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nicazioni, Università di Napoli Federico II, via Claudio 21, Napoli
I 80125, Italy

Abstract—The problem of characterizing random sources from
near-field measurements and of devising the random field sampling
procedure is tackled by a stochastic approach. The presented technique
is an extension of that introduced in [22] and successfully adopted to
experimentally characterize deterministic (CW and multi-frequency)
radiators and fields. Under the assumption that the source is wide
sense stationary, quasi-monochromatic and incoherent, its intensity is
reconstructed by time-domain field measurements aimed at extracting
information from the mutual coherence of the acquired near-field. The
linear relation between the field coherence and the source intensity is
inverted by using the Singular Value Decomposition (SVD) approach,
properly representing the source intensity distribution by exploiting
the a priori information (e.g., its size and shape) on the radiator.
The sampling of the radiated random field is devised by a singular
value optimization procedure of the relevant finite dimensional linear
operator. Experimental results using a slotted reverberation chamber
as incoherent source assess the performance of the approach.

1. INTRODUCTION

The purpose of radiated field emission and immunity measurements
is to ensure the Electromagnetic Compatibility (EMC) of different
devices located in complex environments, such as office rooms, factory
floors, or aircraft hulls, or between different components of very
large scale integration circuits generating Electromagnetic Interference
(EMI) problems [1]. Examples concern, but are not limited to,

• EMI problems of computers, peripherals and data cables [2];
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• electromagnetic shielding for the protection of electronic equip-
ment and systems against EMI for which apertures, needed for
cable interconnections or cooling, can degrade the shielding effi-
ciency [3];

• the operation of automotive electronics which is ceaselessly
undergoing a dramatic increase in clock speed translating into
potentially greater interferences [4];

• switched mode power supplies, typically used to feed integrated
electronic devices and power drive systems and for which knowing
the radiated near-field helps the correct EMC design of the
device [5, 6];

• the design of high-speed Printed Circuit Boards (PCB), for which
the proximity of various components may sometimes render the
design completely unoperational [7].

In this framework, a standard EMC measurement problem is
to determine the radiation/immunity characteristics of unintentional
sources.

Traditional emission and immunity measurements implicitly
assume that the equipment under test (EUT) has a simple dipole-
like radiation and reception pattern. When this is true, reverberation
chambers [8] or Transverse Electromagnetic (TEM) cells [9] can be used
for total radiated power measurements or to determine the complex
dipole moments (electric and magnetic) of the source, respectively.

However, as the EUT becomes electrically large, it can be
expected to have complex emission/reception patterns, especially as
the frequency raises to the GHz range. In these circumstances, the
directivity of the EUT [10] becomes an important factor determining
the coupling between the different involved devices.

Unfortunately, measurements in a reverberation chamber or a
TEM cell determine the total radiated/received power, but not the
electromagnetic field at any particular point in space. Thus, simply
applying traditional test procedures does not allow to obtain a full
picture of the EUT immunity/emissions.

Near-Field (NF) measurements [11–13] are being recognized to
be very useful in characterizing the EMC of industrial, active, or
passive circuits, as witnessed by the current interest of several research
laboratories in the development of near-field scanners for the study
of chip-level electromagnetic compatibility [14–16] and by commercial
availability of automatic measurement systems to identify “hot spots”
of PCB currents [17].

NF techniques consist of calculating, from NF data measured
in the vicinity of the EUT, the radiated field at desired points in
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space [18, 19], and, in particular, at the distances of 10 to 30 meters
from the EUT as required by standard EMC regulations. They
permit the reduction of the high costs related to large anechoic or
semi-anechoic chambers or of large outdoor test ranges. However,
performing NF measurements to achieve the full EUT pattern is
time consuming and can appear unsuited for routine EMC test
purposes, unless the number of measurements can be strictly limited,
and adjusted, according to the degree of complexity of the EUT.
Unfortunately, standard NF techniques do not provide sampling
criteria to reduce the overall number of needed field samples.

NF techniques are currently widely used to reconstruct the
amplitude and phase of deterministic (Continuous Wave — CW —
or multi-frequency) fields radiated by antennas or scatterers [20].
In this framework, the Authors have recently proposed in [21, 22] a
particularly efficient field sampling strategy.

