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Abstract—Rigorous mathematical Method of Moments (MoMs) for
analyzing various radiating spherical structures is presented in this
paper by using Dyadic Green’s Functions (DGFs) in conjunction with
Mixed Potential Integral Equation (MPIE) formulation. With the aid
of linear Rao-Wilton-Glisson (RWG) triangular basis functions and
by converting spherical DGFs to Cartesian DGFs, a conformal dipole
antenna in free space and over a Perfect Electric Conductor (PEC)
sphere is analyzed. The characteristics of such antennas are computed
by applying multilayer spherical DGFs and asymptotic approximation
methods. Mutual couplings between elements of a conformal dipole
antenna array in free space and over a conducting sphere are also
investigated. Good agreement between the computational results
obtained by the proposed methods and those obtained from commercial
simulator packages shows accuracy and high convergence speed of the
presented methods.

1. INTRODUCTION

By using Dyadic Green’s Functions (DGFs), a field component
can be expressed in terms of a current vector component [1, 2].
Deriving appropriate DGFs for analyzing electromagnetic boundary
or eigenvalue problems results in substantial simplification and
compactness [1]. Although most of the problems can be solved without
DGFs, it is more efficient to use dyadic Green’s functions. It should
be noted that DGFs have been calculated only for some canonical
structures and for many cases vector wave functions should be used to
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obtain DGFs suitable for those particular problems. Electromagnetic
fields in a specific direction have been calculated for a small electric
and magnetic dipole located inside a multilayer sphere [3]. In [4],
an antenna structure over cylindrical shell has been analyzed by
using spectral domain Green’s functions. The resonance problem
of a circular microstrip disk mounted on a spherical surface has
been studied theoretically by utilizing Green’s function formulation in
spectral domain [5]. The resonant frequencies for the lossless spherical
cavity filled with a Chiral medium are obtained from the dyadic
Green’s functions [6]. Closed form equations using DGFs containing a
series of spherical harmonics have been used to evaluate electric and
magnetic fields in such structures [2]. In [7], DGFs have been expanded
asymptotically resulting in a significant increase in convergence rate of
spherical harmonics series. With this approach, conformal antenna
problems have been solved by evaluating DGFs coefficients in [8]
using spherical Bessel and Hankel functions approximation for large
arguments. Asymptotic approximation method presented in [7] yields
a higher convergence speed in the calculation of antenna input
impedance but it cannot be utilized for radiation pattern determination
since field and source points are not at the same distance from the
sphere center in this case. In [9], a Hybrid Finite Element-Boundary
Integral (FE-BI) formulation is introduced, employing asymptotic
spheroid DGFs for design of doubly curved conformal antennas. A
combination of the Finite Difference Time Domain (FDTD) and MoMs
is applied to solve the problem of radiation from conformal aperture
and microstrip antennas mounted on arbitrarily-shaped conducting
bodies [10]. Most of the MoMs approaches mentioned above consider
specific current distribution on antenna elements. It is known that
modal analysis which is a part of procedure for field calculation
by MoMs suffers from some shortcoming when number of modes
increases. This is due to prior specific current distribution considered.
Complexity of meshing the structures is another drawback encountered
in problems where the antenna elements are segmented into curvilinear
cells.

In this paper, explicit formulas are derived to analyze various
radiating structures where source regions are divided into linear
triangles. Then a spherically conformal dipole antenna fed at its
center located in free space is analyzed. Thereafter using DGFs, the
input admittance and radiation pattern of such a dipole antenna over
a PEC sphere are presented. In this paper, DGFs transformation
from spherical to Cartesian coordinates is also accomplished, which is
used to efficiently compute radiation fields of various spherical antenna
structures with linear triangular mesh generations. In order to validate
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the presented method, the antenna is also analyzed by meshing the
PEC sphere and conformal dipoles into linear triangles and using
free space Green’s functions. Mutual couplings between the elements
of a conformal dipole antenna array located in free space or over a
conducting sphere are investigated. Comparison of the results obtained
from the proposed method with those of CAD simulations clearly shows
the ability and accuracy of presented method.

