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Abstract—Microwave array 3-D imaging is an emerging technique
capable of producing a 3-D map of scattered electric fields. Its
all-weather and large scene imaging features make it an attractive
powerful tool for target detection and feature extraction. Typically,
a microwave array 3-D imaging system based on the classical sampling
theory requires a large dense 2-D antenna array, which may suffer
from a very high cost. To reduce the number of the antenna array
elements, this paper surveys the use of compressed sensing recovery
and sparse measurement strategies for microwave array 3-D imaging.
Combining with the typical spatial sparsity of the underlying scene,
we pose the sparse array microwave 3-D imaging as finding sparse
solutions to under-determined linear equations. Further, to reduce
the computational of the compressed sensing recovery with the large-
scale echoes data, we divide the underlying 3-D scene into a series
of equal-range 2-D slices, and deal with these slices separately using
the orthogonal matching pursuit (OMP) algorithm. Lastly, the
performance of the presented compressed sensing approach is verified
by an X-band microwave array 3-D imaging system. The experimental
results demonstrate that the compressed sensing approach can produce
a better resolution 3-D image of the observed scatterers compared with
the conventional method, especially in the case of very sparse activate
antenna array.
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1. INTRODUCTION

Microwave 3-D imaging is an emerging active-imaging technology that
is able to produce high-resolution 3-D images of the electromagnetic
scattering coefficients of the underlying targets. With all-time,
large scene and contactless observing capability and operation under
all-weather, microwave 3-D imaging has become an attractive and
powerful tool in many civilian military and biomedical applications,
such as remote sensing [1], object detection and tracking [2], concealed
weapon detection [3], through-barrier imaging [4], non-destructive
pipeline imaging [5], breast cancer imaging [6] and magnetic induction
tomography [7, 8], etc.. Moreover, how to obtain high resolution
microwave 3-D images of the scatterers is also a hot topic in the
radar community recently [9–11]. Generally, a microwave 3-D imaging
system uses a 2-D antenna array to produce the 2-D resolution in
the antenna array plane, utilizes the pulse compression technique to
obtain the range resolution. To obtain a high-quality 3-D image,
a large dense 2-D real or victual array antenna is usually required.
However, such a large dense 2-D array cannot be easily applied or
synthesized due to the limited system size and the limited observing
time in practice. Furthermore, the use of such a dense array may
result in both high cost and large storage problems for the imaging
system. These motivate development of an effective microwave 3-D
imaging system that requires only a sparse antenna array. In [12], we
presented a “one-active” linear array antenna microwave 3-D imaging
technique, and successfully developed a sparse array microwave 3-D
imaging system. The system controls the motions of the only two
antennas, one transmitter and one receiver, to synthesize the desired
virtual 2-D array antenna. After a series of experiments, the first field
experimental results of this “one-active” microwave array 3-D imaging
system, obtained by the 3-D back-projection method, were presented
in [13]. The experiments demonstrated that the produced images can
well capture the domain 3-D scattering features of the observed targets.
However, we also found that when the synthetic 2-D antenna array was
very sparse, the performance of the back-projection method would be
serious degradation, which was interfered by very high side-lobes.

Unlike 1-D and 2-D microwave image, 3-D microwave image
usually exhibits spatial sparsity. Hence, microwave 3-D imaging
is typically an inverse scattering problem whereby a map of the
reflectivity is reconstructed from the echo measurements of scattering
flied, this task can be posed as finding sparse solutions to the linear
equations. However, the classical methods for 3-D microwave imaging,
such as the 3-D back-projection algorithm [1, 10], the 3-D range
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migration algorithm [14], the chirp scaling algorithm [15], the 3-D
omega-k algorithm [16] and the wave-number domain algorithm [17],
etc., never exploit such prior sparsity knowledge. In addition, the
resolutions of these conventional algorithms are limited by classical
radar uncertainty principle. If the echo signal sampling rate doesn’t
satisfy the Nyquist rate, these conventional methods will suffer from
image degradation and artifacts. These limitations make it difficult
to use conventionally reconstructed images for robust target detection
and recognition.