In contrast to antenna characterization, in many EMC cases,
fields produced by unintentional sources or by intentional sources for
which the temporal evolution cannot be foreseen deterministically,
but rather stocastically [23], are involved. When the emissions are
random, conventional deterministic complex (amplitude and phase)
and phaseless NF techniques cannot be straightforwardly applied.
Indeed, frequency-domain approaches are not suited due to the
randomness of the field phase [20]. Moreover, to use time-domain
techniques [24], the signals should be simultaneously measured at every
sampling point of the measurement domain to evaluate the necessary
field correlations, leading to an impractically burdened measurement
setup. Finally, the existing near-field phaseless approaches [25] require
proper extensions to be successfully adopted for the case of stochastic
sources.

Recently, a NF technique based on the processing of the
coherence function of narrow-band fields radiated by an EUT has been
proposed [23] and experimentally validated [26] to characterize the
radiation by a GSM telephone handset. In such a technique, the EUT
is modeled as a superposition of narrow-band uncorrelated elementary
sources and the radiated field is regarded as a weakly stationary
stochastic process in time and space. The coherence function of the
fields is related to the intensity of the source which, in turn, is recovered
by a Singular Value Decomposition (SVD) approach. Unfortunately,
the technique in [23, 26] does not point out a sampling strategy.

In this paper, the problem of reconstructing random sources from
NF measurements is tackled and a strategy to effectively perform
the random field sampling [27] is devised by a proper stochastic
approach. The presented technique is an extension of that introduced
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in [21, 22] and successfully adopted to experimentally characterize
deterministic (CW-multifrequency) radiators and fields [19]. Under
the assumption that the source is wide sense stationary [28] and quasi-
monochromatic [29], its second order statistics can be reconstructed
by time-domain NF field measurements aimed at forming the mutual
coherence of the measured field itself [30]. The linear relation between
the coherence of the NF and the second order statistics of the source
can be inverted by using the SVD [31] approach, properly representing
the source statistics by exploiting the a priori information (e.g., its
size and shape) available on the radiator. Finally, the sampling of
the random NF field is performed by a singular value optimization
procedure of the relevant linear operator.

The performance of the approach is analyzed in a 2D scalar
radiation geometry involving plane and parallel source and observation
domains and incoherent [32, 33] radiators. For such a problem,
preliminary results have been presented in [30]. Here, we illustrate
experimental results aimed at showing how the approach is capable
to correctly reconstruct the intensity distribution of random radiators
with a number of measurements which is significantly smaller than
those required by more “standard” techniques, as it has been already
proven in the CW, multi-frequency or narrow-band cases [21, 22, 30]. In
this paper, random incoherent sources have been produced by properly
slotting one of the walls of a reverberation chamber with one or more
narrow apertures.

The paper is organized as follows. In Section 2, the problem
is formulated and, under the hypothesis of narrow-band, wide-
sense stationary and incoherent sources, the coherence function of
the NF is related to the source intensity distribution (van Cittert-
Zernike theorem), thus obtaining the relevant, linear unknown-to-data
relationship to be inverted for the reconstruction of the unknown
random sources. In Section 3, the problem discretization is introduced
when the incoherent source intensity distribution is represented by
means of Prolate Spheroidal Wave Functions (PSWFs) [34, 35], and the
solution scheme employing the SVD approach is indicated. Section 4
is devoted to describe the singular value optimization procedure to
define the number and positions of the field samples. Finally, Section 5
presents numerical and experimental results.