2. THE PROPOSED FORMULATION

One of the efficient numerical methods with high preprocessing gain
for solving electromagnetic structures is the method of moments where
the source region must be divided into cells. In this method, the
unknown functions which are usually the source currents or charges are
obtained via an integral equation formulation with appropriate Green’s
functions. Such integral equations can be in space domain, spectral
domain, or both of these two domains. In general due to meshed finite
source region, methods based on integral equation formulations are
more accurate and require less memory and time [11]. For any class
of integral equations namely Electric Field Integral Equation (EFIE),
Magnetic Field Integral Equation (MFIE) or Mixed Potential Integral
Equation (MPIE), appropriate type of Green’s functions should be
used. EFIE has the advantage of being applicable to both open and
closed structures, whereas MFIE applies only to closed surfaces [12].
A set of formulation which uses auxiliary potentials and leads to
MPIE formulation is weakly singular and can be easily utilized in
MoMs formulation. Many researches have been reported to calculate
input impedance and radiation pattern of an antenna using MPIE
formulation [13]. Dividing the source region into small triangles and
considering the common edge between two adjacent cells as a current
element, and expanding the current into triangular basis functions
(fn) [12], the source current can be defined as:

Js =
N∑

n=1

Infn (1)

Here N is the number of non-boundary edges and In coefficients
are to be obtained from MPIE formulation [13]. Therefore if the
source region is segmented by linear triangular cells, unknown current
coefficients in the antenna can be determined by applying RWG basis
functions and satisfying the boundary conditions. In this case the
electric field considered as:

E = −jωA−∇ψ, (2)
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where A is magnetic vector potential and ψ the electric scalar potential
as defined in [14]. Since tangential component of electric field vanishes
on perfect conducting metal, impedance matrix by applying MPIE and
Galerkin’s method can be written as:

Zpq=−
∫∫

s

∫∫

s′

[
jωfp(r)·ḠA·fq

(
r′

)
+(∇·fp(r))Gψ

(∇′·fq

(
r′

))]
ds′ds, (3)

in which ḠA and Gψ are respectively the magnetic dyadic and the
electric scalar Green’s functions. These functions are presented in
spherical coordinates in [14].

r(r, θ, ϕ) and r′(r′, θ′, ϕ′) refer to field and source position vectors,
respectively. fp,q(r) are triangular basis functions defined in [12]. The
integration over the testing triangles can be avoided by using the
centers of field triangular cells and approximate Galerkin’s method [12].
Therefore, the integration is performed only over source triangles
by applying 3-point Gauss quadrature method. In this case, by
applying the aforementioned integration method, no singularity will be
encountered in the integration. Therefore, there is no need to solve the
double integration analytically in the singular points of the integrands
as done in [11]. For a structure with homogenous media, it is expected
that the impedance matrix calculated from MoMs will be symmetric
and diagonally dominant.

Figure 1(a) illustrates a conformal dipole antenna located in free
space or in the vicinity of a PEC sphere. As shown in Fig. 1(b), the
structure can be divided into three regions. The conformal antenna is
located at the boundary of layers 1 and 2. Region 3 may be considered
as free space or PEC. In the latter case, the conducting medium is
modeled by ε →∞, µ → 0 in order for the propagation constant to be
finite and numerical modeling of the antenna to be feasible [7].

Free Space or

PEC Sphere

Air

3
2

1

Feed Point

(a) (b)

Figure 1. (a) A conformal dipole antenna in free space or over PEC
sphere, (b) 3-layer sphere and the antenna feed point model.
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It should be noted that input impedance formula of a conformal
antenna over a spherical shell can be extracted using addition theorem
for spherical Hankel functions yielding asymptotic formulation with
more convergence speed [15]. For conformal antenna over a multilayer
sphere, when both source and field points are at the same distance
from the sphere center, we do not need to consider Ḡ(fs)

A and it is
only enough to compute G

(f s)
ψ [7]. Therefore, input impedance of

antennas located on a multilayer sphere can be obtained by using DGFs
or asymptotic approximation formulas in MPIE.

2.1. Conformal Dipole Antenna in Free Space

When antenna is located in an unbounded free space, scalar wave
equations can be applied instead of dyadic forms for calculation of
impedance matrix resulting in the following equation:

Zpq =
∫∫

s′

[
jωµ

4π
fp(rc±)·fq(r′)g+

1
j4πωε

(∇·fp(rc±)
)(∇′·fq(r′)

)
g

]
ds′, (4)

where g = e−jkR/R and c+ or c− denotes the center of positive or
negative triangles, respectively. Therefore, scalar unknown coefficients
of current distributions are determined on the common edges between
two adjacent triangles by computing impedance and antenna excitation
matrices. Electric field vector can be calculated from Equation (2) or
by integrating posterior scalar product of DGFs and current vectors
over the source region as described in the following equation:

