity
dimensions. The fiber is then approached to the sample until cavity
height is few tens of microns and the interaction with the sample starts
to be relevant showing interferences in the shape of the SLED. The
spectrum acquired by the OSA in the wavelength domain is mapped to
the spatial frequency domain, interpolated by a polynomial algorithm
and transformed into time/spatial domain. Following this method and
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using the model described in Section 3, we can describe the behavior
of the micro-cavity, and in particular changes of the peak-amplitude
and peak-position of the spatial domain response, due to variations of
the fiber-sample distance and surface permittivity. Data reported in
Fig. 4 are simulated assuming the same wavelength resolution as the
OSA and following the algorithm described in Fig. 3. We have to point
out that, having a fixed wavelength resolution, longer cavity dimension
would need higher resolution and sampling frequency of the spectrum.

Figure 5(a) shows the non-linear trend that describes the variation
of the peak-amplitude response of the cavity in the spatial domain,
when the cavity dimension and the refractive index of the homogeneous
sample are changed. For the refractive indexes considered, its
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Figure 5. Behavior of the peak of the cavity response computed
in the spatial domain. (a) Peak-amplitude variation versus the cavity
dimension and sample refractive index. (b) The variations are reported
for small displacements around 40µm and (c) 50µm (the results are
normalized and shifted). (d) Shift of the peak for different refractive
indices of the sample.
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behavior recalls the fringe contrast behavior of the extrinsic fiber optic
interferometric signals. The curve in Fig. 5(a) shows the maximum
gradient occurs at 40–50µm, however, for smaller displacements, the
peak-amplitude response changes almost linearly, depending on the
sample permittivity and cavity dimension as well, (see Figs. 5(b)–(c)).
On the other hand, the analysis of peak position (that is how the
maximum is displaced) as the cavity size changes, which can be seen
with an optical resolution of 0.25 nm, allows to evaluate the cavity
dimension, independently from the permittivity of the sample surface.

In Fig. 6, we report the interfering spectra in the frequency
domain. In detail, we have compared two spectra acquired at different
fiber-surface distances (Fig. 6(a)) and a sequence of spectra profiles
acquired in a range of 1 micron surface displacement (Fig. 6(b)),
showing a bi-dimensional interfering pattern. A change in the micro-
cavity height alters the contrast and frequency of interfering spectrum,
as analytically described by (10).

The actual resolution of the system along the normal direction
depends on different factors, such as the laser source bandwidth and
fluctuations or the piezo-scanner drift that affects the scans in the
constant height mode; however, a polynomial interpolation of the
spectrum in the k-domain can provide a theoretically improvement
of resolution in z-direction [9]. A quantitative measure of the root
mean square error related to height measurements can be assessed by
means of a zero scan area, as usually done in the AFM measurements
to estimate environmental noise. In our system, with a 50µm× 50 µm
scanner the r.m.s. error obtained was about 68.1 nm.

A different consideration must be done for the evaluation of the

0.78 0.8 0.82 0.84 0.86 0.88 0.9

0

1000

2000

3000

4000

5000

6000

wavelength [micron]

P
O

W
E

R
 S

P
E

C
T

R
U

M
 [
a
.u

.] 47.775 micron

47.475 micron

(a)
wavelength [micron]

S
u
rf

a
c
e
 D

is
p
la

c
e
m

e
n
t 
[m

ic
ro

n
]

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)
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(continuous line) cavity height = 47.775µm, (dashed line) cavity height
= 47.475µm. (b) Sequence of spectra acquired by changing the micro-
cavity dimension in a range of 1 micron (step = 10 nm).
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transverse resolution. Starting from the general definition of resolution,
based on capability to distinguish two point objects, it follows that, in
a diffraction limited system, it can be defined by overlapping the Airy
disks generated at the focal plane. In this case, transverse resolution
is not defined through the numerical aperture NA of the fiber, and
consequently, through Rayleigh limit (about 0.6λ/NA). Being the
resolution in the plane limited by the diffraction of the electromagnetic
field, the in-plane resolution can be evaluated by analyzing the
transverse distribution of the electromagnetic field inside the micro-
cavity over the sample surface. To model diffraction effects of the
guided mode at fiber facet and fiber-sample interaction, we can use (9),
which describes the continuous spectrum of diffracted cylindrical plane
waves in k-space. In Fig. 7(c), we report the transverse electromagnetic
power distribution evaluated in spatial domain for different heights.
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malized intensity on the sample surface. (b) Power distribution profile.
(c) Simulated transverse intensity distribution in 50µm cavity with a
SiO2 sample.
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Intensity distribution of the field along the cavity is a combined effect
of diffraction of the field at fiber aperture and the multiple-interferences
arising inside the cavity. Interferences shape the field distribution
in the time domain and the spot on the sample is characterized by
a smaller transverse field distribution than the fiber mode diameter,
whereas at different heights over the surface, the power is more spread
in the transverse plane. Performing this evaluation when fiber-sample
distance is 50µm, we obtain that the energy distribution has a radius
of the central disk equal to 0.56µm, against a fiber mode field radius
equal to 2.3µm. The transverse resolution can be assumed as the
distance of the first null of Gaussian shape from its peak.