2. FORMULATION OF THE PROBLEM

Let us consider for the sake of simplicity, but without any loss
of generality, the 2D scalar radiation problem of an intentional or
unintentional time-domain strip source, of size 2a′, according to the
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geometry in Fig. 1. We define j
s
(x′, t) = js(x′, t)̂iy as the strip source,

having support on (−a′, a′), which can be thought of as being obtained
from a single current formulation of the equivalence theorem applied to
the z < 0 half-space filled with a perfect magnetic conductor [36, 37].
We assume that the background medium is free-space and consider
an ideal probe acquiring the y component e of the radiated field.
Without any loss of generality, we suppose, just to clarify things,
to collect the field on the segment (−a, a), parallel and centered to
the source and located at a distance d apart from it, at a number
M of sampling positions (xm, d). For remarks on the non-ideality
of the probe and on different descriptions of the source radiation,
see [21]. The radiating source is assumed to be quasi-monochromatic,
with spectrum centered around the frequency f0 and with bandwidth
∆f ¿ f0 [29]. This hypothesis is not a limitation since, in practice,
the radiated spectrum of many intentional or unintentional sources
is narrowband [2]. Accordingly, also the radiated field is quasi-
monochromatic.

Henceforth, complex analytic signal representations are used for
sources and fields, namely [29]:

u(P, t) =
∫ ∞

0
U(P, f)ej2πftdf (1)

where u can be either js or e. U is its Fourier transform and j the
imaginary unit.

If we further assume that the distance R =
√

(x− x′)2 + d2

between a generic source point (x′, 0) and a generic observation point

Figure 1. Geometry of the problem.



224 Capozzoli, Curcio, and Liseno

(x, d) satisfies R∆β ¿ 1 with ∆β = 2π∆f/c, c being the free-space
light speed, then the relation between js and e can be written as [29]

e(x, t) = −ωoµ

4

∫ a′

−a′
H

(2)
0 (β0R)js(x′, t)dx′ (2)

where H
(2)
0 is the Hankel function of zero-th order and second kind,

ω0 = 2πf0, β0 = ω0/c, and −(ω0µ/4)H(2)
0 (βR) is the relevant,

frequency-domain, 2D scalar Green’s function [38].
In order to determine a relation between the mutual coherences

of source and field, we assume that js is wide sense stationary, so that
its mutual coherence function can be expressed as [23]
Γjs

(
x′, x′′, τ

)
=

〈
js(x′, t′)j∗s

(
x′′, t′ − τ

)〉 ' Γjs

(
x′, x′′, 0

)
e−j2πf0τ , (3)

where 〈·〉 denotes an average over the ensemble of source realizations,
which can be computed as a time average under the hypothesis of
ergodicity [30, 32]. Accordingly, the field is wide sense stationary and
its mutual coherence function Γe(x1, x2, τ) can be expressed as

Γe(x1, x2, τ) '
(ω0µ

4

)2
∫ a′

−a′

∫ a′

−a′
H

(2)
0 (β0R1)

×H
(2)∗
0 (β0R2)Γjs

(
x′, x′′

)
dx′dx′′e−j2πf0τ , (4)

where, with an abuse of notation, we have set Γjs(x′, x′′) =
Γjs(x′, x′′, 0), and R1 =

√
(x1 − x′)2 + d2, R2 =

√
(x2 − x′′)2 + d2.

By setting τ = 0, then the equation

Γe(x1, x2) '
(ω0µ

4

)2
∫ a′

−a′

∫ a′

−a′
H

(2)
0 (β0R1)

×H
(2)∗
0 (β0R2)Γjs

(
x′, x′′

)
dx′dx′′, (5)

where, again with an abuse of notation, Γe(x1, x2) = Γe(x1, x2, 0),
defines the inverse source problem for partially coherent sources and
fields [23, 28, 33, 39], and, in particular, that of deducing second order
statistics of the source from second order statistics of the radiated field
on the segment (−a, a) of the z = d axis. As known, not only in the
case of coherent sources, but also when partially coherent radiators are
involved, this problem has a nonunique solution [40].

Uniqueness can be restored when referring to incoherent (i.e., delta
correlated sources) or quasi-homogeneous sources [28, 33, 39]. In the
case of incoherent sources, namely, the case of interest in the present
paper, Γjs(x′, x′′) = I(x′)δ(x′ − x′′), so that Eq. (5) can be rewritten
as

Γe(x1, x2) '
(ω0µ

4

)2
∫ a′

−a′
H

(2)
0 (β0R1)H

(2)∗
0 (β0R2)I(x′)dx′ (6)
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where now R1 =
√

(x1 − x′)2 + d2, R2 =
√

(x2 − x′)2 + d2. Eq. (6) is
an expression of the van Cittert-Zernike theorem [32].

