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Abstract—An efficient trans-impedance Green’s function that
describes the electromagnetic behavior of a ring circulator is presented.
A rigorous derivation composed of an infinite summation of modified
Bessel functions of the first and second kinds is included. As with more
traditional circulator descriptions, the formulation herein contains a
weak singularity when the measurement point is located near the
impressed source point on the same radius. To accelerate convergence
of the series, this singularity is extracted from the formulation and
integrated analytically. To complete the formulation, two circulators
are presented; the first with ports that emanate at equal angles from
the outer radius, and the second with two ports associated with
the outer radius and one port that connects to the inner radius.
The computation time associated with the proposed analysis lasted
approximately 0.25 s, whereas an identical structure simulated via a
common full-wave solver lasted approximately 10 hours. Comparison
of impedance data between the proposed analysis and full-wave
simulation is presented.

1. INTRODUCTION

Microwave ferrite circulators are enabling technologies in monostatic
RADAR and critical communication systems. They were experimen-
tally demonstrated by Shaug-Pettersen in 1957 [1] and have been the
subject of active investigation both experimentally and theoretically
ever since. The first accurate, theoretical, electromagnetic description
of these devices was presented by Bosma in 1964 [2] with further anal-
yses by many such as Fay and Comstock [3], Wu and Rosenbaum [4],
and Young and Johnson [5].
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Modifications to the structure of the traditional circulator have led
to devices such as waveguide circulators [6], slotline circulators [7], and
ferrite coupled line (FCL) circulators [8]. One other topology suggested
by Borjak and Davis is the ferrite ring circulator [9]. This device
was initially described conceptually, and an approximate preliminary
analysis was presented. Although this geometry was discussed in the
context of a Green’s function by Krowne and Neidert [10], their analysis
did not allow inner ports.

The ring circulator holds appeal since it allows additional space in
the center of the device where antennas, amplifiers, etc. may be placed.
Also, such devices provide isolation of the inner port signals from any
substrate modes that are present on the outside of the circulator due to
the attenuation of the ferrite ring itself. These advantages have led to
the desire for a computationally efficient electromagnetic description
for the ferrite ring circulator that may be used to design optimal devices
for specific applications. Such an explanation will provide insight into
optimal choices for inner and outer radius, material properties, etc..

In the ensuing sections, the basic Green’s function will be
derived, followed by a modification that improves convergence through
extraction of an asymptotic singularity that is present in the basic
description. The paper concludes with presentation of two distinct
circulator designs: one with ports entirely connected to the outer
radius; the other circulator was designed with a single port connected
to the inner radius and the remaining two ports connected to the
outer radius. These two designs are presented to demonstrate the
functionality of an inner port; two and three inner ports are equally
supported. Comparison of Green’s function and simulation data from
a full-wave solver are included for both designs.

2. FORMULATION

Electric and magnetic fields within a fully saturated ferrite material
satisfy Maxwell’s equations. Since no permanent electric dipole
moment exists in most ferrite materials, the relationship between E
and D is defined by the traditional electric field constitutive relation,
or D = εE; however, the presence of permanent magnetic dipole
moments cause the relationship between B and H to depend on the
direction of propagation. To account for this directional dependence,
the relationship between B and H is expressed in the form of a tensor
first proposed by Polder [11]. When the magnetic bias is z-directed,
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Maxwell’s equations are expressed as

∇×E = −
[

µ jκ 0
−jκ µ 0
0 0 µ◦

]
∂H
∂t

(1)

∇×H = ε◦εr
∂E
∂t

(2)

Here µ and κ depend on material properties as well as the frequency
of operation.