Compressed sensing (CS), an emerging theory of signal processing,
indicates that the sparse signal can be exactly recovered by incoherent
linear projection using just a small number of random measurements.
Recently, CS has been widely discussed and studied in different
fields, such as medical imaging [18], communications [19] and image
reconstruction [20], etc.. Some CS sparse recovery algorithms have
also been successfully developed for microwave imaging [21–27]. E.g.,
in [28], a new approach based the contrast field formulation of the
microwave imaging problem that exploits the Bayesian compressive
sampling paradigm is proposed for the reconstruction of sparse
distributions of weak scatterers. In [29], we proposed a sparse
recovery approach based on CS for linear array synthetic aperture
radar imaging, and the numerical simulation results indicated that CS
approach offered many advantages such as super-resolution and feature
enhancement compared with the conventional methods.

In this paper, we survey the use of CS recovery and sparse
measurement strategies in microwave array 3-D imaging. Exploiting
the spatial sparsity of the observed scene, we convert the sparse array
microwave 3-D imaging into an ill-posed linear inverse problem with
a small number of measurements. Furthermore, a modified OMP
algorithm, without requiring the signal sparsity as the prior knowledge,
is presented to recover the sparse reflectivity of the observed scatterers.
In order to reduce the computational of the large-scale echo processing,
we divide the 3-D scene into a series of equal-range 2-D slices, and deal
with each slice separately. In addition, with the point spread function
of echo signal, we investigate the relationship between the interval of
adjacent scene cells and the mutual coherence of the measured matrix.
Finally, some different types of targets are test by the developed
microwave array imaging system to demonstrate the advantages of
the presented CS algorithm. The results show that high resolution
3-D images can be obtained by a very sparse array antenna with CS
method, which may pave the way for microwave 3-D imaging in many
new applications that require a small sparse array antenna and high-
resolution image, such as radar cross section (RCS) measurement and
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electromagnetic feature extraction, etc..
The rest of this paper is constructed as follows. In Section 2, we

introduce the sparse array microwave 3-D imaging model and sketch
its image formation as a linear inverse problem. In Section 3, the
basic theory of CS is described and the OMP algorithm is proposed
for the sparse array microwave 3-D imaging. Experimental results are
presented in Section 4 along with the performance analysis. Finally,
we summarize the results of the paper in Section 5.

2. SIGNAL MODEL AND PROBLEM FORMULATION

2.1. System Geometric Model

The simple geometric model of the sparse array microwave 3-D imaging
is illustrated in Figure 1(a). The sparse 2-D antenna array can be a
real array or a virtual array synthesized by the synthetic techniques,
e.g., single input multiple output (SIMO) technique and multiple input
multiple output (MIMO) technique [26]. The positions of the total
array elements are described by a transducer set Ptr.

Ptr = {Pn |Pn = 〈xn, yn, zn〉 ; n ∈ Υ} (1)

where, Υ = {1, 2, . . . , N} denotes the index set, N denotes the total
number of the array elements.
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Figure 1. The geometric model and the experimental system of
the sparse array microwave 3-D imaging. (a) The geometric model.
(b) The experimental system.
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In order to reduce the number of transmit/receive devices and
on-board storage equipments in the system, we control the motions of
the transmitter and the receiver antennas to synthesize a virtual 2-
D antenna array in this paper. In particular, we have successfully
developed an X-band microwave 3-D imaging system, as shown in
Figure 1(b). The imaging system consists of two parts: the radar
module and the motion-control module. The radar module mainly
transmits a linear frequency modulated (LFM) signal toward an area
of interest, and receives the echoes from the observed targets. The
motion-control module mainly controls the motions of the transmitter
and the receiver antennas on a 2-D rail to synthesize the desired
virtual 2-D antenna array. In addition, the motion control module
consists of a set of high-precision transfer devices, position measured
devices and high-precision motors, which can record the positions of
the transmitter and the receiver antennas during the motions The more
details of this microwave array system can be found in [12, 13].

