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Abstract—In this paper, a full-wave analysis technique of lossy
substrate integrated waveguides, based on the dyadic Green’s function
of the parallel plate waveguide, is presented. The field inside the
waveguide is expressed in terms of cylindrical vector wave-functions
and the finite conductivity of the top and of the bottom plates, and
of the metallic vias are taken into account. Losses into the dielectric
substrate are also included. Coaxial ports are considered as sources and
self and mutual admittances are evaluated. Cases of practical structure
taken from literature are presented showing a very good agreement
with the most used commercial software.

1. INTRODUCTION

The analysis of substrate integrated waveguide (SIW) [1] structures can
be efficiently tackled using commercially available software packages.
In fact, a considerable number of SIW based devices designed using
commercial codes, like HFSS (Ansys HFSS), have been presented over
the years. Filters [2–4, 23, 24], power dividers [5–7], antennas [8, 9, 25]
and other devices have been successfully designed and realized.
However, more effective analysis methods can be devised implementing
techniques that, even less general than the one used in commercial
codes, are more efficient in terms of both CPU time and occupied
memory. Recently, several techniques have been proposed that may
significantly shorten the design and optimization process. In [10] the
Boundary Integral Resonant Modes Expansion (BIRME) has been
adapted to analyze efficiently post walled structures, in [11–13] SIWs
have been analyzed considering only the presence of the parallel plate
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waveguide (PPW) TEM mode and taking into account the scattering
by the metallic posts, so reducing the analysis to the solution of a two
dimensional problem. In [14] the authors presented a technique based
on the full dyadic Green’s function of the parallel plate, expressed as
series of vector wave functions [16] TE and TM with respect to the
waveguide height. In this last case also, the presence of the metallic
vias was included in the analysis solving the scattering problem.
The method was also used to determine the characteristics of SIW
resonators [17] and to analyze SIW based slot arrays [18]. In this
paper we present the extension of the technique presented in [14],
which treated only lossless case, to lossy structures. To evaluate the
power dissipated on the metallic surfaces and in the dielectric slab,
the dyadic Green’s function is changed to take into account the finite
conductivity of the metallic plates [19] and including the dielectric
losses into the argument of the wave functions. Furthermore, metallic
posts are considered to have finite conductivity. As it is well known,
for perfectly conducting cylinders, TE and TM mode do not couple.
When a TE (or a TM ) wave impinges on a perfectly conducting
cylinder a TE (or a TM ) field is scattered by the cylinder. For a finite
conductivity cylinder or, more in general, for an impedance cylinder,
this is no more true. However if a cylinder is made of a good conductor,
as it is the case in this paper, the coupling between TE and TM waves
can be neglected. This approximation makes the analysis considerably
simpler and, as it will be shown, is valid in the case of SIW.

In this paper, the dyadic Green’s function of the lossy parallel
plate waveguide is firstly described. The complete derivation of the
Green’s function has been given in [14] but in this paper a slightly
different path starting from the lossless case in [14] and relying on [15]
is followed. The scattering by the lossy metallic cylinder, is considered
later and added to the contribution from PPW. The most useful case
of probe feeding is considered and results from passive devices already
presented in literature are presented and discussed.

2. DYADIC GREEN’S FUNCTION OF THE LOSSY
PARALLEL PLATES WAVEGUIDE

Following the notation in [14], the dyadic Green’s function is expressed
in the spectral domain as a series of cylindrical wave functions

¯̄GPPW =
j

4π

∑∫ ∞

0
dkρkρ

[
Mn(kρ,±k0z, ρ, z)M−n(kρ,∓k0z,ρ
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k0zk2

ρ
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k0zk2

ρ
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k2
0

(1)
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where k0 = ω
√

µ0(ε′ + jε′′), k0z =
√

k2
0 − k2

ρ and

Mn = (kρ, k0z,ρ, z) = ∇×
(
Φn(kρ, ρ, φ)e−jk0zzẑ

)

