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Abstract—The application of the finite-difference time-domain
method with rectangular periodic boundary conditions to the analysis
of a hexagonal photonic crystal results in a folded bandgap diagram.
The aim of this paper is to introduce a new unfolding method, which
allows unambiguously determining the position of the modes in a wave-
vector space by taking the advantage of the fast Fourier transform
of modal field distributions. Unlike alternative solutions, it does not
require any modifications of the FDTD method and is based solely on
the post-processing of the simulation results. The proposed method
can be applied to any non-rectangular lattice types, such as hexagonal,
face-centered cubic or body-centered cubic.

1. INTRODUCTION

Photonic crystals (PhCs) have been extensively studied for over two
decades and still bring a lot of attention of both scientific and industrial
communities [1]. Simultaneously, it has prompted a significant advance
of numerical methods applicable to the modeling and design of
such optical devices, consisting of the photonic crystals, as planar
waveguides [2], directional couplers [3], micro-structured fibers [4],
filters [5], lasers [6]. In principle, there are two types of electromagnetic
problems that are of interest when considering photonic crystals,
namely, eigenvalue and deterministic problems [7]. The former one
refers to the spectral properties of the PhC itself, while the latter one
concerns the scenarios with external electromagnetic sources.

In this paper, the attention is focused on the eigenvalue problems
only, usually given in the form of a photonic bandgap diagram
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(PBG) showing the dependence of allowed modal frequencies on
a wavenumber ω(k) spanned over the contour of an irreducible
Brillouin zone [1]. In most cases, the advantage of the Floquet
theorem [8] is taken, which allows reducing a computational model
to a single period of an investigated lattice. The implementation
of that approach can be found in such methods as plane wave
expansion (PWE) [9, 10], finite-element method (FEM) [11], finite-
difference frequency-domain (FDFD) method [12] or finite-difference
time-domain (FDTD) method [13]. PWE is computationally efficient
when dealing with relatively simple structures but requires special
approximate averaging techniques to account for non-rectangular
geometries [10]. FEM is one of the most common frequency-domain
techniques, which allows the modeling of arbitrarily-shaped geometries.
There is also FDFD, which solves Maxwell curl equations in a
frequency-domain by matrix inversion. Eventually, FDTD is a versatile
time-domain technique, naturally adapted to a wideband analysis of
electromagnetic scenarios. Moreover, if a simulation tool is equipped
with a conformal FDTD meshing technique [14, 15], non-rectangular
geometries can be easily taken into account on a rectangular FDTD
grid, without any increase of computational effort of the simulation.
The aforementioned features are some of the reasons that FDTD
is frequently applied to the computation of PBG diagrams of more
complicated geometries, such as PhC membranes [16] or quantum
cascade lasers [17]. It should be also emphasized that FDTD is
very competitive when the scenario is electrically large, since the
computational cost of the method increases not that large as for other
full-wave numerical methods [13].

There are a few extensions of the FDTD algorithm accounting for
the spatial periodicity, such as CL-FDTD [18] or sin/cos technique [19].
In those methods, periodic boundary conditions (PBCs), derived from
the Floquet theorem, are imposed on the lateral sides of the model
truncated to a unit rectangular cell of the lattice. However, since
FDTD is based on rectangular discretization of space, PBCs of that
kind are applicable only along the Cartesian axes and cannot be
straightforwardly applied at an oblique direction. It implies that the
modeling of non-rectangular lattice geometries, like hexagonal one,
becomes an issue for FDTD. Consequently, as it will be shown in this
paper, a rectangular unit FDTD cell representing a hexagonal lattice
generates a folded bandgap diagram, thus, leading to ambiguity of the
solution. However, this is not specific to FDTD only, but to any other
method working with rectangular mesh.

In the literature, several techniques are proposed to overcome that
limitation. The first method is based on a non-orthogonal FDTD
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mesh formulation, enabling oblique periodic boundary conditions to be
imposed [20, 21]. However, most of the available FDTD solvers do not
allow for such unusual mesh generation, mainly due to vague stability
criteria for irregular FDTD mesh [13]. Moreover, the transformation
of both Maxwell equations and a coordinate system is required. In
the second approach, an approximate rectangular unit lattice cell is
created from the hexagonal one by rearranging the geometry of the
lattice [22, 23]. However, no formal proof of concept is given for that
method, so it cannot be applied automatically without special caution.
The third method applies oblique PBCs truncating the unit lattice
cell composed of rectangular FDTD cells at oblique edges [24]. The
method is potentially unstable, so the original FDTD algorithm has to
be modified to account for that. For several users this is not achievable
as they are using commercial FDTD solvers.