It is not the purpose of this effort to develop a perfect description
that accounts for every aspect of the electromagnetic problem
associated with a ring circulator. Rather, it is our intent to present an
approximate equation that is sufficiently accurate to give meaningful
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Figure 1. Geometrical and material structure of candidate ring
circulators. Note that z = 0 is located coincident with the ground
plane.
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results, but with computational efficiency to be useful as the kernel of
an appropriate design algorithm. With this philosophy in mind, the
geometry of Figure 1 is assumed to be bounded by Perfect Electric
Conductors (PEC) on the top and bottom faces (i.e., z = 0, h) and
with Perfect Magnetic Conductor (PMC) boundaries on the inner
and outer ring surfaces. These and other geometrical definitions are
described in Figure 2. These boundary conditions lead naturally to
TMz solutions where Er = Eφ = Hz = 0. To simplify the analysis
further, it is assumed that the device is very thin (i.e., h: small), so all
derivatives with respect to z are negligible. With these assumptions,
Equations (1)–(2) simplify to three scalar equations

Hr =
1

ωµe

[
j

r

∂Ez

∂φ
− κ

µ

∂Ez

∂r

]
(3)

Hφ = − 1
ωµe

[
κ

µr

∂Ez

∂φ
+ j

∂Ez

∂r

]
(4)

and
1
r

∂

∂r

(
r
∂Ez

∂r

)
+

1
r2

∂Ez

∂φ2
+ k2Ez = 0 (5)

where µe = (µ2 − κ2)/µ is the effective permeability and k2 = ω2µeε
the wavenumber associated with the electromagnetic wave.

The solution for Equation (5) consists of two linearly independent
solutions in φ and two linearly independent solutions in r. However,
since the device has rotational symmetry, the final solution must repeat
every 2π so only one φ directed solution is necessary. So, the general
solution for Ez may be expressed as

Ez =
∞∑

n=−∞
[AnIn(γr) + BnKn(γr)] ejnφ (6)

where γ = jk, and In, Kn are the modified Bessel functions of the
first and second kinds, respectively; An and Bn are coefficients to be
determined. Equation (6) may be used with Equation (4) to yield the
following general equation for Hφ

Hφ = − jγ

ωµe

∞∑
n=−∞

[
AnI ′n(γr) + BnK ′

n(γr)
]
ejnφ

− jκ

ωµeµr

∞∑
n=−∞

n [AnIn(γr) + BnKn(γr)] ejnφ (7)

To develop the Green’s function, an azimuthally directed magnetic
field is impressed at a source point on one of the PMC surfaces. Let the
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source radius be r = as and source angle be φ = φs, so the azimuthal
component of H is given by

Hφ = H◦δ(φ− φs) (8)

This equation represents a periodic function in φ with fundamental
period T◦ = 2π. Any such function can be expanded in a Fourier series
according to

Hφ =
H◦
2π

∞∑
n=−∞

ejn(φ−φs) (9)

Uniqueness assures that Equations (7) and (9) are identical
descriptions for Hφ. A term-by-term equality of these two equations
gives rise to the following

H◦
2π

e−jnφs = − jγ

ωµe

[
AnI ′n(γas) + BnK ′

n(γas)
]

− jκn

ωµeµas
[AnIn(γas) + BnKn(γas)] (10)

Here, the PMC boundary condition is enforced everywhere on the
source surface except at the source point. However, since more than
one PMC surface exists in the proposed structure, an additional
boundary condition must be applied. To enforce the PMC boundary on
the non-source surface, let r = a◦ be the radius of the surface with no
source present. On this surface, Hφ must be forced to zero everywhere.
This requirement is satisfied if

Bn = −An

[
γI ′n(γa◦) + nκ

µa◦ In(γa◦)

γK ′
n(γa◦) + nκ

µa◦Kn(γa◦)

]
(11)

Equations (10) and (11) represent two linearly independent
equations that may be used to solve for the coefficients An and Bn

of Equation (6). To simplify the formulation, the constant H◦ and the
phase terms are removed from the coefficients (i.e., An = An◦H◦e−jnφs

and Bn = Bn◦H◦e−jnφs) and the first modified coefficient term is given
by

An◦ =
Λn(a◦)