3. RECONSTRUCTION OF INCOHERENT SOURCES

In order to solve the inverse source problem defined by Eq. (6), let us
first discuss a finite dimensional representation of I. To this end, as a
priori information on the source, besides the incoherency, we assume
to know the spatial support (−a′, a′) of js. Then, following [21, 41], js

can be expanded as

js(x′, t) =
P∑

p=1

K∑

k=1

fpkdp(t)ψk[x′, β0a
′]e−j2πf0t, (7)

where the ψk[·, β0a
′]’s are the Prolate Spheroidal Wave Functions

(PSWFs) with space-bandwidth product β0a
′ [34, 35], K = [(2/π)β0a

′],
the symbol [·] denoting the integer part. The dp’s are slowly varying
functions of L2(0, T ), (0, T ) being the observation time [41], expanding
the baseband part of js(x′, t), and the fpk’s are expansion coefficients.
Accordingly, the behavior of H

(2)
0 (·) against the x′ variable in Eq. (2)

can be described by the above mentioned K PSWFs, so that the Hankel
functions appearing in Eq. (6) can be approximately represented as

H
(2)
0 (β0Ri) '

K∑

k=1

ak(xi)ψk

[
x′, β0a

′] , i = 1, 2 (8)

where the ak’s are proper expansion functions whose expression is left
unspecified, being irrelevant for our reasoning. Consequently,

Γe(x1, x2) '
(ω0µ

4

)2
K∑

k′=1

K∑

k′′=1

ak′(x1)a∗k′′(x2)

×
∫ a′

−a′
ψk′

[
x′, β0a

′]ψk′′
[
x′, β0a

′] I(x′)dx′. (9)

From Eq. (9), it can be deduced that only the components of I on
the space spanned by the products of functions ψk′(x′)ψk′′(x′)’s have
a significant image on the field coherence Γe(x1, x2). Furthermore,
the functions ψk′(x′)ψk′′(x′)’s approximately span the space of PSWFs
with space-bandwidth product 2β0a

′. Therefore, we set

I
(
x′

)
=

2K∑

k=1

Ikψk

[
x′, 2β0a

′] , (10)
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where ψk[x′, 2β0a
′] is the k-th PSWFs with space bandwidth product

2β0a
′. It should be noted that the PWSFs are real functions, which is

a convenient property when expanding the real function I.
Taking now into account that e is sampled at a number M of

points {xm}M
m=1 on the segment (−a, a), so that M ×M values of Γe

are obtained, then Eq. (6) can be recast as

V = Z I (11)

where V is the column vector containing the values of the Γe(xm, xn)
of the mutual coherence at (xm, d) and (xn, d), and I is the vector
containing the bk’s. The elements Zmn;k of the matrix Z are

(ω0µ

4

)2
∫ a′

−a′
H

(2)
0 (β0R1m)H(2)∗

0 (β0R2n)ψk

[
x′, 2β0a

′] dx′, (12)

where now R1m =
√

(xm − x′)2 + d2, R2n =
√

(xn − x′)2 + d2. For
the matrix Z, one index has been substituted in place of the couples
of indices (m,n) according to a convenient mapping.

For fixed sample number M and locations, the characterization of
the incoherent source amounts at determining the source intensity I in
terms of the expansion coefficients I. Unfortunately, the inversion of
Eq. (11) is affected by ill-conditioning, so that a regularized approach
should be exploited. A possible solution is provided by the use of the
Truncated Singular Value Decomposition (TSVD) approach [42], even
if other regularization strategies are possible [43].

4. OPTIMAL SAMPLE NUMBER AND LOCATIONS

According to the theory of the SVD approach, to reliably and
accurately retrieve the subspace components of the source intensity, the
matrix Z should have the best possible conditioning [19, 21, 22]. On the
other hand, Z is not univocally defined, since it depends on the choice
of both M , the number of sampling points, and the sample distribution.
In other words, we have at our disposal a family of matrices Z with
different behaviors of the singular values. Therefore, the inversion
should be performed by exploiting the element of the family with “the
most convenient” singular value behavior. To cope with this point,
the solution of the linear inverse problem (11) should then be preceded
by an optimization step leading to the best choice of both M and the
sample locations [19, 21].