This paper presents a simple, robust and efficient algorithm for
the generation of the unfolded PBG diagrams, which is applicable with
a classic FDTD algorithm supplemented with rectangular PBCs. The
investigation is concentrated on hexagonal PhCs, although the method
can be easily extended to any other non-rectangular lattice types. In
Section 2, the folding of a bandgap diagram of a hexagonal lattice,
due to a rectangular shape of a computational model, is addressed.
Subsequently, the unfolding procedure is introduced and validated in
Section 3.

2. FOLDED BANDS

Consider an example of a two-dimensional (2D) hexagonal photonic
crystal as shown in Figure 1(a). The structure is made of air-gaps
processed in a dielectric substrate (εr = 13) [1]. A dashed line indicates
the boundaries of an FDTD model of a rectangular unit cell of the
considered hexagonal lattice, the mesh of which is shown in Figure 1(b).
Such a simple example has been deliberately chosen to concentrate
on the unfolding procedure only and avoid extensive studies on the
structure itself and the performance of electromagnetic simulations.

Figure 2 shows a reciprocal hexagonal lattice (blue color in online
version) of the photonic crystal shown in Figure 1(a). Additional black
marks indicated in the Figure 2 will be explained in Section 3. Critical
points of the reciprocal lattice can be given as follows:

~kΓ = 0 (1)

~kM =
2π√
3a

îy (2)
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(a) (b)

Figure 1. (a) A 2D hexagonal photonic crystal made of air gaps
hollowed in a dielectric substrate (εr = 13) [1] and (b) an FDTD mesh
of a unit rectangular cell.

~kK =
4π

3a
îx (3)

Since the FDTD model of the hexagonal lattice is rectangular,
as shown in Figure 1(b), the corresponding reciprocal lattice is
rectangular as well and has the critical points, depicted with green
in Figure 2, which are given as follows:

~kX1 =
π

a
îx =

3
4
~kK (4)

~kX2 =
π√
3a

îy =
1
2
~kM (5)

It can be noticed from (4) and (5) that a horizontal (vertical)
length of the rectangular unit cell is 3/4 (1/2) of its hexagonal
counterpart. As it can be seen in Figure 2, every second cell of the
rectangular reciprocal lattice falls, both horizontally and vertically, in
the same position with respect to the hexagonal lattice. Consequently,
since the reciprocal rectangular lattice of the FDTD model overlaps
with the original hexagonal one, the bands are folding. For instance,
imposing the phase shift (ψx, ψy) = (2π/3, 0) along the horizontal
Γ-K contour, the propagation of K modes is also allowed at the
following harmonics: (ψx, ψy) = [2π/3+2mπ, 2(n+1)π] and (ψx, ψy) =
[2π/3 + 2(m + 1)π, 2nπ], where m and n are integer.

However, it should be emphasized that, due to the folding of
both reciprocal lattices, scanning of the rectangular one along Γ-X1

(red curve in online version) and Γ-X2 (black curve in online version)
contours, completely cover the whole Brillouin zone of the hexagonal
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Figure 2. A reciprocal lattice of a hexagonal photonic crystal (blue
color in online version) as shown in Figure 1(a) and a reciprocal lattice
of the corresponding rectangular unit FDTD cell (green color in online
version) as shown in Figure 1(b).

lattice. For instance, according to (4), the Γ-X1 contour covers only
3/4 of the Γ-K one, but due to the bands folding, the remaining part of
the Γ-K contour is covered by the neighboring rectangular harmonic,
that is by the end of the (−2π+ψx, 0) contour (see Figure 2). Similarly,
the Γ-X2 contour covers only 1/2 of the Γ-M one, but the rectangular
harmonic at the (0,−2π + ψy) contour covers the rest of the Γ-M
contour.

Ambiguity introduced by such folding is one of the main challenges
for the FDTD method, when applied to the modeling of hexagonal
photonic crystals. For that reason, an efficient and robust unfolding
procedure, which is supposed to overcome the addressed issue, is
proposed in the next Section.