(
j ωµe

2π

)

Λn(a◦)Ψn(as)− Λn(as)Ψn(a◦)
(12)

where the intermediate functions Λn(x) and Ψn(x) are given by

Λn(x) =
nκf

µfx
Kn(γfx) + γfK ′

n(γfx) (13)

Ψn(x) =
nκf

µfx
In(γfx) + γfI ′n(γfx) (14)
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Similarly, the second modified coefficient term is given by

Bn◦ = − Ψn(a◦)
(
j ωµe

2π

)

Λn(a◦)Ψn(as)− Λn(as)Ψn(a◦)
(15)

Thus, the z-directed electric field at the arbitrary location r, φ is
deduced from

Ez =
∞∑

n=−∞
[An◦In(γr) + Bn◦Kn(γr)]H◦ejn(φ−φs) (16)

where the coefficients An◦ and Bn◦ are given in Equations (12) and
(15).

To determine the electric field at an arbitrary point due to a source
across a port of finite length, Equation (16) must be integrated across
the source port. This resulting equation becomes a trans-impedance
Green’s function when the magnitude of the impressed magnetic field is
divided out of the resulting integral equation. If the excitation port is
port j, the measurement port is port i, and the width of the excitation
port is defined by ψj , then the impedance parameters associated with
this three port structure are expressed as

Zij =
Ez

H◦
=

∫ φj+ψj

φj−ψj

G
(
ri, φi; r′, φ′

)
dφ′ (17)

Here G(ri, φi; r′, φ′) is the trans-impedance Green’s function and is
given by

G
(
ri, φi; r′, φ′

)
= G◦ + G1 + G2 (18)

where

G◦ = A0◦I0(γfai) + B0◦K0(γfai) (19)

G1 =
∞∑

n=1

[An◦In(γfai) + Bn◦Kn(γfai)] ejn(φi−φ′) (20)

G2 =
−∞∑

n=−1

[An◦In(γfai) + Bn◦Kn(γfai)] ejn(φi−φ′) (21)

According to the standard definition of impedance parameters, the
current at each port is defined to be entering the network. Thus,
Equation (17) computes the impedance parameters associated with an
exterior excitation port; interior excitation ports require a negative
sign multiplying Equation (17) to reverse the direction of port current.
Equivalently, the direction of integration of Equation (17) should be
reversed when inner ports are treated as the source.
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3. SINGULARITY EXTRACTION

It has been observed that the Green’s function above contains a
weak singularity when the measurement angle approaches the source
angle on the source radius; no singularity is observed when measuring
fields on the non-source radius. This singularity does not prevent
arrival at the desired solution; however, the singularity requires
that an unreasonably large number of terms in the infinite sums of
Equations (20) and (21) be used to arrive at an accurate solution. To
accelerate convergence of this function, the singularity is isolated in
closed form and computed separately [12].

Since the singularity only exists on the radius where the source is
impressed, as, this radius will be used in the singularity extraction
process. To isolate the singularity, Equations (13) and (14) are
rewritten as

Λn(x) =
n

x

(
κf

µf
+ 1

)
Kn(γfx)− γfKn+1(γfx) (22)

Ψn(x) =
n

x

(
κf

µf
+ 1

)
In(γfx) + γfIn+1(γfx) (23)

where the identities
dIn(x)

dx
=

n

x
In(x) + In+1(x) (24)

dKn(x)
dx

=
n

x
Kn(x)−Kn+1(x) (25)

were used [13]. Equations (22) and (23) are combined with (12) and
(15) to form the relation An◦In(γfas) + Bn◦Kn(γfas). The numerator
of this equation is

Num =
jωµen

2πa◦

[
κf

µf
+ 1

]
[Kn(γfa◦)In(γfas)− In(γfa◦)Kn(γfas)]