E = −jωµf

∫∫

s′

Ḡ(fs)
E · J(r′)ds′, (5)

in which Ḡ(fs)
E = Ḡ(fs)

0E is DGFs in an unbounded free space and is
defined by:

Ḡ(fs)
0E =

(
Ī +

1
k2

f

∇∇′
)

G0, (6)

G0 =
e−jkf R

4π R
, (7)

where kf is the propagation constant in free space. In order to simplify
computation procedure, Cartesian DGFs of free space may be used
when source and field points are both located in free space. It can be
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written with the aid of Equation (6) as follows:

R=
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (8a)

Ḡ(fs)
0E =

(
Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

)
(8b)

Guu=


 e−jkf R

(
−R2−jkfR3+k2

fR4+3 (u−u′)2

−kfR (−3j+kfR) (u−u′)2
)




4k2
fπR5

, (8c)

Guv =−
e−jkf R

(
−3− 3jkfR+k2

fR3
)
(u− u′)(v − v′)

4k2
fπ R5

; u 6= v, (8d)

where u, v = x, y, z and Gu v = Gv u because of symmetrical properties
of DGFs.

2.2. Conformal Dipole Antenna in the Vicinity of a
Conducting Sphere

For full wave analysis of a conformal dipole antenna over a PEC
sphere, the scattering components of DGFs (Ḡ(fs)

es ) must be taken
into consideration. By considering source and field points in layer 1
Ḡ(11)

E = Ḡ(11)
0E + Ḡ(11)

es in which Ḡ(11)
es is as follows:

Ḡ(11)
es =

jk1

4π

∞∑

n=1

n∑

m=0

(
2− δ0

m

) 2n + 1
n (n + 1)

(n−m)!
(n + m)!

×
{

b11
MM(2)

e
o mn

(k1)M′(2)
e
o mn

(k1)

+ b11
N N(2)

e
o mn

(k1)N′(2)
e
o mn

(k1)

}
, (9a)

where δ0
m is the Kronecker delta, and M,N vectors are r-dependent

eigenvectors in spherical coordinate system with orthogonal properties
explained in [2]. Superscript (2) denotes spherical Hankel function of
the second kind. b11

M,N are the dyadic coefficients expressed as [8]:

b11
M,N = −RH,V

F2 TH,V
F1 + RH,V

F1 TH,V
P1

RH,V
F2 RH,V

P1 TH,V
F1 + TH,V

P1

(9b)

Convergence speed of multilayer spherical DGFs is related to the
radii of spheres and permittivities of layers. More spherical harmonic
terms should be considered for greater radii and permittivities.
Calculation of the double-summation of above DGFs is exhausting and
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time-consuming since there are spherical harmonics in wave equation
solution in spherical coordinates. The double summation in the
spherical DGFs can be reduced to an expression with only a single
summation by using the following relation [13]:

Pn(cos γ)=
n∑

m=0

(
2−δ0

m

)(n−m)!
(n+m)!

×Pm
n (cosθ)Pm

n (cos θ′) cos
(
m(ϕ−ϕ′)

)
, (10)

where cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′).
Therefore, the convergence speed of DGFs computation increases

by converting the double summation of spherical harmonics to a single
summation. To achieve to a precise calculation of far fields with
an error of about 1%, using the 20 first terms in the summation
is sufficient. In the presented method, it takes about 7 minutes to
compute radiation pattern (with 60 divisions of ϕ) with a Core 2 Quad
@ 2.86 GHz processor. The fast computation time of this method is
considerable in comparison with CAD simulator packages.

Free space Green’s functions can also be used to analyze this
antenna. In this case, the PEC sphere should also be meshed by linear
triangles and current distributions on common edges are computed by
solving MPIE. Electric field components can be calculated by utilizing
Equation (2) or Equation (5). Fig. 2 illustrates a conformal dipole
antenna over a meshed conducting sphere with 840 triangles and
1260 common edges. Due to large number of triangular cells, this
method takes more memory and time in comparison with asymptotic
approximation or multilayer spherical DGFs methods.