3. UNFOLDING THE BANDS

A computational model of the photonic crystal structure, the FDTD
mesh of which is shown in Figure 1(b), consists of a single layer of
FDTD cells placed between electric (magnetic) boundary conditions,
thus, enabling the propagation of TM (TE) modes with respect to the
z-axis. Thus, the TM (TE) mode consists of Hx, Hy, Ez (Ex, Ey, Hz)
field components. The model with the lattice constant set to a = 1 µm
consists of 50 × 87 FDTD cells, the size of which is 20 nm, while an
FDTD time step is set to dt = 33.3as to satisfy an FDTD stability
criterion. Next, periodic boundary conditions with ψx and ψy Floquet
phase shifts per period are imposed at the lateral sides of the model [8].
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The model is excited with a point source, indicated with a red dot in
Figure 1(b) driven with the Kronecker delta to evenly cover the whole
spectrum of our interest. The computation is executed using a CL-
FDTD method dedicated to the analysis of periodic electromagnetic
problems [18, 25]. A single CL-FDTD simulation, for a given set of
phase shifts (ψx, ψy), runs with the speed of 7750 FDTD iterations
per second and takes in total 6 seconds on an Intel Core i7 CPU 950
platform. It indicates that the solution converges after ca. 1.55 ps.

Figure 3 depicts a flow chart of a photonic bandgap diagram
calculation with the unfolding procedure included. For each set of
chosen phase shifts (ψx, ψy) along Γ-X1 and Γ-X2 contours indicated
in Figure 2, an FDTD simulation is executed to collect resonant
frequencies indicating the modes satisfying the imposed phase shifts
per period [7, 26]. The example of the spectrum of an electric
current of a TM mode for (ψx, ψy) = (4/9, 0)2π injected by the
point source is shown in Figure 4. Once the resonant frequencies
are determined, the FDTD simulation is run once again with the
same settings. This time, however, Fourier transforms are executed to
obtain the modal field distributions at the previously detected resonant
frequencies. The alternative to the Fourier transform is to run several
FDTD simulations with a sinusoidal excitation to store relevant field

Figure 3. A flow chart of a photonic bandgap diagram calculation
with the unfolding procedure.
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Figure 4. The spectrum of an electric current injected by a TM-
polarized point source (Ez component) into the structure shown in
Figure 1 for (ψx, ψy) = (4/9, 0)2π.

distributions. However, the option with Fourier transforms requires
only one additional simulation per each set of Floquet phase shifts per
period (ψx, ψy), thus, reducing computational effort to the necessary
minimum.

Figures 5(a) and 5(b) show a real part of a Fourier transform of an
electric field amplitude Ez computed at 102100GHz and 109700GHz,
respectively, as taken from Figure 4. Those field distributions are
computed for a 1 × 1 array of the structure shown in Figure 1(b)
and it can be observed that the modes are similar to each other.
In the next step of the unfolding procedure, a spatial fast Fourier
transform (FFT) of those field distributions is performed to determine
the position of dominant spatial harmonics. Figures 5(c) and 5(d)
show the corresponding spatial FFTs calculated at both frequencies,
respectively. It can be noticed that the dominant modes lay relatively
close to each other both centred at ψx = 0 rad, which is in contradiction
with the imposed phase shift of ψx = 4/9 rad.

In such a case, it is recommended to enlarge the model to
a few unit cells in order to increase the resolution of the spatial
FFT. For that purpose, Figures 6(a) and 6(b) show a real part
of a complex electric field amplitude Ez computed with FDTD at
102100GHz and 109700 GHz, respectively, in a 4 × 4 array of the
structure shown in Figure 1. Due to a 4 times larger size of the model,
when compared with the previously considered 1 × 1 array, Floquet
phase shifts have been rescaled accordingly to (ψx, ψy) = (16/9, 0)2π.
The corresponding spatial FFTs shown in Figures 6(b) and 6(c)
indicate the modes to be centred at (ψx, ψy) = (0.4237, 1.0722)2π and
(0.5235, 0.9864)2π, respectively. Comparing those numbers with the
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(a) (b) (c) (d)

Figure 5. A real part of an electric field amplitude at (a) f =
102100GHz and (b) f = 109700 GHz computed for (ψx, ψy) =
(4/9, 0)2π in a 1 × 1 array of the structure shown in Figure 1, and
spatial FFTs computed (c) at the first and (d) at the second frequency.

