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Abstract—The existence of drains in the field of the point source both
for the spherical cavity with perfectly conducting boundary, filled with
a homogeneous medium, and for unbounded Maxwell’s fish eye (MFE)
are rigorously proved. The existence of all class of generalized Green
functions for unbounded MFE medium is established. The Green
function describing the perfect focusing is found in this class. The
same result for the MFE lens is obtained.

1. INTRODUCTION

Maxwell’s fish eye medium (MFEM) is an unbounded, spherically
symmetric, inhomogeneous medium with the refractive index

nfe (r) =
2n0ρ

2

r2 + ρ2
. (1)

Within the approximation of geometrical optics [1], Maxwell found
the perfect focusing properties of this medium, the trajectories of all
rays generating from arbitrary point source r′, come to the point of its
image r′′ = −ρ2r′

/
r′2, |r′| = r′.

In the pioneering paper on scalar wave processes in the MFE
media [2] Demkov and Ostrovsky proved the unique transformation
properties of the corresponding Helmholtz equation, by means of which
a three-dimensional Green function in the closed form was obtained.
Developing the ideas of this work, Szmytkowski [3] obtained the closed
form Green function for the scalar Helmholtz equation in the N -
dimensional MFE medium (N ≥ 2).

The interest in this research area increased rapidly with Leonhardt
et al.’s papers [4–8]. It is stated there that MFE-medium is able to
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provide the perfect image resolution which is free of known Abbe’s
limitation [9]. In other words, this medium properties unfolded by
Maxwell are also valid when passing from geometrical and optical
representation to the wave description. Leonhardt also suggested
a more practical modification of the finite Maxwell’s fish eye lens
(MFEL) bounded by perfectly conducting sphere. The obtained
analytical expressions for the field of point source in the MFE lens (i.e.,
the Green function in two [4] and three dimensions) have singularities
both at the point source r′ and at point if its image r′′. The latter is
a so-called active point drain for energy withdrawal.

The suggestion to justify the possibility of perfect focusing with
such an unusual object like point drain initiated a set of critiques [10–
14] which claim the super-resolving focusing developed in [4, 5] is
merely a consequence of a special drain location, and not a fundamental
property of MFEL. The most detailed one is the paper by Merlin [12].
The author considers the spherical cavity with perfectly conducting
boundary filled with a homogeneous medium to be a good analogue of
MFEL. Although this statement remains doubtful, Merlin presents an
interesting internal excitation problem’s stationary solution. The case
when the source is a radial electric dipole in the center of a sphere is
considered in [12]; here the following simple expression for the Hertz
potential of the total field Π = kp0(eikr/kr + iAsin kr/kr) is obtained,
k = ω/c, A is a known constant. Using this representation for Π,
Merlin concludes that there is no drain in this cavity. Now, how a
harmonic source Π0 = p0e

ikr/r, pumping electromagnetic energy in
the limited closed domain, can produce a stationary field? Leonhardt
and Philbin [5] emphasize this fact, ‘in order to maintain a stationary
regime we must supplement the source by a drain at the image’. It
is easy to separate the outgoing and incoming waves and to find an
average energy flux for each of them in the above expression for the
potential. They appear to be equal to each other, which ensure the
stationarity of solution in [12]. This means that there is not only a
source of outgoing spherical waves, but also the drain for the incoming
spherical waves in the center of the sphere.

In this paper, we present the ascertainment of drains role, when
constructing three-dimensional Green functions of unbounded MFE
medium and MFE lens. The structure of the paper is as follows. In
Section 2, we investigate the field of radial electrical dipole located
arbitrarily in the spherical cavity with homogeneous filling. The
existence of a whole class of generalized Green functions of the
Helmholtz equation for an unbounded MFE medium is proved and
also the Green function describing the perfect focusing is found in the
main Section 3. The similar Green function for MFEL is obtained in
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the last section.

2. VECTOR GREEN FUNCTION FOR A SPHERICAL
CAVITY WITH HOMOGENEOUS FILLING

Let us consider the following generalization of the model [12]. We
investigate boundary value problem for Maxwell’s equations in the
spherical cavity 0 < r < a with perfectly conducting boundary in
the spherical coordinate system ~r = (r, θ, ϕ). Radial electrical dipole
~J = Il̃δ(~r)e−iωt~z0 is located at the point ~r = (b, 0, 0). The field of
this source and the secondary field can be written as an expansion by
Hansen vector harmonics [15]. We can obtain the total field

~E = ~Ei + ~Es, ~H = ~H i + ~Hs (2)

using boundary conditions at r = a.