−jωµeγ

2π
[Kn+1(γfa◦)In(γfas)− In+1(γfa◦)Kn(γfas)] (26)

and the denominator is

Den =
n2

a◦as

(
κf

µf
+ 1

)2

[Kn(γfa◦)In(γfas)−Kn(γfas)In(γfas)]

+
nγf

a◦

(
κ

µ
+1

)
[Kn(γfa◦)In+1(γfas) + Kn+1(γfas)In(γfa◦)]

−nγf

as

(
κf

µf
+1

)
[Kn+1(γfa◦)In(γfas)+Kn(γfas)In+1(γfa◦)]

+γ2 [Kn+1(γfas)In+1(γfa◦)−Kn+1(γfa◦)In+1(γfas)] (27)
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In the limit as n → +∞, the numerator and denominator simplify to

lim
n→+∞ {Num} =

(
jωµe

2π

)(
n

a◦

)[
κf

µf
+ 1

]
[Kn(γfa◦)In(γfas)

−In(γfa◦)Kn(γfas)] (28)

and

lim
n→+∞ {Den} =

n2

a◦as

(
κf

µf
+ 1

)2

[Kn(γfa◦)In(γfas)

−Kn(γfas)In(γfas)] (29)

respectively. The ratio of numerator and denominator leads to the
limiting case

lim
n→+∞{An◦In(γfas) + Bn◦Kn(γfas)} =

as

n
(
1 + κf

µf

) jωµe

2π
(30)

In a similar fashion,

lim
n→−∞{An◦In(γfas) + Bn◦Kn(γfas)} =

as

n
(
1− κf

µf

) jωµe

2π
(31)

To remove the asymptotic singularity from the Green’s function of
Equation (18) the following form is employed

G
(
ri, φi; r′, φ′

)
= G◦ + G1a + G2a + Ga (32)

where G◦ is given by Equation (19); G1a, G2a are modified from
Equations (20) and (21) by subtraction of the asymptotic terms of
Equations (30) and (31); Ga represents the addition of the asymptotic
terms. These three terms are given by

G1a=
∞∑

n=1


An◦In(γfai)+Bn◦Kn(γfai)− asjωµe

2πn
(
1+ κf

µf

)

ejn(φi−φ′) (33)

G2a=
−∞∑

n=−1


An◦In(γfai)+Bn◦Kn(γfai)− asjωµe

2πn
(
1− κf

µf

)

ejn(φi−φ′) (34)

Ga=
jωµeas

2π



−∞∑

n=−1

ejn(φi−φ′)

n
(
1− κf

µf

) +
∞∑

n=1

ejn(φi−φ′)

n
(
1 + κf

µf

)

 (35)

To accelerate convergence of the overall Green’s function of
Equation (32), the infinite summations of Equation (35) are replaced
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with their equivalent analytical expressions [13]. These expressions
are proportional to the natural logarithm of complex argument [13]
according to

Ga = −jωµeas

2π


 ln

(
1− e−j(φi−φ′)

)
(
1− κf

µf

) +
ln

(
1− ej(φi−φ′)

)
(
1 + κf

µf

)

 (36)

Thus, the modified Green’s function of Equation (32), with G1a, G2a

and Ga described by Equations (33), (34) and (36) respectively, is used
to describe the behavior of the ferrite ring circulator of Figure 2.

This modified Green’s function converges much more rapidly than
the basic Green’s function of Equation (18), particularly for small
values of φi − φ′. To illustrate this acceleration of convergence,
consider a circulator with outer radius rout = 2 mm, rin = 0.6mm,
4πMs = 1000Gauss, ∆H = 120Oe, εr = 11.6, H◦ = 0 Oe, and
operating frequency f = 11 GHz. The Green’s function evaluated a
distance φi − φ′ = 1.0 rad away from the source is shown in Figure 3
for the Green’s function forms outlined in Equations (18) and (32).
Similarly, Figure 4 shows comparison of the two forms of the Green’s
function for a distance of φi−φ′ = 0.25 rad. These figures demonstrate
that as radial distance narrows, the number of terms required to
assure convergence grows for the Green’s function of Equation (18),
but Equation (32) does not.