2.2. Signal Model

We assume that a point target is located at position Pm = 〈xm, ym, zm〉
with scattering coefficient σm. Then the slant range from this scatterer
Pm to the nth antenna array element at position Pn can be written as

R(Pn,Pm) = ‖Pn −Pm‖2 , n = 1, 2, . . . , N (2)

where, ‖ · ‖p denotes the p-norm of vector.
Suppose that the radar system transmits a LFM signal, the

received echo of the nth element for the point scatterer Pm can be
expressed as follows

S(t;Pn,Pm) = σm exp(−j2πfcτ(Pn,Pm))
exp

[
jπfdr(t− τ(Pn,Pm))2

]
, |t| ∈ T/2 (3)

where t denotes the fast-time, fc denotes the carrier frequency, fdr

is the LFM chirp rate and T denotes the pulse repetition period,
τ(Pn,Pm) = 2R(Pn,Pm)/C denotes the echo delay of the scatterer
Pm, C is the speed of light in air. After range focusing by the pulse
compression technique, the focused echo signal can be written as

Sc(r;Pn,Pm) = σmχR (r −R(Pn,Pm))
exp(−j2kR(Pn,Pm)), n = 1, 2, . . . , N (4)

where r denotes the range domain, k = 2πfc/C denotes the wave
number, χR (r −R(Pn,Pm)) denotes the range ambiguity function at
range cell r. For a multiple-scatterers scene, the echoes signal is the
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sum of all scatterers, i.e.,

Sc (r,Pn) =
∑

m∈Π

Sc(r;Pn,Pm)

=
∑

m∈Π

f (r;Pn,Pm) exp(−j2kR(Pn,Pm)) (5)

where, f(r;Pn,Pm) = σmχR(r −R(Pn,Pm)) denotes the range
compression reflectivity at range cell r, Π = {1, 2, . . . , M} denotes
the scatterers index set in each equiv-range slice. We can parameterize
(5) in terms of the reflectivity vector f (r) and the delay-phase function
ψ (r,Pn) as follows.

Sc (r,Pn) = ψ (r,Pn)T f (r) (6)

where, ψ(r,Pn)={ψj |ψj = exp(−j2kR(Pn,Pj)), j ∈ Π} is interpreted
as an M -elements measurement vector, f(r) = {fj |fj =
f(r;Pn,Pj), j ∈ Π.} denotes an M -elements reflectivity coefficient
vector at range cell r. Further, we rearrange the range focusing signal
Sc(r,Pn) into an N -element vector, i.e.,

Sc (r) = [Sc(r, 1), Sc(r, 2), . . . , Sc(r,N)]T (7)

When we take an additive noise ν (e.g., assuming a white Gaussian
noise with zero-mean and variance Σ) into account, the relationship
between the scattering coefficient vector f (r) and the observed signal
vector Sc (r) can be compactly written as a linear representation model

Sc (r) = A (r) f (r)+ν (8)

where A (r) ∈ CN×M denotes the measurement matrix of the range-
compression signal at range cell r, which can be expressed as a form
of partial Fourier basis matrix as follows.

A(r) =
[
ψ (r,P1)

T ,ψ (r,P2)
T , . . . ,ψ (r,PN )T

]T

=




exp(−j2kR(P1,P1)) exp(−j2kR(P1,P2))
exp(−j2kR(P2,P1)) exp(−j2kR(P2,P2))

...
...

exp(−j2kR(PN ,P1) exp(−j2kR(PN ,P2))
. . . exp(−j2kR(P1,PM ))
. . . exp(−j2kR(P2,PM ))
. . .