Nn = (kρ, k0z,ρ, z) = ∇×∇×
(
Φn(kρ, ρ, φ)e−jk0zz ẑ

) (2)

with
Φn(kρ, ρ, φ) = Jn(kρρ)e−jnφ (3)

The free space Green’s function is then used to find the Green’s
function of the parallel plate considering the field reflected from
the conducting plates expanded in terms of the same vector eigen-
functions. This procedure, clearly described in [15], leads to
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(∇′×ẑ
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where
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FTE± (z, z′) is derived from FTM± (z, z′) substituting RTM with RTE

with [19]

RTM =
εckz − εk2z

εckz + εk2z
RTE =

kz − k2z

kz + k2z
(6)

and k2z =
√

k2
c − k2

ρ, k2z =
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k2 − k2
ρ. The previous expression are

derived considering the top and bottom conducting plates as layers
with dielectric constant εc = −jσ/ω [19].

The spectral integral in (4) is now solved by extending the
integration limits to [−∞, +∞] introducing Hankel’s functions and
applying the residue theorem [19]. One obtains

¯̄GPPW · ¯̄It =−1
4

[∑
nm
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+
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¯̄GPPW · ¯̄It =−1
4
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In the previous expressions the transverse components are selected by
means of the scalar product with the transverse dyad ¯̄It, d is the height
of the parallel plate and the quantity, kρm is evaluated as residues of

integral (4) [19], kzm =
√

k2 − k2
ρ and Mn and Nn functions have the

following expressions
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where ρ> = max(ρ, ρ′), ρ< = min(ρ, ρ′). Furthermore, DTE ′ and DTM ′

are the derivative with respect to kρ of

DTM = k0zkρ

(
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)

DTE = k0zkρ

(
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) (11)

3. SCATTERING FROM METALLIC VIAS OF FINITE
CONDUCTIVITY

As pointed out in the introduction, to evaluate the scattering by
impedance cylinders one has to consider both TE and TM fields

Infinite metallic

Coaxial port i
Coaxial port j

Metallic vias

plates

Figure 1. General geometry of a SIW structure with coaxial ports.
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independently from the nature of the exciting field. However, as is
known, vias are made of good conductor and one can consider that
they scatter mostly TM (TE ) field when the impinging field is TM
(TE ) and that the TE (TM ) field is negligible. Under this hypothesis
the scattering from metallic vias is taken into account as in [14] but
enforcing the following boundary conditions on the cylinders surface:

ρ̂×∇×H = −jωεrε0ZsH (12)

with

Zs = (1 + j)
√

ωµ0

2σ
(13)

The field scattered from vias is expressed as series of outgoing TM and
TE waves centered on cylinders

HsCyl =
∑

l

∑
n,m

Mn(kρm, kzm,ρ− ρl, z, 2d)AM
m,n,l

+
∑

n,m
Nn(kρm, kzm,ρ− ρl, z, 2d)AN

m,n,l (14)

where (see Figure 2) l is an index spanning over the cylinders, m and n
are relevant to vertical and angular dependencies, ρl is the position of
the center of the cylinder l, and AM

m,n,l, AN
m,n,l are unknown coefficients

to be determined.

s

Figure 2. Coordinate system.
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As it was done in [14], for any cylinder q one has the following
equations, one for the TM mode one for the TE modes corresponding
to apex M and N, respectively:

ΓM,N
q,r,m =

∑
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In the previous formulas vM
r,m,q and vN

r,m,q are expressed as
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and they the excitation coefficients of the field radiated into the parallel
plate waveguide free of the metallic vias.

4. SELF AND MUTUAL ADMITTANCE OF COAXIALLY
FED LOSSY SIW STRUCTURES

In this paper coaxial probes will be considered as sources, in this
case [14] the TE modes are not excited and in the Green’s function only
the TM contribution is retained. Also the TE field scattered by the
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cylinders do not couple with the probes and the expressions of the TM
scattered field given in the previous section account for the contribution
from metallic vias. Admittances are computed considering the reaction
between ports as

Y (pi,pj) =

∫
Spj

drHpi(r) · Jpj

M (r)

|V |2 (19)

where Hpi(r) is the total magnetic field due to the current Jpi

M (r) on
port pi and Spj is the area on port pj on which flows the current Jpj

M (r).
Self-admittance has the following closed form expressions:
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where li is the index corresponding to probe pi, AM,pi
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coefficients relevant to cylinder l and due to the source pi and [14]
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Mutual admittance has the following expression
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in which pij is the distance between ports i and j.