4. NUMERICAL RESULTS

To validate the Green’s function presented above, two circulators were
designed and simulated, one with three ports at equal intervals around
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Figure 5. The simulated geom-
etry of design 1 with three ports
emanating from the outer radius
an equal distance apart (θ2 =
θ3 = 2π/3).
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Figure 6. A comparison of load
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calculated with Green’s function
of Equation (32) and simulated by
HFSS.

the outer surface of the ferrite ring, and the other with two ports
about the outer edge and a single port on the inner radius. Good
correlation is observed with both designs. These two designs were
chosen to demonstrate validity under multiple configurations.

To evaluate the quality of a given design, it is often easier
to express the circulator response in terms of the load impedance
for perfect circulation [14]. A circulator described in this manner
may be easily evaluated in terms of its matchability for a given
criteria. Although the Bode-Fano criterion may be exceeded with
these impedances, it still may be applied to provide a good rule of
thumb regarding matchability of a given three port circulator. When
rotational symmetry is not present, the impedance is unique for each
port, and thus three distinct impedances may be necessary to fully
characterize a device.

The first circulator design consists of a ferrite ring with three
identical ports a uniform 2π/3 apart, as shown in Figure 5. Using the
Green’s function described above, the following geometrical parameters
were determined: inner radius ain = 0.6 mm, outer radius aout =
2.0mm, coupling angle ψ = 12◦, and dielectric thickness d = 0.5mm.
The circulator used ferrite material with 4πMs = 1000 Gauss, ∆H =
120Oe, εr = 11.6, internal field H◦ = 0, and surrounding dielectric
material with relative permittivity εd = 20. Comparison of the Green’s
function of Equation (32) and simulated data from HFSS is presented
in Figure 6 which shows the computed load impedance for perfect
circulation as presented in [14]. Deviation of the Green’s function
from the results of HFSS primarily consists of a small magnitude shift
due to fringing of the microstrip structure.
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Figure 7. The simulated geometry of design 2 with port one
emanating from the inner radius and the remaining two ports
emanating from the outer radius; all ports are an equal radial distance
apart (θ2 = θ3 = 2π/3).
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The second circulator design was chosen to demonstrate
circulation with a single port on the inner radius of the circulator
and is shown in Figure 7. This device represents a fundamental shift in
behavior from the traditional circulator described by Bosma [2] in that
energy is routed through the center of the device, rather than along
the outer edge. All ports emanate from the ferrite region at equal
angles of 2π/3; the Green’s function described above suggested the
following geometrical parameters for good performance: inner radius
ain = 3.0mm, outer radius aout = 4.5 mm, coupling angle ψ = 10◦, and
dielectric thickness d = 0.5mm. The circulator uses ferrite material
with 4πMs = 500 Gauss, ∆H = 190 Oe, εr = 9.0, internal field
H◦ = 0, and surrounding dielectric material with relative permittivity
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εd = 25. Because of the lack of rotational symmetry, comparison of
the Green’s function of Equation (32) and simulated data from HFSS
must include the load impedances for perfect circulation from port 1
as well as from ports 2 and 3; the impedances associated with ports
2 and 3 are identical. These data are presented in Figures 8 and
9. As with design 1, deviation of the Green’s function from HFSS
consists of primarily a small magnitude shift primarily due to fringing
of the microstrip structure. It should be noted that the time required
to compute the Green’s function for both designs was approximately
0.25 s using a single processor; whereas, the time required to compute
the port response using a full-wave electromagnetic solver (HFSS) was
approximately 10 hours using approximately 6 processors in a parallel
configuration.