...
. . . exp(−j2kR(PN ,PM ))


 (9)

From (8), we can see that the objective of microwave array 3-
D imaging is to estimate the reflectivity vector f(r) from a linear
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equation with the given measurement matrix A(r) and the measured
signal Sc(r). Since the 2-D antenna array is sparse activate, the row
number N of the measurement matrix A(r) will be much smaller than
the column number M . Therefore, the sparse array microwave 3-D
imaging is typically an ill-posed linear inverse problem. Conventional
match-filter-based methods mainly resolve such an ill-posed linear
equation through the adjoint matrix of the Fourier transformation
f̂(r) = A(r)HSc(r). However, the estimated signal f̂(r) is definitely
not equal to the original signal f(r) because A(r)HA(r) 6= I, and an
error (A(r)HA(r)−I)Sc(r) is unavoidable. So the conventional match-
filter-based methods always suffer from important shortcomings, such
as resolution limitation to the array length and sidelobe artifacts.

3. COMPRESSED SENSING IMAGING

3.1. Basic Theory of Compressed Sensing

Compressed sensing (CS) enables the reconstruction of sparse signal
using a much smaller number of measurements than that under Nyquist
rate [30]. Assume that a vector x ∈ CM has a sparse representation
x = Ψα in terms of basis matrix Ψ ∈ CM×M , and only K ¿ M out
of M coefficients α are nonzero. A signal y is obtained from a noisy
linear measurement y = Φx+n ∈ CN , where Φ ∈ CN×M donates the
sensing matrix and N ¿ M . Obviously, this equation is an ill-posed
inverse problem and has infinitely many solutions. To find the sparse
unique resolution of the ill-posed linear equation, the approaches from
CS theory mainly recover the sparse signal α via a convex optimization
based on l1 norm.

α̂ = arg min
α
‖α‖1 s.t ‖y −ΦΨα‖2 < ε (10)

where ε bounds the amount of noise in the measured data y.
In [31], E. J. Candes indicated that CS can reconstruct the sparse
signal exactly if the measurement matrix ΦΨ satisfies some certain
properties. One of such properties is the Restricted Isometry Property
(RIP), which requires that

(1− δK) ‖χ‖2
2 ≤ ‖ΦΨχ‖2

2 ≤ (1 + δK) ‖χ‖2
2 (11)

for all vector χ such that ‖χ‖0 ≤ K, the restricted isometry constants
δK ∈ (0, 1). The smaller δK value means that the sparse signal can
be better reconstructed. The RIP is closely related to an incoherency
property. When the number of samples N is large, estimating and
testing the RIP is impractical. A tractable bound on the RIP can be
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obtained through the mutual coherence, which is defined as

µ(ΦΨ) = max
i,j,i6=j

|〈ϕi, ϕj〉|/(‖ϕi‖2‖ϕj‖2) (12)

where ϕi denotes the ith column from the measurement matrix ΦΨ.
It has been shown in [31] that the restricted isometry constants satisfy
the bound δk ≤ (k − 1)µ well with the mutual coherence µ.

In microwave imaging, if the underlying scene exhibits spatial
sparsity, the basis matrix in (10) can be selected as the identity matrix
Ψ =I. In this case, the mutual coherence µ(ΦΨ) for microwave array
imaging only depends on the sensing matrix Φ, which is expressed as
the partial Fourier matrix Φ = A (r) as mentioned in Section 2. Hence,
we have µ (ΦΨ) = µ (A (r)). From (6) and (9), we can clearly see that
the ith column of the matrix A (r) is corresponding to the phase-delay
function for the ith scene cell, which can expressed as

ϕi = [exp(−j2kR(P1,Pi)), exp(−j2kR(P2,Pi)), . . . ,
exp(−j2kR(PN ,Pi))] (13)

Submitting (13) into (12), the mutual coherence of the measurement
matrix A (r) in microwave array imaging can be written as

