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Abstract—This paper presents an unconditionally stable leapfrog
alternating-direction-implicit finite-difference time-domain (ADI-
FDTD) method for lossy media. Conductivity terms of lossy media
are incorporated into the leapfrog ADI-FDTD method in an anal-
ogous manner as the conventional explicit FDTD method since the
leapfrog ADI-FDTD method is a perturbation of the conventional
explicit FDTD method. Implementation of the leapfrog ADI-FDTD
method for lossy media with special consideration for boundary con-
dition is provided. Numerical results and examples are presented to
validate the formulation.

1. INTRODUCTION

Recently an unconditionally stable leapfrog alternating-direction-
implicit finite-difference time-domain (ADI-FDTD) method that is
free from the Courant-Friedrich-Lewy (CFL) stability criterion has
been developed [1]. The leapfrog ADI-FDTD method is derived from
the ADI-FDTD method [2–4], and has similar numerical stability and
dispersion properties as the ADI-FDTD method [5]. It is more memory
efficient than the ADI-FDTD method as it is leapfrog staggered in
time, and thus does not require the field variables of the intermediate
time-step [6]. Alternatively, the leapfrog ADI-FDTD method may
be considered as a perturbation of the conventional explicit FDTD
method [5], and consequently it requires slightly more memory than the
conventional explicit FDTD method [7, 8] due to the implementation
of the tridiagonal matrix.

Several schemes for the formulation of lossy media have been
recently unified for the fundamental ADI-FDTD method [9]. The
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fundamental ADI-FDTD method has right-hand-side free of matrix
operator, and thus it is simpler and more efficient than the
conventional ADI-FDTD method. It is found that the backward-
backward scheme is not unconditionally stable, while the forward-
forward scheme is only first-order temporal accurate. The time-
averaging scheme is unconditionally stable and second-order temporal
accurate. Furthermore, several methods have been proposed in [10] for
the implementation of the perfect electric conductor (PEC) condition
for the conventional ADI-FDTD method. The method is more
complicated as the PEC condition is incorporated directly into the
modified tridiagonal matrix. On the other hand, it can be verified
that PEC conditions may also be realized by proper definition of loss
terms in the media.

In [11], the leapfrog ADI-FDTD method was employed to model
a two-dimensional electromagnetic bandgap waveguide filled with
dielectric posts. However, the dielectric posts were modeled ideally.
To further enhance the simulation model, we could incorporate more
physical material parameter, such as the dielectric losses. Therefore,
it is important to develop a simple and straightforward method to
incorporate loss terms into the leapfrog ADI-FDTD method.

Intuitively, to formulate the leapfrog ADI-FDTD method for lossy
media, one should approach such derivation by first considering the
conventional ADI-FDTD method for lossy media [12, 13]. However,
such an approach would not directly result in the proper formulation
of the leapfrog ADI-FDTD method for lossy media.

Furthermore, the leapfrog ADI-FDTD method is a fully implicit
FDTD method, and hence requires special consideration for the
treatment of the boundary condition. The Mur absorbing boundary
condition (ABC) for the leapfrog ADI-FDTD method was implemented
in [14] by formulating the Mur update equations for both the implicit
electric and magnetic field updates. Numerical instabilities may exist
if the boundary conditions are not treated carefully during actual
implementation.

In this paper, we present an unconditionally stable leapfrog ADI-
FDTD method for lossy media. In Section 2, conductivity terms of
lossy media are incorporated into the leapfrog ADI-FDTD method in
an analogous manner as the conventional explicit FDTD method since
the leapfrog ADI-FDTD method is a perturbation of the conventional
explicit FDTD method. Implementation of the leapfrog ADI-FDTD
method for lossy media with special consideration for boundary
condition is provided. In Section 3, numerical results and examples
are presented to validate the formulation.
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2. FORMULATION FOR LOSSY MEDIA

In this section, we present the three-dimensional (3-D) leapfrog ADI-
FDTD method for lossy media. Here, we assume wave propagation in a
lossy medium with permittivity ε, permeability µ, electric conductivity
σ and magnetic conductivity σ∗.