5. CONCLUSION

A trans-impedance Green’s function for a microstrip ring circulator is
presented. To accelerate convergence of the infinite sums associated
with the Green’s function, an asymptotic analysis is accomplished
wherein the singularity is removed and computed analytically. The
goal of computational efficiency is verified in that the time to compute
the Green’s function is approximately 0.25 s as compared with the
time to compute the full-wave solution is approximately 10 hours.
Feasibility of a circulator with one or more ports on the interior of
the device was demonstrated. This geometrical configuration provides
functionality that has not previously been considered for circulator
devices. For example, a relatively large ring circulator with all ports
on the interior of the ferrite region could be used; all active and passive
devices could be placed on the interior and the circulator could be
employed in the dual roles of a nonreciprocal device, as well as a filter
to remove substrate wave interaction with other parts of a substrate.
These and other possibilities are natural consequences of the presented
work.

ACKNOWLEDGMENT

This material is based upon work supported by the National Science
Foundation under Grant No. 1028472.

REFERENCES

1. Shaug-Pettersen, T., “Norwegian electronic research,” ONR Tech.
Rep. (BR), No. ONRL 111, 57, 1957.



Progress In Electromagnetics Research M, Vol. 26, 2012 155

2. Bosma, H., “On stripline y-circulation at UHF,” IEEE Trans.
Microwave Theory Tech., Vol. 12, No. 1, 61–72, Jan. 1964.

3. Fay, C. E. and R. L. Comstock, “Operation of the ferrite junction
circulator,” IEEE Trans. Microwave Theory Tech., Vol. 13, No. 1,
15–27, Jan. 1965.

4. Wu, Y. S. and F. J. Rosenbaum, “Wide-band operation of
microstrip circulators,” IEEE Trans. Microwave Theory Tech.,
Vol. 22, No. 10, 849–856, Oct. 1974.

5. Young, J. L. and C. M. Johnson, “A compact recursive
trans-impedance Green’s function for the inhomogeneous ferrite
microwave circulator,” IEEE Trans. Microwave Theory Tech.,
Vol. 52, No. 7, 1751–1759, Jul. 2004.

6. Auld, B. A., “The synthesis of symmetrical waveguide circu-
lators,” IRE Trans. Microwave Theory Tech., Vol. 7, 238–246,
Apr. 1959.

7. Davis, L. E. and D. B. Sillars, “Millimetric nonreciprocal coupled-
slot finline components,” IEEE Trans. Microwave Theory Tech.,
Vol. 34, No. 7, 804–808, 1986.

8. Teoh, C. S. and L. E. Davis, “Normal-mode analysis of ferrite-
coupled lines using microstrips or slotlines,” IEEE Trans.
Microwave Theory Tech., Vol. 43, 2991–2998, Jan. 1995.

9. Borjak, A. M. and L. E. Davis, “On planar y-ring circulators,”
IEEE Trans. Microwave Theory Tech., Vol. 42, No. 2, 177–181,
Feb. 1994.

10. Krowne, C. M. and R. E. Neidert, “Theory and numerical cal-
culations for radially inhomogeneous circular ferrite circulators,”
IEEE Trans. Microwave Theory Tech., Vol. 44, No. 3, 419–431,
1996.

11. Polder, D., “On the theory of ferromagnetic resonance,” Phil.
Mag., Vol. 40, 99, 1949.

12. Singh, S., W. F. Richards, J. R. Zinecker, and D. R. Wilton,
“Accelerating the convergence of series representing the free space
periodic Green’s function,” IEEE Trans. Ant. Propagat., Vol. 38,
No. 12, 1958–1962, Dec. 1990.

13. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and
Products, Academic Press, Boston, MA, 2000.

14. Young, J. L., R. S. Adams, B. O’Neil, and C. M. Johnson,
“Bandwidth optimization of an integrated microstrip circulator
and antenna assembly: Part 2,” IEEE Antennas Propagat. Mag.,
Vol. 49, No. 1, 82–91, Feb. 2007.