This particularly flexible approach enables working out here,
rigorously and for the very first time, the field sampling in the
incoherent case and can be used to derive the field sampling also in
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the partially coherent case, when the source statistics are known (e.g.,
[28]).

Let us then denote the singular values of Z by σt, with t = 1, . . . , T
and T = min {M ×N, K}. The behavior of the σt’s affects the amount
of information conveyed on I by V [44]. Accordingly, among all the
possible matrices Z and for a fixed M , it is convenient to choose
the locations of the sampling points providing the “flattest” singular
values behavior. This choice can be accomplished, for a fixed M , by
maximizing for instance the functional [19, 21]

Φ =
T∑

t=1

σt

σ1
(13)

evaluating the “area” subtended by the normalized singular values
σt/σ1.

Concerning now the choice of the “optimal” number of samples
M , since Φ admits a meaningful interpretation in terms of generalized
Shannon number [44], then, on denoting by Φopt(M) the maximum
of Φ for a given M , we expect that adding further sampling points
to the segment (−a, a) of the z = d axis (i.e., increasing M) will
increase Φopt(M) until the maximum amount of information which can
be gathered from such a domain is reached. Beyond this condition,
no further information can be conveyed on I by any newly added
field sample. Since I belongs to a finite dimensional space, this will
correspond to the appearance of very small singular values and thus
to a “saturation” behavior of Φopt(M) against M [19, 21], making the
lastly added samples irrelevant. The number M at the saturation knee
represents the minimum number of samples needed to achieve all the
information available on I from the mentioned segment (−a, a).

Finally, to mitigate the trapping problem when optimizing Φ
and to improve the efficiency of the procedure, a representation
of the sampling points by properly chosen expansion functions is
adopted [19, 21] to reduce the number of parameters to be determined
and to allow the progressive enlargement of the unknowns. In other
words, the abscissas xm’s are represented as

xm =
L−1∑

l=0

clPl(ξm), m = 1, . . . ,M (14)

where the ξm’s are uniformly spaced within [−1, 1], the Pl’s are basis
functions, and the cl’s are the expansion coefficients. By Eq. (14), a
set of M uniformly spaced abscissas ξm’s is mapped into a set of M
nonuniformly spaced abscissas xm in such a way that only the few cl’s
are the parameters to be optimized. The number L of parameters cl
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is unrelated to the number of sampling points and could be arbitrarily
chosen so that the number of basis functions Pl’s (which can be
progressively enlarged) can be chosen to allow a significant reduction
of the number of unknowns to be determined while optimizing Φ, with
beneficial effects on the computational burden of the search algorithm.
Since the local sampling step of the field is expected to smoothly change
from point to point, a polynomial (e.g., Legendre) expansion involving
few (three or four) terms is generally sufficient to provide an adequate
representation of the xm’s.

5. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we show the results of a numerical and experimental
analysis performed to assess the performance of the developed
approach.

The experiments have been carried out within the anechoic
chamber available at the Dipartimento di Ingegneria Biomedica,
Elettronica e delle Telecomunicazioni (DIBET) of the Università di
Napoli Federico II. A reverberation chamber has been exploited to
obtain incoherent sources [45] since, as known, the coherency length of
the reverberating field is of the order of λ/2 [46]. The reverberation
chamber, already available at DIBET, is made up by a cubic cavity
with side equal to 0.5 m and equipped by three metallic fan-shaped
stirrers (see Fig. 2). It is fed by a rectangular waveguide operating
in the Ku band and one of its side is removable and replaceable with
slotted metallic panels. For our purposes, two removable panels have
been employed, one with a slot, 0.5 cm × 30 cm sized and one with

Figure 2. Illustration of the inte-
rior of the reverberating chamber
and of the fan-shaped stirrers.