The level of signal coupled back in fiber depends on sample
reflectivity, absorption and surface scattering. In our micro-cavity
scanning system, images are obtained through a Fourier Domain (FD)
analysis of the interference signals. As in all FD-based-sensors, the
light reflected or scattered back from each point of surface contributes
to the interference signal during all the measuring time. This feature
makes the system more sensitive and affects the measurable power
P of the signal that is used to extract topographic and contrast
phase information. The ratio between the maximum and minimum
measurable power of the signal from the surface, defines the dynamic
range of the system [25]:

DFD = 10 log
[

4
SNR2

F

·
(

P0tη

hν

)]
(13)

where SNRF is the minimal necessary signal-to-noise-ratio, P0 is the
total power from the surface, hυ is the energy of one photon and η
is the quantum efficacy of the photodiode. The more photons from
the object contribute to the interference signal, the higher is dynamic
range. As shown in [25], for the FD sensors the main physical limitation
of dynamic range is the shot noise. In principle, for FD sensors,
dynamic range can be greater than typically 14 dB [25]. However,
this feature could also make the system more sensitive to other noise
sources, as environment vibrations, or moving scatters, etc..

4. EXPERIMENTAL RESULTS

Measurements were performed over Atomic Force calibration gratings
whose surfaces have good reflectivity at the working wavelength of
850 nm. The grating is realized in SiO2 with a step height equal to
535± 4 nm, and a period of 3.00± 0.01 µm.

Figure 8(a) reports the sample topography acquired by means of
an Atomic Force Microscope, whereas Fig. 8(b) shows the topography
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(a) (b)

(c) (d)

Figure 8. Imaging of SiO2 grating by means of AFM and fiber
optic scanning system. (a) SiO2 calibration grating topography by
AFM. (b) SiO2 grating topography acquired by optical micro-cavity
at 850 nm. (c) Contrast phase image. (d) 3D profile of the contrast
phase image.

imaged by the micro-cavity scanning system. The images were
acquired in different areas and with different grating orientations
(cavity dimension = 140µm).

The topographic profiles acquired by means of the two scanning
techniques are compared in Fig. 9. The root mean square of the
profiles, gives the level of accuracy in the z-direction. The AFM curve
has an r.m.s value equal to 537,250 nm, whereas the fiber optic scanning
system about 529,975 nm. Data highlight the filtering effects, at the
higher spatial frequencies, of the single mode fiber with numerical
aperture NA. As described in Fig. 7, the diffracted waves interfere
inside the cavity producing Airy disks. According to this transverse
pattern, the minimum distance dmin at which two adjacent points can
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Figure 9. Topographic profile of the SiO2 grating acquired by (a)
fiber optic scanning system and (b) AFM.
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Figure 10. Normalized fourier transform magnitude for the
topographic profiles reported in Figs. 7(a)–(b).

be resolved is about 1.12µm; Limited transverse resolution affects the
filtering bandwidth of the optical system as reported in Fig. 10 in
which normalized spatial frequencies are compared. The difference
between two spectra is more prominent above 1µm−1, confirming the
theoretical value obtained from dmin, that fixes the bandwidth to about
0.9µm−1.

The analytical model reported in Section 3 describes how the
fluctuations of peak-amplitude response in time domain, produce
contrast phase images that are correlated to the sample topography
and refractive index changes. Fig. 11 describes the different features
that a phase imaging (see Fig. 11(a)) can single out, compared with
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(a) (b)

Figure 11. SiO2 grating with a step height equal to 108.5 ± 2 nm
having a region contaminated. Differences between the (a) contrast
phase and (b) topography images.

the topography image, acquired on the same area (see Fig. 11(b)). The
sample is a SiO2 grating in which part of the surface is contaminated
by some impurities. The grating was exposed to open air and actually
we do not know exactly what is the source of these impurities. Fig. 10
shows how the presence of very small refractive index changes can give
large effects in the phase images, being the phase more sensitive to
these variations.

5. CONCLUSIONS

In this work, we analyzed and realized an extrinsic micro-cavity
scanning system in optical fiber for surface imaging, providing a model
for the analysis, which gives information about reflectivity, topography
and contrast phase images of the sample. Transverse resolution is
defined through the transverse distribution of the electromagnetic field
inside the cavity, allowing to overcome the Rayleigh limit. In the
normal direction, the resolution although being function of the source
bandwidth, can be numerically improved by means of polynomial
interpolation. This system has a wide area of applications due to
its capability to study topography and contrast phase variations of
a sample. Phase imaging measures optical thickness variations due
to small changes in refractive index. Different values of refractive
index are associated to differences in material density and very small
refractive index changes can show a large effects in the phase images.
For these reasons, the micro-cavity scanning microscopy could find
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application in biomedical field; namely in the characterization of
surface roughness and permittivity changes of a cell or tissue, also
in liquid environment. The advantage with respect to a near field
approach is the reduced interaction with the sample: in particular this
aspect can be relevant in biology. In fact, most biologists complain
about scanning probe techniques to be too invasive; for example
contact AFM flattens samples, or STM expose samples to an external
bias etc. Even near field optical approaches usually need some other
feedback system based on a strong probe sample interaction. Hence
the proposed approach is meant to fill the distance between purely
optical microscopes and near field scanning probes.
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