2.3. Array of Conformal Dipole Antennas

The presented method can be utilized to investigate mutual couplings
between antenna elements of a conformal dipole antenna located in

Figure 2. A conformal dipole antenna over a meshed PEC sphere.
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free space or above a PEC sphere. Scattering matrix can be calculated
as follows [16]:

[S] = (Y0 [I] + [Y ])−1 (Y0 [I]− [Y ]) , (11)

where I is the identity matrix and Y admittance matrix. Y0 is
considered as characteristic admittance of feed network. As delta gap
voltage is used to excite the electric dipoles, it is advantageous to
compute scattering matrix from admittance matrix. The components
of admittance matrix are defined as:

Yi j =
Ii

Vj

∣∣∣∣
Vi=0, i 6=j

(12)

Therefore, for an array consisting of N elements, coupled currents
due to an excited element on the center of the unexcited elements
should be calculated.

2.4. Spherical to Cartesian Transformation of DGF

In order to obtain electromagnetic field components, we require
multiplying DGFs and current element vector components for the case
of interest. In order to perform multiplication, both DGFs and current
vectors should be in the same coordinates. For the case that conformal
antenna area is divided into curvilinear triangles as shown in Fig. 3(a),
current components to be considered are Jϕ and Jθ which are in
harmony with spherical components of DGFs [8]. However curvilinear
meshing is complicated as compared with linear triangular meshing
considered in this paper.

As current elements on common edges of linear meshes have
Cartesian components, a new approach for dyad and vector
multiplication is presented in this subsection. In order to multiply
current vectors and DGFs, either Cartesian current vectors should be

(a) (b)

Figure 3. (a) Curvilinear triangle, (b) Linear triangle.
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converted to spherical vectors or spherical DGFs should be converted
to Cartesian ones. Converting a current vector V; which connects two
vertices of a triangle; from Cartesian to spherical coordinates results
in a non-unique vector because Jϕ and Jθ are different in each point
on the edge such as Vx shown in Fig. 3(b). Since there are unique
transformations of vectors from spherical to Cartesian coordinates,
conversion of a spherical dyad to a Cartesian dyad can be exactly
implemented. Therefore, by employing the centers of the field and
source triangles in the calculation of DGFs in Cartesian coordinates
the electric field vector can be expressed as:

E(Cartesian) = −jωµf

∫∫

s′

Ḡ(Cartesian) · J(Cartesian)(r′)ds′ (13)

Thus by using triangular linear meshes in Cartesian coordinates
only Ḡ needs to be converted from spherical to Cartesian coordinates.
For this purpose, each unit vector should be transformed from spherical
to Cartesian coordinates. As DGFs represent interactions between field
and source points, the first and second vectors of each dyad correspond
to field and source points respectively. All spherical dyad components
can be converted to Cartesian dyads. As an example the conversion
equation of r̂ϕ̂ component of a dyad is extracted as follows:

r̂ϕ̂=(sin θf cosϕf x̂+sin θf sinϕf ŷ+cos θf ẑ)(− sinϕsx̂+cosϕsŷ), (14)

where subscripts f and s refer to field and source points, respectively.
Therefore, the Cartesian DGFs compatible with vector currents
components can be obtained by using the aforementioned conversion
method. Using this approach is efficient when a vector is requested as
the output of an antenna problem solution. For example to determine
the near and far field radiation patterns of an antenna all Ex, Ey, Ez

components of electric field can be calculated.

3. RESULTS

To validate the present computation, a spherical dipole antenna is
analyzed which is considered first in free space and then 0.32 cm above a
5 cm radius conducting sphere. Then, conformal dipole antenna arrays
in both cases are analyzed. In all cases, antenna physical lengths
is λ/2 with λ being the wavelength at f = 3 GHz. The medium
between the antenna and the sphere is assumed to be free space. It is
expected that the antenna response is similar to a linear thin λ/2 dipole
antenna which is presented in [13]. In these examples the antennas have
negligible thicknesses in comparison with wavelength and are located
in xy-plane as shown in Fig. 1(b). The antenna in each case is divided
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to 120 triangular linear meshes yielding 119 common edges between
two adjacent plus and minus triangles. The delta gap voltage source is
used to excite the dipoles. Impedance matrix and current distribution
on common edges are computed using MoMs. Besides utilizing DGFs,
asymptotic approximation method is also used.

3.1. Spherical Dipole Antenna in Free Space

As the first example a spherical dipole antenna which is fed from
its center and located in free space is presented. Antenna input
admittance is determined using MoMs and solving MPIE by both
asymptotic approximation formulas [7] and DGFs proposed in [14] with
unit dielectric constants in all three layers. The results are compared
with those obtained from CST Microwave Studio simulator [17]. As
illustrated in Fig. 4, good agreement is obtained between all results
and little differences are due to probe modeling in CST simulation.