~Ei=
G

b2

√
µ

ε

∞∑

n=1

gi
n

~N
(+)
0n (kr, θ, ϕ) , ~Hs=

−iG

b2

∞∑

n=1

gi
n

~M
(+)
0n (kr, θ, ϕ) ,(3)

~Es=
−G

b2

√
µ

ε

∞∑

n=1

gs
n

~N
(0)
0n (kr, θ, ϕ) , ~Hs=

iG

b2

∞∑

n=1

gs
n

~M
(0)
0n (kr, θ, ϕ) ,(4)

where G = Il̃/2
√

π, gi
n =

√
n(n + 1)(2n + 1)kbjn(kb), gs

n = gi
nAn,

An = ∂(xh
(1)
n (x))/∂x

∂(xjn(x))/∂x

∣∣∣∣
x=ka

. Hanson vector harmonics, by definition [15]

equals to

~Mmn(kr,θ, ϕ)=γmnzn (kr) ~Cmn (θ, ϕ) , (5)

~Nmn(kr,θ, ϕ)=γmn

{
n(n+1)

kr
zn(kr)~Pmn(θ, ϕ)+

1
kr

d

dr
rzn(kr)~Bmn(θ, ϕ)

}
,(6)

where

γ2
mn=

(2n+1) (n−m)!
4πn (n+1) (n+m)!

, ~Cmn (θ, ϕ)=∇×[
~rPm

n (cos θ)eimϕ
]
,

~Pmn (θ, ϕ)=~rPm
n (cos θ) eimϕ, ~Bmn (θ, ϕ) = r∇ [

Pm
n (cos θ) eimϕ

]
,

zn(x) denotes the spherical Bessel functions: jn(xt)=
√

π/2xJn+1/2(x)/x,

h
(1,2)
n (x) =

√
π/2xH

(1,2)
n+1/2(x)/x, Pm

n (cos θ) are the Legendre functions.

Superscript (0) in ~M
(0)
0n , ~N

(0)
0n means that zn(x) = jn(x) (in [15] symbols

Rg ~Mmn, Rg ~Nmn are used for this). In case when zn(x) = h
(1,2)
n (kr),

symbols ~M
(+,−)
0n , ~N

(+,−)
0n are used correspondingly.
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Let us consider the electromagnetic energy currents in the
neighborhood of point source. For this it is required to change
coordinate system and pass to ~r′ = (r′, θ′, ϕ′) connected with the
former one by parallel shift ~r = ~r0 + ~r′. Here ~r0 = (b, 0, 0) in
the original coordinate system, z is the axis of both systems. The
translation addition theorem for regular vector wave functions in
general ~r1 = ~r12 + ~r2, where ~rj = (rj , θj , ϕj) is [15]
[

~M
(0)
mn

~N
(0)
mn

]
(kr1, θ1,ϕ1)=

∞∑

ν=1

ν∑
µ=−ν

{[
A

(0)
µνmn

B
(0)
µνmn

]
(kr12, θ12, ϕ12) ~M (0)

µν (kr2, θ2,ϕ2)

+

[
B

(0)
µνmn

A
(0)
µνmn

]
(kr12, θ12, ϕ12) ~N (0)

µν (kr2, θ2, ϕ2)

}
. (7)

In our case, θ12 = 0 therefore (see [16]) only coefficients A
(0)
µνmn,

B
(0)
µνmn, µ = m = 0 are non-zero,

A
(0)
0ν0n(kb, 0, 0) =

γ0n

γ0ν

n+ν∑

p=|n−ν|
(2p + 1)

(
n ν p
0 0 0

)2

×iν−n+p (2ν+1)
2ν(ν+1)

[n(n+1)+ν(ν+1)−p (p+1)]jp(kb), (8)

B
(0)
0ν0n (kb, 0, 0) =−γ0n

γ0ν

n+ν∑

p=|n−ν|
(2p + 1)

(
n ν p
0 0 0

)(
n ν p− 1
0 0 0

)

×iν−n+p+1 (2ν+1)
2ν (ν+1)

[(n+ν+1+p) (n+ν+ 1−p)

(p + n− ν) (p−n+ν)]
1
2 jp (kb) . (9)

At the new coordinate system, the field is given by formulas

~Es=
−G

b2

√
µ

ε

∞∑

n=1

gn

∞∑

ν=1

[
B

(0)
0ν0n

~M
(0)
0ν

(
kr′, θ′, ϕ′

)
+A

(0)
0ν0n

~N
(0)
0ν

(
kr′, θ′, ϕ′

)]
,(10)