Figure 3. The reverberating
chamber with the two-slots panel
and the feeding input.
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two slots, each 0.5 cm × 30 cm sized and reciprocally separated by
a distance of 14 cm (see Fig. 3 as well as Fig. 4 for the reciprocal
arrangement of the slots and the source region). Such a distance has
been chosen so to guarantee the incoherency of the fields excitated
between the slots. Furthermore, the elongated shape of the slots as
well as their orientation along the y axis, orthogonal to both the
investigation domain (−a′, a′) and the observation domain (−a, a),
have been selected to meet the assumption of a 2D geometry.

A probe acquires the field radiated by the slots by occupying,
one after the other and thanks to a positioner, the desired sampling
points, according to the geometry of Fig. 1 (see also Fig. 5). As probe,
a truncated rectangular waveguide has been adopted. Being the probe
electrically small, probe correction is not very relevant [47]. When
necessary, probe compensation can be performed for the presented
approach according to the same guidelines in [48].

The data have been acquired by a Vector Network Analyzer
(VNA) Anritsu 37397C, working in the 40 MHz–65GHz frequency
band, which also provides the feeding of the reverberation chamber.
More in detail, the data have been acquired in the 14 GHz–16 GHz
band. We underline that emission measurements for the EMC check
of device must be carried out, according to the standards [49], in
the frequency domain by sweeping in frequency and measuring the
emissions at each frequency. The signals recorded for each sampling
point have been then transformed in the time domain so to work
out an estimate of the coherence matrix under the hypothesis of
ergodicity [30, 32].

In the following, we report the results of the experimental analysis.

Figure 4. Reciprocal arrange-
ment of the slots and the inves-
tigation region.

Figure 5. The reverberating
chamber with the measurement
probe.
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5.1. Uniform Sampling — Single Slot

The first example regards the case of a single slot when the data are
acquired with an uniform sampling step equal to λ0/5, λ0 being the
wavelength at the center frequency of 15 GHz.

The size of the investigation and of the observation domains have
been 2a′ = 22 cm and 2a = 20 cm, respectively, whereas their reciprocal
distance has been d = 15.5 cm. The total number of measurement
points has been 51.

Figure 6 illustrates the singular values behavior for the considered
case (blue starred line). As it can be seen, all the 22 singular values
are relevant, meaning that all the considered unknown coefficients
Ik’s can be inverted. It should be also noticed that the number

Figure 6. Singular values distribution for the uniform (blue starred
line) and nonuniform (red circled line) cases.

Figure 7. Amplitude distribu-
tion of Γe(x1, x2) for the case of
a single slot.

Figure 8. Phase distribution of
Γe(x1, x2) for the case of a single
slot.
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of relevant singular values is significantly lower than the number of
uniform sampling points.

Figures 7 and 8 show the amplitude and phase, respectively, of
Γe(x1, x2). From the fringes of the phase distribution of Γe(x1, x2)
the presence of the single radiator could be already deduced. This is
confirmed by the reconstruction shown in Fig. 9, whose peak clearly
singles out the position of the slot. Finally, Fig. 10 illustrates the result
obtained if the data are processed according to the coherent radiation
model of Ref. [21]. More in detail, to obtain the reconstruction in
Fig. 10, only the data at f = f0 have been considered. As it can be
seen, the reconstruction is meaningless, thus pointing out the need of

Figure 9. Single slot: recon-
struction of the intensity distribu-
tion.

Figure 10. Single slot: recon-
struction of the intensity distribu-
tion by using the same “coherent”
processing as in [21].

Figure 11. Amplitude distribu-
tion of Γe(x1, x2) for the case of
a double slot with uniform sam-
pling.

Figure 12. Phase distribution of
Γe(x1, x2) for the case of a double
slot with uniform sampling.
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Figure 13. Double slot and uniform sampling: reconstruction of the
intensity distribution.

adopting the proposed processing based on the incoherent modelling
of the source.

5.2. Uniform Sampling — Double Slot

The second example regards the case of a double slot, still addressed
under a uniform sampling of the radiated field. The size of the
investigation region is the same as that for the foregoing case, whereas
the observation domain now corresponds to 2a = 40 cm.