The antenna center is in xy-plane and about 30◦ from the origin
according to the antenna structure. The radiation pattern as expected
direct to 30◦ and 210◦. Auxiliary potential equations as well as electric
field equations can be utilized to compute radiation pattern. Fig. 5
demonstrates radiation patterns obtained from MoMs using DGFs and
CST simulator which are in good agreement.

3.2. Spherical Dipole Antenna over a PEC Sphere

In this section a spherically conformal dipole antenna fed from its
center and located above a PEC sphere is analyzed. To show input
admittance convergence speed toward spherical harmonics, the input
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unbounded free space medium. (a) Conductance, (b) susceptance.
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admittance at the center frequency of the antenna versus the number
of terms in spherical harmonics series is illustrated in Fig. 6.

To analyze a dipole antenna located arbitrarily in a 3-layer
dielectric sphere with the same dimensions of the presented example,
at least 60 terms of spherical harmonics series are required in order to
DGFs be convergent. However, for the case that current elements are
located coformally and layers 1 and 2 are considered as free space and
layer 3 as PEC, a convergence in antenna input admittance is achieved
by considering 25 terms in the series. For input admittance calculation,
due to conformal current distribution on the dipole, magnetic potential
DGFs are zero [7]. Fig. 7 illustrates the results.
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Figure 8. Radiation pattern of a spherical dipole antenna over PEC
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Electric field DGFs with 20 terms of spherical harmonics is used
to determine antenna radiation pattern. Fig. 8 compares computed
radiation pattern of the antenna with the results obtained from CST
software. As it can be seen from this figure, radiation pattern is
directed to about 30◦. It should be mentioned that at the shadow
boundary on the conducting sphere the incident wave excites creeping
waves propagating along the sphere surface. Due to comparable
dimension of the sphere to the wavelength, the creeping waves radiate
surface diffracted waves [18].
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3.3. Array of Conformal Dipole Antennas

In the following, two examples of conformal dipole antenna arrays
located at the same radial distance from the center of coordinates
(Fig. 9) are analyzed and mutual couplings between their elements
are investigated d defined in degrees represents the distance between
the centers of elements and can be in θ or ϕ direction.

Figure 10 shows insertion loss and mutual coupling of a pair of
spherical dipole antennas separated by a distance of 15◦ in θ direction
from each other and located in free space or above a conducting sphere.

Some changes in the results can be noticed from Fig. 10 with and
without the presence of the conducting sphere. Fig. 11 demonstrates
mutual coupling between two conformal dipoles over a PEC sphere for
different separation distances in θ direction.

Mutual coupling between a pair of spherical dipoles located in free
space or above a conducting sphere is studied at the center frequency
of the antennas and is illustrated versus d in ϕ direction in Fig. 12.

Mutual couplings between the elements of an array of five
conformal dipoles above a PEC sphere are also investigated. Each

Figure 9. A pair of conformal dipole antennas.
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antenna element is separated from its adjacent element by a distance
of 15◦ in θ direction and the lowest dipole is considered as the first
element. Fig. 13 shows the mutual couplings between the first three
adjacent elements obtained from the presented method and Ansoft
HFSS simulation. As it can be noticed, good agreement between the
results is achieved.

It can be noticed that the results obtained from the presented
analysis methods based on DGFs or asymptotic approximation are
in good agreement with the results obtained from HFSS and CST
softwares. However, simulator packages are highly dependent on
meshing the structure, probe modeling and the size of radiation box.
Therefore, more time and memory is required in order to obtain precise
and stable results from simulator packages. The proposed methods
have more calculation speed and accuracy in comparison with the
mentioned softwares.

4. CONCLUSION

In this paper, full-wave methods to analyze various antennas in free
space or over spherical multilayer structures have been presented.
In these methods, after meshing the antenna into linear triangles in
Cartesian coordinates, the input admittance of a conformal dipole
antenna over a PEC sphere has been computed by using MPIE
formulation. The infinite double summation has been transformed to
a single summation using addition theorems for Legendre polynomials
and spherical Hankel functions yielding an increase in the radiation
pattern computation convergence speed. In order to determine electric
field vectors at entire medium, converting dyads from spherical to
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Cartesian coordinates has been presented. To validate the proposed
methods, mutual couplings between elements of a conformal dipole
antenna array in free space or above a conducting sphere have been
investigated. Accuracy of the proposed methods has been validated by
comparing the results obtained by the presented methods with those
obtained from commercial softwares.
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