~Hs=
iG

b2

∞∑

n=1

gn

∞∑

ν=1

[
A

(0)
0ν0n

~M
(0)
0ν

(
kr′, θ′, ϕ′

)
+B

(0)
0ν0n

~N
(0)
0ν

(
kr′, θ′, ϕ′

)]
, (11)

~Ei=

√
2
3
Gk2

√
µ

ε
~N

(+)
01

(
kr′, θ′, ϕ′

)
, (12)

~H i=−i

√
2
3
Gk2 ~M

(+)
01

(
kr′, θ′, ϕ′

)
. (13)
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~M
(0)
0ν = 1

2
~M

(+)
0ν + 1

2
~M

(−)
0ν , ~N

(0)
0ν = 1

2
~N

(+)
0ν + 1

2
~N

(−)
0ν are the regular

functions, and whole field is the sum of outgoing waves from the point
source location

~E(+) =
G

b2

√
µ

ε

{√
2
3

(kb)2 ~N
(+)
01

(
kr′, θ′, ϕ′

)−1
2

∞∑

ν=1

~M
(+)
0ν

(
kr′, θ′, ϕ′

)

∞∑

n=1

gnB
(0)
0ν0n−

1
2

∞∑

ν=1

~N
(+)
0ν

(
kr′, θ′, ϕ′

) ∞∑

n=1

gnA
(0)
0ν0n

}
, (14)

~H(+) = i
G

b2

{
−

√
2
3

(kb)2 ~M
(+)
01

(
kr′, θ′, ϕ′

)
+

1
2

∞∑

ν=1

~M
(+)
0ν

(
kr′, θ′, ϕ′

)

∞∑

n=1

gnA
(0)
0ν0n+

1
2

∞∑

ν=1

~N
(+)
0ν

(
kr′, θ′, ϕ′

) ∞∑

n=1

gnB
(0)
0ν0n

}
(15)

and incoming into this point

~E(−) =
G

b2

√
µ

ε

{
−1

2

∞∑

ν=1

~M
(−)
0ν

(
kr′, θ′, ϕ′

) ∞∑

n=1

gnB
(0)
0ν0n

−1
2

∞∑

ν=1

~N
(−)
0ν

(
kr′, θ′, ϕ′

) ∞∑

n=1

gnA
(0)
0ν0n

}
,

~H(−) = i
G

b2

{
1
2

∞∑

ν=1

~M
(−)
0ν

(
kr′, θ′, ϕ′

) ∞∑

n=1

gnA
(0)
0ν0n

+
1
2

∞∑

ν=1

~N
(−)
0ν

(
kr′, θ′, ϕ′

) ∞∑

n=1

gnB
(0)
0ν0n

}

(16)

We can use the following properties of vector functions (5), (6)

~M0n × ~M0ν =0,
[

~N0n × ~N0ν

]
r′
=0,

[
~M0n × ~N0ν

]
r′

=fn

(
r′

)
q̃ν

(
r′

) d

dθ′
Pn

(
cos θ′

) d

dθ′
Pν

(
cos θ′

)
, (17)

[
~N0n × ~M0ν

]
r′

=−fν

(
r′

)
q̃n

(
r′

) d

dθ′
Pn

(
cos θ′

) d

dθ′
Pν

(
cos θ′

)
, (18)

where fn(r′) = γ0nzn(kr′), q̃n = γ0n

kr′
d

dr′ r
′zn(kr′) and use the

orthogonality
2π∫

0

dϕ′
π∫

0

dθ′ sin θ′
dPν (cos θ′)

dθ′
dPν̄ (cos θ′)

dθ′
= δνδν̄γ

−2
0ν (19)
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to find the average time of forward P (+) and reverse P (−) of energy
currents through the sphere with arbitrary fixed radius r′ < a

P (±)=

∮ 〈
~S(±)

〉
r̂ds =

1

2
Rer′2

2π∫

0

dϕ′
π∫

0

dθ′ sin θ′
[
~E(±) × ~H(±)∗

]
r′

(20)

P (+)=
−G2

2b4

√
µ

ε
r′2Im

{
4π

2

3

[
−2

3
(kb)4f

(+)∗
1 q̃

(+)
1 +

√
2

3
(kb)2f

(+)∗
1 q̃

(+)
1 Re

∞∑
n=1

gnA
(0)
010n

]