µ(A(r))= max
i, j, i 6=j

∣∣∣∣∣
N∑

n=1

exp[−j2k(R (Pn,Pi)−R(Pn,Pj))]

∣∣∣∣∣/N (14)

Obviously, if the system parameters are fixed, the mutual µ(A(r))
only depends on the interval of the underlying scene grids ∆Rij =
R(Pn,Pi) − R(Pn,Pj) and the position distribution Pn of the 2-D
array antenna elements. To reconstruct successfully by CS theory, we
need to select a proper interval of the scene grids and design a suitable
sparse 2-D antenna array so that the measurement matrix A(r) is
sufficient incoherent. E. J. Candes showed that the low coherence of a
partial Fourier matrix can be achieved by randomly select N rows of
the M ×M Fourier matrix [32]. According to this idea, a sparse array
antenna with its elements obeyed by random distribution is employed
to achieve low coherence in our experiments. The relationship between
the mutual coherence and the interval of the scene grids will be
discussed in Section 4.

3.2. Orthogonal Matching Pursuit Reconstruction

According to (10), given the measured echo signal Sc (r) and the
measurement matrix A (r), the sparse reflectivity of the 3-D underlying
scene f (r) can be recovered by CS as follows.

f (r) = arg min
f(r)

‖f (r)‖1 s.t. ‖Sc (r)−A (r) f (r)‖2 < ε (15)
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Recently, there are at least three classes of CS reconstruction
approaches [33], including lp norm regularization algorithms, greedy
algorithms and iteratively least squares algorithms, have been
developed to solving the ill-posed linear inverse problem. In this paper,
a well known greedy algorithm, named as orthogonal matching pursuit
(OMP) [34], is used to recover the sparse 3-D images of the illuminated
targets. The OMP algorithm is an iterative procedure, an atom is
selected and a residual is updated in each iteration. The next selected
atom is the one which maximizes the correlation with the current
residual. The pseudo-code for the OMP algorithm is summarized
in Algorithm 1. In this paper, the basis matrix Ψ in Algorithm 1
is selected as the identity matrix, and the measurement matrix Φ is
expressed as the partial Fourier basis matrix A(r).

Algorithm 1: Orthogonal matching pursuit (OMP).
Inputs: measurement matrix Φ, basis matrix Ψ,
measurements y.
Outputs: K-sparse approximation α, reflectivity vector x.
Initialize: α(0) = 0, r(0) = y, n = 0, Ω(0) = φ

while halting criterion false do
k(n) = arg max

k
‖φT

k r(n−1)‖2 {atom selection}
Ω(n) = Ω(n−1) ∪ k(n)

α(n) = (ΦΨ)H
Ω(n)y {signalestimation}

r(n) = y−ΦΨα(n) {measurement residual updated}
n ← n + 1

end while
return α ← α(n), x = Ψα

To recover exactly by the OMP algorithm, the sparsity K of the
original signal is usually selected as the iteration number. However,
the sparsity K of the observed scene is impossible to be exactly
known in microwaving imaging. To stop the OMP iteration procedure
and guarantee the performance, an iteration condition based on the
reconstruction error E = ‖α(n) − α(n−1)‖/‖α(n)‖ is used in this
paper, where α(n) denotes the recovered signal in the nth iteration.
If the error E is smaller than the threshold µ, the OMP iteration is
finished, where µ is a small positive constant. Note that the smaller
value of the threshold µ means that the smaller scattering coefficients
will be recovered in the images. In this paper, the value of the
threshold µ is chosen as 10−3, which is small enough to extract the
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domain scatterers reflectivity in the scene. Although simple and fast,
OMP algorithm is empirically competitive in terms of approximation
performance. It has been shown in [35] that the K-sparse signal x
can be exactly reconstructed by OMP with the measurements number
M ≥ O(K log(N/K)) if the mutual coherence µ ≤ 1/(2K − 1).