Figures 11 and 12 display the amplitude and phase, respectively,
of Γe(x1, x2). Once again, from the fringes of the phase distribution of
Γe(x1, x2), the presence of the two radiators could be already deduced.
This is confirmed by the reconstruction shown in Fig. 13 whose maxima
clearly spot out the slot positions.

5.3. Nonuniform Sampling — Two Slots

We finally show the case of a double slot when the radiated field
is acquired by a non-uniform sampling. The investigation domain
is again 2a′ = 22 cm sized, whereas the observation domain is such
that 2a = 60 cm. Figs. 14 and 15 show the non-uniform sampling
points determined following the procedure in Section 4 and the uniform
sampling exploited in the foregoing subsections, respectively. As it can
be seen, the number of sampling points is now 22, which is much less
than the number of 51 sampling points involved in the two previous
cases which, nevertheless, corresponded to even narrower observation
regions.

Figure 6 depicts the singular values behavior for the considered
test case (red circled line). As it can be appreciated, again all the
22 singular values are relevant. Furthermore, such a behavior is
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Figure 14. Sampling point locations
for the case of a double slot with non-
uniform sampling.

Figure 15. Sampling point
locations for the case of a
single and double slot with
uniform sampling.

Figure 16. Amplitude distribu-
tion of Γe(x1, x2) for the case of
a double slot with non-uniform
sampling.

Figure 17. Phase distribution of
Γe(x1, x2) for the case of a double
slot with non-uniform sampling.

close to that concerning the uniform sampling, with the advantage
now that the number of involved samples is, as mentioned, much
lower. The closeness of the two behaviors can be expected since, in
a comparable measurement region, the uniform sampling corresponds
to a significantly narrower sampling step.

Figures 16 and 17 illustrate amplitude and phase, respectively, of
Γe(x1, x2), whereas Fig. 18 depicts the reconstructed source intensity
distribution.

Finally, Fig. 19 shows the same reconstructions of the two slots
as in Figs. 13 and 18, obtained under the same uniform and non-
uniform measurement configurations, but when model-based numerical
data are considered. As it can be seen, the uniform and non-
uniform approaches have similar performance, the latter exploiting a
significantly lower number of measurements. It should be moreover
mentioned that mismatches between the model considered for the
coherence in Eq. (6) and the actual one affect the reconstructions by
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Figure 18. Double slot and
nonuniform sampling: reconstruc-
tion of the intensity distribution.

Figure 19. Double slot and
uniform (red dashed line) and
nonuniform (blue solid line) sam-
pling with numerical data: recon-
struction of the intensity distribu-
tion.

both the approaches using uniform and nonuniform sampling points.
Such mismatches affect also the procedure for determining the sample
locations, and so the “optimality” of the nonuniform sampling points,
for the nonuniform approach only. Accordingly, the slight differences
in the dynamics of the two reconstructions in Figs. 13 and 18 should
be ascribed to slight model mismatches.

6. CONCLUSIONS AND FUTURE DEVELOPMENTS

An approach has been presented to the problem of characterizing
random sources from NF measurements. The attention has been
focused on the case of incoherent sources under a scalar, 2D geometry.

The source intensity has been properly represented by PSWFs,
exploiting the a priori knowledge on the extent of the source,
while the NF has been acquired at nonuniformly distributed sample
locations maximizing the amount of information extracted from the
measurement domain to accurately determining the unknown source.
The sample locations have been chosen according to a singular value
optimization procedure. The source reconstruction problem has been
then solved by a TSVD approach.

Experimental results, employing a slotted reverberation chamber
as incoherent source of radiation, have been presented assessing the
performance of the method.

It has been shown that the approach is capable to significantly
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reducing the number of the required field samples as compared to
uniform sampling. This strongly shortens the measurement time, a
serious issue of EMC/EMI near-field investigations.

As future developments, let us stress that the approach can be
extended to account for the features of the measurement probe [48, 50]
and to the full 3D case, it can be employed to characterize other,
partially coherent (e.g., quasi-homogeneous) sources and that the same
concepts can be also applied to other application fields as, for example,
the mapping of on-ground electromagnetic field [51]. Finally, the recent
development of probe arrays can further provide an efficient means to
drastically reduce time-consuming measurement procedures [52].
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