+π

∞∑
ν=1

∣∣∣∣∣
∞∑

n=1

gnB
(0)
0ν0n

∣∣∣∣∣

2
ν(ν+1)

2ν+1
f (+)

ν q̃(+)∗
ν −π

∞∑
ν=1

∣∣∣∣∣
∞∑

n=1

gnA
(0)
0ν0n

∣∣∣∣∣

2
ν(ν+1)

2ν+1
f (+)∗

ν q̃(+)
ν

}
, (21)

P (−)=
−πG2

2b4

√
µ

ε
r′2Im

{ ∞∑
ν=1

∣∣∣∣∣
∞∑

n=1

gnB
(0)
0ν0n

∣∣∣∣∣

2
ν (ν + 1)

2ν + 1
f (−)

ν q̃(−)∗
ν

−
∞∑

ν=1

∣∣∣∣∣
∞∑

n=1

gnA
(0)
0ν0n

∣∣∣∣∣

2
ν (ν + 1)

2ν + 1
f (−)∗

ν q̃(−)
ν

}
(22)

where f
(±)
ν (r′) = γ0νh

(1
2
)

ν (kr′), q̃
(±)
ν = γ0ν

kr′
d

dr′ r
′h

(1
2
)

ν (kr′).
We can write down the coefficient in explicit form

A
(0)
010n =

γ0n

γ01

{
(2n− 1) (n + 1)

(
n 1 n− 1
0 0 0

)2

jn−1 (kb)

+ (2n + 3)n

(
n 1 n + 1
0 0 0

)2

jn+1 (kb)

}
. (23)

There 3jm-Wigner symbols are easily calculated [17]
(

n 1 n + 1
0 0 0

)
=

(−1)n+1

√
2 (n+1)+1

Cn+1,0
n010 =

(−1)n+1 (n + 1)√
(2n+3) (2n+1) (n+1)

, (24)

(
n 1 n− 1
0 0 0

)
=

(−1)n−1

√
2 (n− 1) + 1

Cn−1,0
n010 =

(−1)n n√
(2n + 1) (2n− 1)n

(25)

therefore

A
(0)
010n =

3
2

γ0n

γ01

n (n + 1)
kb

jn (kb) ,

∞∑

n=1

gi
nA

(0)
010n =

√
3
2

∞∑

n=1

n (n + 1) (2n + 1) j2
n (kb),

(26)

where Cn±1,0
n010 are Clebsch-Gordan coefficients. We use the well-known

second order Neumann’s series expansion [18] to calculate this row.
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Then ∞∑

n=1

n (n + 1) (2n + 1) j2
n (kb) =

2
3

(kb)2 . (27)

Therefore, the first two summands in the curly brackets in (21)
are

8π

3
f

(+)∗
1 q̃

(+)
1

[
−2

3
(kb)4 +

√
2
3

(kb)2
∞∑

n=1

g(0)
n A

(0)
010n

]
= 0. (28)

Finally, we find from (21), (22) the expression

P (+)=−P (−) =
1
8

√
µ

ε

G2

k2b4

∞∑

ν=1




∣∣∣∣∣
∞∑

n=1

gnA
(0)
0ν0n

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑

n=1

gnB
(0)
0ν0n

∣∣∣∣∣
2

, (29)

i.e., the current of electromagnetic energy P (+) propagating from the
dipole location point is compensated by equal current P (−) absorbing
at the same point.

Thus, the stationary field has one singular point in a bounded
domain filled with a homogeneous medium. This point simulates both
the point source of direct outgoing waves and the point absorber of
the inverse incoming waves equal to it by power. We can consider
this unique singular point of the field as a point convertor of incoming
spherical waves into outgoing spherical waves. Here the radial dipole
was considered but the same results take place for the cross-dipole and,
consequently, for an arbitrarily oriented electrical point dipole.

3. 3D GREEN FUNCTION FOR MAXWELL’S FISH EYE
MEDIUM

It is required to find in R3 the solution of the Helmholtz equation
[
∇2 +

4n2
0k

2ρ4

(r2 + ρ2)2

]
Gν

(
r, r′

)
= δ

(
r− r′

)
, (30)

satisfying of certain additional conditions, that will be stated later.
First, as in [3] we find the solution for the case when the source

is located in the symmetry center of the medium (r′ = 0). Then
Equation (30) with zero right-hand side transforms to the equation

[
∂2

∂r2
+

2
r

∂

∂r
+

4ν (ν + 1) ρ2

(r2 + ρ2)2

]
Gν (r, 0) = 0, (31)
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where 2ν + 1 =
√