Since the leapfrog ADI-FDTD method is a perturbation of
the conventional explicit FDTD method, we can incorporate the
conductivity terms of lossy media for the leapfrog ADI-FDTD
method in an analogous manner as the conventional explicit FDTD
method [15]. Consequently, electric and magnetic losses are
incorporated into the leapfrog ADI-FDTD method by means of
introducing conductivity terms for lossy media at the right-hand-side
of the update equations as follows (illustrated here for Ex and Hx field
components).
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where ∂x, ∂y, ∂z are the spatial difference operators for the first
derivatives along x, y, z directions, respectively. Here, electric losses
are implemented in (1), while magnetic losses are implemented in (2).
Note that it is not proper to directly formulate the leapfrog ADI-FDTD
method for lossy media by following strictly the previous derivation of
the leapfrog ADI-FDTD method from the conventional ADI-FDTD
method for lossy media. This is because of the additional (non-unity)
coefficients incurred for the inclusion of the conductivity terms of lossy
media. For the leapfrog ADI-FDTD method for lossless media, these
coefficients are unity and permit the exact cancellation of the mixed
derivative terms. However, the previous derivation of the leapfrog ADI-
FDTD method [1] is no longer directly applicable for the leapfrog ADI-
FDTD method for lossy media, as these coefficient are non-unity, and
they do not eliminate the mixed derivative terms. Further discussion
with detailed explanations of the above is provided in the Appendix.
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By taking time-averaging of the conductivity term in (1), the
update equation for Ex reads(
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and after some manipulation, we arrive at(
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The update equations for the other field components can be obtained
in an analogous manner. Similar to the conventional explicit FDTD
method, time-averaging of the conductivity term for the leapfrog ADI-
FDTD method is second-order temporal accurate.

Next, we proceed to provide the actual implementation of the 3-D
leapfrog ADI-FDTD method for lossy media. The update equations
for the leapfrog ADI-FDTD method for lossy media are given as

(i) Implicit updating for E
n+ 1

2
x :

− ∆t2

4µε∆y2
Ex|n+ 1

2

i+1
2
,j−1, k

+
(

1+
∆t2

2µε∆y2
+

∆tσ

2ε

)
Ex|n+ 1

2

i+ 1
2
,j, k

− ∆t2

4µε∆y2
Ex|n+ 1

2

i+ 1
2
,j+1, k

= − ∆t2

4µε∆y2
Ex|n−

1
2

i+ 1
2
,j−1,k

+
(
1+

∆t2

2µε∆y2
−∆tσ

2ε

)
Ex|n−

1
2

i+ 1
2
,j,k
− ∆t2

4µε∆y2
Ex|n−

1
2

i+ 1
2
,j+1,k

+
∆t

ε∆y

(
Hz|ni+ 1

2
,j+ 1

2
,k
−Hz|ni+ 1

2
,j− 1

2
,k

)
− ∆t

ε∆z

(
Hy|ni+ 1

2
,j,k+ 1

2
−Hy|ni+ 1

2
,j,k−1

2

)
(4)

(ii) Implicit updating for Hn+1
x :

− ∆t2

4µε∆y2
Hx|n+1

i,j− 1
2
,k+ 1

2

+
(
1+

∆t2

2µε∆y2
+

∆tσ∗

2µ

)
Hx|n+1

i,j+ 1
2
,k+ 1

2

− ∆t2

4µε∆y2
Hx|n+1

i,j+ 3
2
,k+ 1

2

= − ∆t2

4µε∆y2
Hx|ni,j− 1

2
,k+ 1

2

+
(

1 +
∆t2

2µε∆y2
− ∆tσ∗

2µ

)
Hx|ni,j+ 1

2
,k+ 1

2
− ∆t2

4µε∆y2
Hx|ni,j+ 3

2
,k+ 1

2

+
∆t

µ∆z

(
Ey|n+ 1

2

i,j+ 1
2
,k+1

−Ey|n+ 1
2

i,j+ 1
2
,k

)
− ∆t

µ∆y

(
Ez|n+ 1

2

i,j+1,k+ 1
2

−Ez|n+ 1
2

i,j,k+ 1
2

)
(5)