To recover a K-sparse M -elements signal with N -elements
measurements, the computational complexity of the standard OMP
strategies is about O(KNM). In practice, the underlying 3-D scene
usually consists of a huge number of cells, e.g., the number M will be
one billion if the discrete 3-D scene size is 1000×1000×1000. Moreover,
the number of echo samples obtained by the 2-D antenna array is
also very large, e.g., an 100 × 100 antenna array with 1000 sampling
rate can produce ten million samples. In this case, the application of
OMP algorithm for microwave 3-D imaging may suffer from very large
computational complexity. In this paper, as seen from (8) in Section 2,
we divide the underlying 3-D scene into a series of equality-range 2-D
slices, and recover the reflection coefficients of these slices separately by
OMP. If the 3-D scene is divided into P equality-range 2-D slices, the
size, the measurements number and the sparsity of each slice will be
only 1/P of the original 3-D scene. Then the computational complexity
of the OMP can be reduced to O(KNM/P 2), which is much smaller
than O(KNM). Therefore, the equality-range slice segmentation can
significantly reduce the computation of the OMP recovery in microwave
3-D imaging.

3.3. The Performance Metrics

Since the true 3-D images of the underlying scenes are not available
in our experiments, here we use two quality metrics, the target-to-
background ratio (TBR) and the entropy of image (ENT) [36], to
quantitatively evaluate the performance of the recovered images.

The TBR is defined as

TBR = 20 log

(
NB

NA

∑
i∈T (|(α)i|)∑
j∈B (|(α)j |)

)
(16)

where T denotes the target region and B denotes the background
region, NA is the number of pixels in the target region, NB is the
number of pixels in the background region. A higher TBR value
indicates that the target is easier to extract from its local background.

The ENT is a statistical measure that can be used to characterize
the texture of the image, which is defined as

ENT = −
G∑

i=1

p (i) log2 (p (i)) (17)
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where p(i) denotes the gray level intensity histogram of the image, G
is the number of levels in the histogram. A smaller ENT value means
a sharper image.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of CS recovery in sparse array
microwave 3-D imaging, some experiments for different types of targets
were conducted by the developed microwave array 3-D imaging system.
The system works on X-band with carrier frequency fc = 9.62GHz,
signal bandwidth about B = 120 MHz and pulse repetition frequency
PRF = 20 Hz. In these experiments, we employ the motion control
module to synthesize three types of 2-D antenna arrays, and all the
effective lengths of them are 1 m× 1m. One is a dense 2-D array with
its elements are obeyed by a periodic triangle distribution, as shown
in Figure 2(a), it’s activate elements number is 8000. The other two
are sparse 2-D antenna arrays with their elements are followed by a
random distribution, which are displayed in Figures 2(b) and (c), their
activate elements numbers are 2000 and 500, respectively. Note that
the sensor motion errors in these experiments have been effectively
corrected by the phase gradient autofocus algorithm.

Figure 3 shows the mutual coherence of the measurement matrix
for these 2-D antenna arrays via various intervals of the adjacent
scene grids. These mutual coherences are similar to their system
PSFs, the values will decrease if the interval of the adjacent scene
grids increases. Obviously, a bigger scene grid means a lower value of
mutual coherence, which can guarantee the performance of CS recovery
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Figure 2. The three 2-D array used in the experiments. (a) The
periodic triangle distribution dense array with 8000 elements. (b) The
random distribution sparse array with 2000 elements. (c) The random
distribution sparse array with 500 elements.
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(a) (b) (c)

Figure 3. The mutual coherence of the measurement matrix via the
space of the scene grid. (a) The periodic triangle distribution dense
array with 8000 elements. (b) The random distribution sparse array
with 2000 elements. (c) The random distribution sparse array with
500 elements.
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Figure 4. The reconstructed results of the single point target in
the array plane. (a) The conventional BP algorithm. (b) The OMP
algorithm. Left: the dense 2-D array with 8000 elements, middle: the
sparse 2-D array with 2000 elements, right: sparse 2-D array with 500
elements.

with higher probability. But a large scene grid also can cause a low
resolution. Hence, the space of scene cells should be properly selected
based on these distributions of the mutual coherence and the image
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Figure 5. The three balls scene. (a) The photograph. (b) The
geometrical model.

resolution. Commonly, to obtain a low mutual coherence and keep CS
reconstruction successfully, the space of the adjacent scene cells should
be larger than half of the nominal Rayleigh resolution (the 3 dB width
of system’s PSF), but smaller than the nominal Rayleigh resolution.