1 + 4k2n2
0ρ

2. The substitution

Gν (r, 0) =
√

ρ

r
F (ξ) , ξ =

r2 − ρ2

r2 + ρ2
, (−1 ≤ ξ ≤ 1) (32)

leads (31) to the Legendre differential equation
[(

1− ξ2
) d2

dξ2
− 2ξ

d

dξ
+ ν (ν + 1)− 1/4

1− ξ2

]
F (ξ) = 0. (33)

The general solution of this equation is suitable written as a
linear combination of associated the third kind Legendre functions
R
±1/2
ν (ξ) [3]. Then the general solution of Equation (31) is following

Gν (r, 0) = A

√
ρ

r
R−1/2

ν (ξ) + B

√
ρ

r
R1/2

ν (ξ) , (34)

where

R±1/2
ν (ξ)=Q±1/2

ν (ξ) + i
π

2
P±1/2

ν (ξ)

=
√

π

2

{
i

−(ν+1/2)−1

}(
1−ξ2

)−1/4exp{±i (ν+1/2)arccos ξ} , (35)

(0 ≤ arccos ξ ≤ π, −1 ≤ ξ ≤ 1), P
±1/2
ν (ξ), Q

±1/2
ν (ξ) are associated

Legendre functions of first and second kind at the range (−1 ≤ ξ ≤ 1).
We can perform the following inversion transformation [2, 3] for

obtaining the Green function with arbitrary position of the point source

r 7→ ρ2+a2

|r−a|2 (r−a)+a, Gν(r,0) 7→ C

|r−a|Gν

(∣∣∣∣
ρ2+a2

|r−a|2 (r−a)+a
∣∣∣∣, 0

)
, (36)

with the inversion center of the sphere at the point a = −r′ρ2/r′2

and radius
√

ρ2 + a2. Equation (30) is invariant relatively to such
transformation for arbitrary ρ and a. Considering that

r 7→ ρ2 |r−r′|
r′

∣∣r+r′ρ2
/
r′2

∣∣ , ξ=
r2−ρ2

r2+ρ2
7→χ=−1+

2ρ2 (r−r′)2

(r2+ρ2) (r′2+ρ2)
, (37)

2 arccosx = arccos(2x2 − 1), (0 ≤ x ≤ 1) [19], we obtain the general
solution of the Equation (30) (C = 1)

Gν (r,0) 7→Gν

(
r, r′

)
, (38)

Gν

(
r, r′

)
= Fρ

(
r, r′

) (
− (ν+1/2)−1 Ã exp {−i (2ν + 1) arccosx}

+iB̃ exp {i (2ν + 1) arccosx}
)

(39)
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where
Ã=A

√
π/2ρ, B̃=B

√
π/2ρ,

x=ρ
∣∣r−r′

∣∣/
√

(r2+ρ2) (r′2+ρ2), (0≤x≤1) ,

Fρ

(
r, r′

)
=

√
(r2 + ρ2) (r′2 + ρ2)

|r− r′| ∣∣r + r′ρ2
/
r′2

∣∣ .

(40)

It follows that the required function with arbitrary Ã, B̃ that has
two singular points r′ and r′′ = −ρ2r′/r′2. The unknown coefficients
Ã, B̃ allow to apply the mentioned above additional conditions on the
function Gν(r, r′) that determine its behavior near these points. Let us
obtain the dominant terms of the expansion (39) at the neighborhoods
of this singular points:

Gν

(
r, r′

)
=

[
G′

+

(
r, r′

)
+ G′

−
(
r, r′

)] (
1 + O

(∣∣r− r′
∣∣)) (41)

at the neighborhood of point r′, considering arccosx = π/2− x + . . .,
where

G′
±

(
r, r′

)
= A′±

e±iκ′|r−r′|

|r− r′| , A′+ =
−r′Ã

ν + 1/2
e−iπ(ν+1/2),

A′− = ir′B̃eiπ(ν+1/2), κ′ =
(2ν + 1) ρ

(ρ2 + r′2)
.

and
Gν

(
r, r′

)
=

[
G′′

+

(
r, r′

)
+ G′′

−
(
r, r′

)] (
1 + O

(∣∣r− r′′
∣∣)) (42)

at the neighborhood of point r′′, considering

arccosx=arcsin
√

1− x2 =
∣∣r− r′′

∣∣/ρ
(
ρ2/r′2 + 1

)
+O

(∣∣r−r′′
∣∣2

)
,

x=1− 1
2

∣∣r− r′′
∣∣2 ρ−2

(
ρ2

/
r′2 + 1

)−2 + O
(∣∣r− r′′

∣∣3
)