5. RESULTS

The theory presented in the previous sections has been implemented
in a MATLAB code. To check the accuracy of the method a simple
SIW cavity has been simulated with HFSS and the MATLAB code
and results compared with measurements. In Figure 3 are presented
the scattering parameters of the cavity fed with two coaxial probes.
As it can be seen the method presented in this paper gives results
more accurate than HFSS which predicts a 50 MHz shift with respect
to measured results. In Figure 4 a SIW post filter presented in [20] is
analyzed. As waveguide ports have been used in HFSS simulations, the
effects of the coaxial probes has been de-embedded similarly to what
was done in [14]. To better appreciate the accuracy of the proposed
method in Figure 5 is shown the S21 for the lossless and the lossy case.
Results obtained with the method in this paper and HFSS are in a very
good agreement. In Figures 6 and 7 two further examples are presented
which show the scattering parameters of a single and dual circular
SIW filters. The results for the single pole filter are coherent with

Figure 3. Substrate integrated waveguide cavity w = 15.17mm,
L = 24 mm, p = 2 mm, h = 0.787mm, vias diameter 0.2 mm, εr = 3.58,
tan δ = 0.0035, σ = 5.8 ∗ 107 S/m.
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Figure 4. Substrate integrated waveguide post filter as in [20].
w = 5.563mm, p = 1.525mm, o1 = o2 = 1.01mm, s1 = 4.71mm,
s2 = 5.11mm, h = 0.787mm, vias diameter 0.775 mm, εr = 2.2,
tan δ = 0.0011, σ = 5.8 ∗ 107 S/m.

Figure 5. Insertion loss of the substrate integrated waveguide
bandpass post filter presented in Figure 3 calculated with loss and
without loss.

the resonator presented in Figure 1. In this case also HFSS predicts
a slight frequency shift. For the more complex,two cavity filter results
are in a good agreement.
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The advantage of the method proposed in this paper over a general
purpose software, like HFSS, is that the CPU time is considerably
reduced. In fact, even if the structures presented in this paper are not

Figure 6. Scattering parameters of a single cavity circular filter, as
in [21], h = 0.380mm, w = 3.8mm, wio = 1.683mm, a = 0.2mm,
r = 2.4mm, p = 0.7mm, εr = 9.9, tan δ = 0.001, σ = 5.8 ∗ 107 S/m.

Figure 7. Scattering parameters of a dual-cavity filter as in [22], h =
0.5mm, w1 = 4.08mm, w2 = 3.93mm, w3 = 5.50mm, a = 0.2mm,
p = 0.851mm, l1 = 3.404mm, R = 4.83mm, a = 2.55mm, εr = 2.2,
tan δ = 0.001, σ = 5.8 ∗ 107 S/m.
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very large, computational times are significantly shortened. A quad
core Pentium at 2.4 GHz was used for this paper and CPU times do
not differ much from the ones already presented in [18] for the lossless
cases, as it seems that only one of the core is actively running. For this
reason only CPU times for the largest structure are here reported. It
has been found that HFSS required 146 seconds for the mesh set up
and 9 seconds per frequency points to produce the results in Figure 7,
while 2.6 seconds per frequency points were needed to the matlab code
to perform the same simulation.

6. CONCLUSIONS

In this paper, an efficient semi-analytical method to analyze lossy SIW
structures has been presented. The method is based on the dyadic
Green’s function of the parallel plates waveguide in which metallic
vias are embedded. Coaxial probes were included in the model. Results
compare well with HFSS results and measurements and they have been
obtained with reduced computational resources.
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