In the first experiment, the underlying scene consists of only one
small copper ball. The distance from this ball to the antenna array
platform is about 50 m, so the ball can be seen as an ideal single-point
scatterer. The reconstructed images of this ball on the 2-D array plane
by the conventional BP and the OMP algorithms, obtained from the
above three different 2-D antenna arrays, are shown in Figures 4(a)
and (b), respectively. The size of these images is 51 × 51, and the
interval of adjacent cells is 0.2 m. From Figure 4, we can see that
the conventional BP algorithm suffers from high side-lobes and low
resolution, especially when the antenna array is very sparse with 500
elements, the ball is almost flooded in the sidelobes and very difficult
to be distinguished. However, the OMP algorithm can reconstruct
the single-point ball correctly, even if the array is extremely sparse
with only 500 elements, its result still outperforms the conventional
BP image obtained from the dense antenna array.

In the second experiment, the observed scene consists of three
balls, one is copper and the other two are irons. The scene’s photograph
and the geometric model are displayed in Figures 5(a) and (b),
respectively. The range from the ball 1 to the array antenna platform
is approximate 25 m. The nominal Rayleigh resolution at this range
is about ρxy = λR/(2L) ≈ 0.39m. The ball 1 (the copper ball) is
larger than the ball 2 and 3 (the irons ball), so the reflectivity of the
ball 1 should be stronger than the other two balls in the recovered
image. The 3-D scene space is divided into 51 × 51 × 41 cells with
0.2m grid on the y-z plane and 1m grid x axis. The 3-D reconstructed
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results of the BP and the OMP algorithms, obtained by the dense
antenna array in Figure 2(a) and the sparse antenna array in Figure 2
(b), are demonstrated in Figure 6(a). The left and middle images are
the BP results from the dense and the sparse arrays, and the right
image is the OMP result from the sparse array. In these images,
only the top 25 dB magnitude cells are displayed, and the darker color
corresponds to the larger value. To observe clearly in each direction,
the top view, the side view and the front view of these 3-D images are
shown in Figures 6(b) to (d), respectively. Note that there are two
dominate strong scatterers in the ball 2 and ball 3 positions due to
the reflectivity of the wooden supports. As seen from Figure 6, the
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Figure 6. The reconstructed results of the three balls. (a) The 3-D
images. (b) The top view images. (c) The side view images. (d) The
front view images. Left: the BP results from the dense 2-D array with
8000 elements, middle: the BP results from the sparse 2-D array with
2000 elements, right: the OMP results from the sparse 2-D array with
2000 elements.

3.3m

9.2m

Lamp

Fence 1

Fence 2
X

Y

0Fence 2 Fence 1

2.4 m 1.2 m

(a) (b)

Figure 7. The lamp and fences scene. (a) The photograph. (b) The
geometrical model.

conventional BP can distinguish the three balls when the 2-D antenna
array is dense with 8000 elements. However, when the antenna array
becomes a sparse array with only 2000 elements, the BP algorithm
is difficult to extract the three balls in the recovered image due to
the high side-lodes interference. In contrast to BP, the reconstructed
images from the OMP algorithm can significantly suppress the high
side-lobes and well capture the features of the three balls, e.g., their
heights, locations and distances are similar to the actual measured
values, which is useful for target detection and recognition. Further, it
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(a)

(b)

(c)

(d)

Figure 8. The reconstructed results of the lamp and fences scene.
(a) The 3-D images. (b) The top view images. (c) The side view
images. (d) The front view images. Left: the BP results from the
dense 2-D array with 8000 elements, middle: the BP results from the
sparse 2-D array with 2000 elements, right: the OMP results from the
sparse 2-D array with 2000 elements.

can be obviously observed that the reflectivity of the ball 1 is stronger
than the ball 2 and 3, which fits their physical truth.