,

where G′′±(r, r′)=A′′±
e±iκ′′|r−r′′|
|r−r′′| , A′′+=iρB̃, A′′−= −ρÃ

ν+1/2 , κ′′=(2ν+1)r′2
ρ(ρ2+r′2)

.
As we can see from these relations, the field at the neighborhood

of each singular points r′(r′′) is the sum of the outgoing G′
+(G′′

+) and
incoming G′−(G′′−) spherical waves. The energy currents of these waves
across the sphere S′(S′′) with small radius centered at a point r′(r′′)
are

Q′
± = Im

∫

S′

G′∗
±

(
r, r′

) ∂

∂r
G′
±

(
r, r′

)
dσ (43)

and similarly for Q′′±. They equals to

Q′
+=−Q′′

−=
8πρr′2

∣∣∣Ã
∣∣∣
2

(ν+1/2) (ρ2+r′2)
, Q′′

+=−Q′
−=

8π(ν+1/2)ρr′2
∣∣∣B̃

∣∣∣
2

(ρ2+r′2)
. (44)
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Thus, outgoing spherical wave G′
+ from the source is transformed

by MFE medium into the spherical wave G′′− that incomes to the point
r′′. Outgoing spherical wave G′′

+ from this point is transformed into
the spherical wave G′− that incomes to the point r′. Equalities (44)
Q′

+ + Q′′− = Q′′
+ + Q′− = 0 mean that there is no energy transport to

infinity. Therefore, the presence of drain extracting the energy from
the system is necessary for providing stability of the field. Drains can
be located only at the singular points r′ and r′′ of the field. In general,
it is located in each of these points. Formula |Q′−| = Q′′

+ ≤ |Q′′−| = Q′
+

takes place and, correspondingly, for the coefficients in (39) the relation
|B̃| ≤ |Ã|/(ν + 1/2) is satisfied. We express δ with equality

iB̃ = δÃ/ (ν + 1/2) . (45)

Then in general case 0 < |δ| < 1, and r′, and r′′ are the drain. Only
when δ = 0 and |δ| = 1 one drain exists. Let us consider these
special cases. The value of the parameter δ of the considered the
Green function further will be specified by the notation G

(δ)
ν (r, r′).

The following requirements on the function Gν(r, r′) are specified
in [3]:

Gν

(
r, r′

) → − 1
4π |r− r′| , when r → r′; (46a)

the regularity in its point r′′ (46b)

Furthermore, in [3] the Green function decrease is required when
r → ∞, but this requirement is automatically implemented in
expression (11). From the expressions (41) and (42) we obtain the
value of unknowns

Ã

ν + 1/2
= iB̃ =

−1
8iπr′ cosπν

, (47)

using the condition (46), hence, δ = 1. As a result the conditions (46)
lead to the Green function

G(1)
ν

(
r, r′

)
=

−1
4πr′ cosπν

Fρ

(
r, r′

)
sin [(2ν + 1) arccosx] , (48)

of papers [2, 3]. As we can see from (41), at the neighborhood r′
the field described by this Green function is the sum of outgoing
and incoming spherical waves with the same module amplitude values.
Thus, r′ are both the point source and the energy point drain. The
field at the neighborhood r′′ is finite; i.e., there is no perfect focusing.

In another alternate, the Green function can be specified by the
condition (46a) and by the requirement of absence of incoming waves
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at the neighborhood of the point source r′. Then

B̃=0,
Ã

ν + 1/2
=

eiπ(ν+1/2)

4πr′
, δ = 0, (49)

G(0)
ν

(
r, r′

)
=
−eiπ(ν+1/2)

4πr′
Fρ

(
r, r′

)
exp [−i (2ν + 1) arccosx] . (50)

At the neighborhood of r′

G(0)
ν

(
r, r′

)
= − eiκ′|r−r′|

4π |r− r′|
(
1 + O

(∣∣r− r′
∣∣)) , (51)

at the neighborhood of r′′

G(0)
ν

(
r, r′

)
= −ρeiπ(ν+1/2)e−iκ′′|r−r′′|

4πr′ |r− r′′|
(
1 + O

(∣∣r− r′′
∣∣)) , (52)

i.e., r′′ denotes energy point drain. Thus, the point source and drain
are separated in this case.