(a) (b) (c) (d)

Figure 6. A real part of an electric field amplitude at (a) f =
102100GHz and (b) f = 109700 GHz computed for (ψx, ψy) =
(16/9, 0)2π in a 4 × 4 array of the structure shown in Figure 1, and
spatial FFTs computed (c) at the first and (d) at the second frequency.

allowed harmonics of the imposed phase shifts, the nearest solution is
found to be (ψx, ψy) = (4/9, 1)2π and (5/9, 1)2π, respectively. Both
points are denoted with x and * in Figure 2 respectively.

The first mode at f = 102100 GHz, denoted with x in Figure 2,
lays on the Γ-X1 contour but when projected on the hexagonal
reciprocal lattice, according to (4), it is located on the Γ-K contour at
k = 5/6kK :

ψx =
4
9
2π = 2π − 5

9
2π = 2π − 10

9
kX1a = 2π − 5

6
kKa (6)

The second mode at f = 109700GHz, denoted with * in Figure 2
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Figure 7. A photonic bandgap diagram of the 2D hexagonal lattice
shown in Figure 1, computed with the CL-FDTD method and unfolded
with the procedure depicted in Figure 3.

at the (2π−ψx, 2π) contour, seems to fall beyond the contours allowed
for the imposed set of Floquet phase shifts. However, since FFT
is symmetrical with respect to the origin, the solution can also be
searched on the opposite side of the 0-ky axis. Thus, the allowed mode
is found on the (−2π+ψx, 2π) contour, as indicated with o in Figure 2,
while the projection on the hexagonal reciprocal lattice brings it to the
Γ-K contour at k = 4/6kK :

ψx = −2π +
5
9
2π = −4

9
2π = −8

9
kX1a = −4

6
kKa (7)

The already presented unfolding process can be easily automated
since the relation between rectangular and hexagonal reciprocal
lattices, as shown in Figure 2, is explicitly known. Consequently,
Figure 7 shows a photonic bandgap diagram of the hexagonal lattice
shown in Figure 1 computed with the CL-FDTD method [18, 25]
and automatically unfolded with the procedure depicted in Figure 3.
The diagram consists of 56 wave vector points. Assuming that each
wave vector point requires two CL-FDTD simulations, that is, first
to retrieve modal frequencies and, second to compute their field
distributions, 56 × 2 = 112 simulations have to be carried out. Thus,
the total computation time takes 672 seconds, if a single CL-FDTD
simulation takes 6 seconds, as it has already been pointed out in this
paper. That time does not take into account computational effort of
the unfolding procedure but its contribution is usually negligible when
compared with the FDTD simulations.
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The PBG diagram shown in Figure 7 computed with CL-FDTD
is in good agreement with the reference one [1], computed by
preconditioned conjugate-gradient minimization of the block Rayleigh
quotient in a planewave basis [27] so its plot is omitted here.
It successfully validates the unfolding procedure proposed in this
paper. It should be emphasized that, in principle, the unfolding
procedure does not contribute to the inaccuracy of the PBG diagram
computation. The procedure is applicable to detect the modes’ position
in a wave vector space and to snap them to the nearest allowed spatial
harmonics within an irreducible reciprocal lattice followed from the
imposed Floquet phase shifts per period (ψx, ψy). Nevertheless, as
it has been pointed out in this paper, it can happen that due to low
resolution of a spatial FFT the position of the mode will be erroneously
evaluated. In such a case, enlargement of the model will solve the issue.

4. CONCLUSION

The author has introduced a robust method applicable to the FDTD
computation of unfolded PBG diagrams of hexagonal photonic crystals.
Unlike alternative solutions, the method proposed in this paper does
not require modifications of either an FDTD algorithm or the geometry
of the hexagonal lattice. The only cost is in doubled computational
effort, since two FDTD simulations have to be carried out per each
wave vector point. The first simulation is run to collect resonant
frequencies, while the second one is executed to compute modal field
distributions at those frequencies. It allows evaluating spatial Fourier
transforms determining the position of those modes in the reciprocal
lattice.

The author also shows that the contours of a hexagonal Brillouin
zone are completely covered, if the calculations are carried out along
Γ-X1 and Γ-X2 contours of the rectangular counterpart. Although the
author focuses in this paper on the hexagonal photonic crystals, the
method can be applied to any other non-rectangular lattice type.
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