In the third experiment, the underlying scene consists of a lamp
and two metal fences, its photograph and geometric model are shown
in Figures 7(a) and (b), respectively. These targets can be seen as
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multiple-points scatterers. The distance between the lamp and the
antenna array is about 107 m. The 2-D antenna array employed here
is the same as that in the second experiment. Figure 8(a) shows the
3-D reconstructed images from the conventional BP and the OMP,
respectively. The top 25 dB magnitude cells are displayed. The size
of these 3-D images is 81 × 41 × 41, and each grid is 0.5m. The
top view, the side view and the front view of these recovered 3-D
images are shown in Figures 8(b) to (d), respectively. From Figure 8,
we can clearly see that the proposed OMP algorithm provides a
better reconstruction for the lamp and the fences compared to the
conventional BP algorithm, especially in the case of the sparse 2-D
antenna array with only 2000 elements. In addition, from the OMP
images we can clearly distinguish the tops and bottoms of the lamp
and the fence 2, and also easily obtain that the heights of the lamp
is about 14.5 m and the height of the fence 2 is about 2.4m, which
are very close to their real heights. Hence, based on the observation
that the observed targets usually exhibit spatial sparsity, the scatterer
imaging can be converted into a sparse signal reconstruction problem.
With this idea, microwave array system can provide a high-quality 3-D
image of the underlying targets even if the 2-D antenna array is very
sparse. These results may have a significant effect for many microwave
imaging applications where the number of the antenna array elements
is limited.

The quantitative evaluation of the above second and third
experiments with TBR and ENT is given in Table 1. We find
that the TBR decreases and the ENT increases for the BP results
when the number of the antenna array elements decreases, but these
metrics almost never change for the OMP results. Moreover, the
OMP algorithm provides much higher TBR and lower ENT than the
conventional BP algorithm, which means that the OMP improves the
quality of reconstructed image and obtains a sharper image compared
with the classical BP algorithm.

Table 1. Evaluation results of the experiments.

Metrics
The second experiment The third experiment
BP (dB) OMP (dB) BP (dB) OMP (dB)

TBR
The dense array 43.92 81.33 37.25 69.98
The sparse array 38.88 81.31 33.22 69.97

ENT
The dense array 2.063 0.012 2.907 0.043
The sparse array 2.732 0.013 3.618 0.043
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5. CONCLUSIONS

In this paper, we present a sparse array microwave 3-D imaging
technique that employs a compressed sensing algorithm to reconstruct
the 3-D image. Unlike the traditional system requires a dense 2-
D array, we only randomly activate a small number of the elements
to synthesize a sparse 2-D antenna array. By exploiting the typical
sparsity in 3-D image, we pose the 3-D imaging as finding the sparse
solutions to the under-determined linear equations constructed by the
sparse array measurements. To avoid the large computation of the
3-D space recovery, we divide the scene into a series of equal-range
2-D slices. Finally, experimental results from an X-band microwave
array imaging system are presented to validate the feasibility and
the capability of the sparse array microwave 3-D imaging based
on CS reconstruction. The results demonstrate that the presented
CS algorithm can produce high-quality 3-D images with enhanced
resolution and suppressed sidelobes, and also can maintain the targets’
features well compared with the conventional methods. Our results
make the sparse array possible to be applied in high-quality and low-
cost microwave imaging system. It also can be an example for many
other similar imaging systems, such as sonar and acoustic imaging,
etc..
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