Interestingly, the limiting process of the case of homogeneous
medium (ρ →∞) is performed only for Green function G

(0)
ν (r, r′).

This Green function and its two-dimensional analogue are used in the
Leonhardt’s concept for justifying the possibility of developing devices
with a super-resolution.

Another Green function that has advantages over these two
mentioned can be considered. In contrast to the function G

(1)
ν (r, r′)

the perfect focusing r′′ takes place, herewith, in contrast to the
function G

(0)
ν (r, r′) there is no drain at this point. For obtaining such

Green function, we require that condition (46a) is satisfied, and the
amplitudes of the forward and backward waves at the neighborhood r′′
of (42) are identical. Then from (41), (42) and (39) we find formulas

−Ã

ν + 1/2
=iB̃ =

1
8πr′ sinπν

, δ = −1, (53)

G(−1)
ν

(
r, r′

)
=

1
4πr′ sinπν

Fρ

(
r, r′

)
cos [(2ν + 1) arccosx] . (54)

Here, r′ is both the point source and energy drain as in the case of the
function G

(1)
ν (r, r′),

G(−1)
ν

(
r, r′

)
=−e−iπ(ν+1/2)

8π sin πν

{
eiκ′|r−r′|
|r−r′| +eiπ(2ν+1) e−iκ′|r−r′|

|r−r′|

}
(
1+O

(∣∣r−r′
∣∣)). (55)

The field at the neighborhood of r′′ is infinity, i.e., there is perfect
focusing

G(−1)
ν

(
r,r′

)
=− ρ

8πr′sinπν

{
e−iκ′′|r−r′′|

|r−r′′| +
eiκ′′|r−r′′|

|r−r′′|

}
(
1+O

(∣∣r−r′′
∣∣)) . (56)
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In this case, all energy incoming with straight spherical wave from the
source to the point r′′ returns back with the inverse spherical wave.
This alternate indicates that the perfect focusing in the MFE media
is possible when the condition (55) is satisfied, i.e., there is a phase
matching between the source of straight and the drain of inverse waves.
A similar result is obtained for all δ = eiα, 0 < α < 2π.

There are drains at all three alternates — the Green function does
not exist without drain. The reason for this is that though the problem
is formulated for R3, it is the internal boundary-value problem. The
spectral problem is analytically solved by the parameter ν and it is
shown that the spectrum is purely discrete in paper [2]. The range
r À ρ, where n (r) ∼ 0 plays role of boundary in the MFE medium.
The reflection coefficient from it equals to unity. It can be seen via the
representations of the field at the neighborhood of points r′ and r′′, that
the total energy current through covering profile of two spheres equals
to zero (see (44)). (A similar result takes place for the one-dimensional
Helmholtz equation at the case of an inhomogeneous medium, called
Epstein’s transition layer [20]). Thus, all generated energy returns back
to the region of finite r, and therefore, the stationary state is possible
only if the drain presents there. In the general case (0 < |δ| < 1) both
the point source and the point of its image can be the drain. It depends
on the problem statement.

The Green function of a homogeneous medium is uniquely
determined by (46a) at the point source and by the condition at infinity,
excluding waves incoming from infinity. The Green function of MFE
medium is uniquely determined by the same condition (46a) at the
point source, but instead of the condition at infinity the condition
iB̃ = δÃ/(ν + 1/2) is necessary. That is, in contrast to a homogeneous
medium, the whole collection of the Green functions G

(δ)
ν (r, r′) with

arbitrary parameter δ(0 ≤ |δ| ≤ 1) determining the distribution of
energy between two drains are physically meaningful at the MFE
medium.

4. 3D GREEN FUNCTION FOR MAXWELL’S LENS

Let us discuss the Dirichlet problem in the Maxwell’s fish eye
medium (1) at the region bounded by the sphere Sρ of radius ρ centered
by the coordinate origin. The aim is to find the Green function for the
boundary value problem with one of the alternates of the additional
conditions considered above. In this section we discuss the alternate
when δ = −1. In addition to the Green function G

(−1)
ν (r, r′) of infinite

medium (54), it is necessary to find a function G̃
(−1)
ν (r, r′) describing
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the influence of the boundary for solving this problem.
We can apply transformation (36) when a = 0, C = ρ to the

function (54). Then
G(−1)

ν

(
r, r′

) 7→ G̃(−1)
ν

(
r, r′

)
, (57)

G̃(−1)
ν

(
r, r′

)
=

1
4πr′ sinπν

F̃ρ

(
r, r′

)
cos {(2ν + 1) arccos (x̃)} , (58)

where

F̃ρ

(
r, r′

)
=

√
(r2 + ρ2) (r′2 + ρ2)

|rρ2/r2−r′| |r+r′r2/r′2| , x̃=
r
∣∣∣rρ2

r2 − r′
∣∣∣

√
(ρ2 + r2) (ρ2 + r′2)

. (59)

The function
Ḡ(−1)

ν

(
r, r′

)
= G(−1)

ν

(
r, r′

)− G̃(−1)
ν

(
r, r′

)
, (60)

where G
(−1)
ν (r, r′) determined by Equation (54) satisfies to Equa-

tion (30) and boundary condition Ḡ
(−1)
ν (r, r′) = 0 on the sphere Sρ.

Let us consider Ḡ
(−1)
ν (r, r′) at the neighborhood of singular points lo-

cating inside of Sρ: r = r′ and r = −r′.
The behavior of Ḡ

(−1)
ν (r, r′) at the neighborhood of the point

r = r′ is defined by the first term in (60) and therefore coincides with
the expression (55).

The behavior of Ḡ
(−1)
ν (r, r′) in the neighborhood of the point

r = −r′ is defined by the second term in (60).
From the expressions

x̃ =

[
1− ρ2 (r + r′)2

2r′2 (ρ2 + r′2)

]
(
1 + O

(∣∣r + r′
∣∣)) ,

arccos x̃ =
ρ |r + r′|

r′
√

ρ2 + r′2
(
1 + O

(∣∣r + r′
∣∣)) ,

we obtain

Ḡ(−1)
ν

(
r,r′

)
=

1
4πsinπν

1
|r+r′| cos

{
(2ν+1) ρ

r′
√

ρ2+r′2
∣∣r+r′

∣∣
}
(
1+O

(∣∣r+r′
∣∣)). (61)

Finally, at the neighborhood of the point r = −r′ the dominant
term of the total field expansion is the sum of incoming and outgoing
spherical waves of same amplitude.

Consequently, not only infinite Maxwell’s fish eye medium (1),
but the MFE lens (i.e., modified alternate of Leonhard) both provides
the perfect focusing. It is achieved only when drain for the incoming
spherical waves is placed in the point source location, and phase
matching (55) between the drain and the source of outgoing waves
is performed.
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5. CONCLUSIONS

Following conclusions can be made on the analysis above. Merlin’s
denying the presence of drain at stationary fields at limited regions is
erroneous. As noted in Introduction, this fact follows from the solution
obtained by him if we present it as a sum of incoming and outgoing
waves. It is shown in Section 2 in more detail. The statement by
Leonhardt about possibility of perfect focusing in the Maxwell’s fish
eye medium is true, but the proof of it is wrong. His Green function
does not prove this, because the possibility of the perfect focusing
is assumed by the property of MFE medium without any auxiliary
features, in this case without drain of the image. In [6] the authors
state, ‘Maxwell’s fish eye thus makes a perfect lens with point-like
resolution for electromagnetic waves, but only when such waves are
detected by perfect point detectors’. That is, the perfect imaging is
possible only when drain (i.e., ideal observer) is present. In other
words, the Green function obtained by Leonhardt describes both the
source and the field, and the observer.

In standard definition, Green function of the Helmholtz equation
characterizes the stationary field with spaced dots of source and drain
of energy. If we use this definition for the MFE medium, we receive
the case when δ = 0, considered by Leonhardt. The alternates δ = 1
of papers [2, 3] and δ = −1 of Section 3 of this work are out of range of
the classical definition of the Green function. In order to include them
into consideration, it is required to generalize the concept of Green
function to the case of singular points, that combines the properties of
both the source and the drain. Ordinary emission condition (there
are no incoming waves from infinity) have to be replaced by the
condition (45), which determines the portion of energy |δ| incoming
from the point of image to the point source. Both the singular points
of the Green function have the following physical interpretation. In
general case 0 < |δ| ≤ 1, this singular points are the point convertors
of the incoming spherical waves into the outgoing spherical waves
with a certain phase shift. By such definition, we should take into
consideration not a single Green function G

(0)
ν (~r, ~r′) of Helmholtz

equation for a Maxwell’s fish eye medium but a whole set of Green
functions G

(δ)
ν (~r, ~r′), instead. The Green function describing perfect

focusing exists only within this extended definition, i.e., G
(−1)
ν (~r, ~r′)

for the MFE medium and Ḡ
(−1)
ν (~r, ~r′) for MFE lens, respectively.
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