Progress In Electromagnetics Research M, Vol. 26, 2012 177

Referring to (5), the Hx field components are solved implicitly using
a tridiagonal matrix, and involve terms that are out-of-domain (e.g.,
Hx|i,j− 1

2
,k+ 1

2
). Therefore, special consideration must be taken for these

out-of-domain terms when implementing the boundary condition [16].
As an illustration, we consider the commonly used PEC boundary

condition. Implementation of more complex boundary condition follows
in a similar manner.

It is straightforward to impose the PEC boundary condition for
the electric fields. We can simply define the tangential electric fields at
the PEC boundaries to be zero. However, as mentioned above, the out-
of-domain terms for the tangential magnetic fields are non-zero, and
this is critical for the proper implementation of the PEC boundary
condition. Note that this issue does not exist for the conventional
ADI-FDTD method as the tangential magnetic fields are (usually) not
updated implicitly, and thus there are no such out-of-domain terms.

To circumvent this issue, we resort to the image theory. Since the
Hx field components are updated in the y-direction, we consider the
PEC at the j = 0 boundary. By applying the image theory, we can
rewrite (5) as
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Note that the tangential electric field components at the j = 0
boundary are defined as zero. The update equations for the other
magnetic field components can be written down by permuting the
subscript indices accordingly.

Finally, it is also worth highlighting that the out-of-domain terms
of the magnetic field updates must be treated carefully especially
during actual implementation. Improper indexing and/or material
assignment may potentially cause numerical instability. In addition, it
is necessary to implement the PEC boundary condition properly for
the perfectly matched layer (PML) as it is eventually terminated by
PEC walls [17].

3. NUMERICAL RESULTS

In this section, we validate the formulation of the leapfrog ADI-FDTD
method for lossy media through numerical simulations. The simulation
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setup for a PEC cavity meshed with 50 ×30 × 9 uniform cells of size
1 mm is shown in Figure 1. It is excited by a line Gaussian pulse,
extended from bottom to top passing through the cavity center as

Jz = e
−

(
t−t0

τ

)2

, τ = 150 ps, t0 = 3τ (7)

The Courant limit time step size is ∆tCFL = ∆
vmax

√
3
, where vmax is

the maximum phase velocity of wave propagation in the medium. We
also denote CFLN = ∆t

∆tCFL
. The observation point is located at cell

(15, 15, 5).
Figure 2(a) plots the time-domain Ez field component computed

using the conventional explicit FDTD method, ADI-FDTD method
and leapfrog ADI-FDTD method for a lossless cavity. The CFLN
for the conventional explicit FDTD method is 1, while the CFLN
for the ADI-FDTD method and leapfrog ADI-FDTD method is 8. It
is filled with a lossless (σ = 0 S/m) medium of relative permittivity
εr = 2. It can be observed that the Ez field component of the leapfrog
ADI-FDTD method resonants in a similar manner as the conventional
explicit FDTD method and ADI-FDTD method.

Next, to ascertain the formulation of the leapfrog ADI-FDTD
method for the lossy media, we chose the electric conductivity σ as
0.02 S/m, while retaining the same relative permittivity (εr = 2).
Figure 2(b) shows the time-domain Ez field component computed
using the conventional explicit FDTD method, ADI-FDTD method
and leapfrog ADI-FDTD method for a lossy cavity. As before, the
CFLN for the conventional explicit FDTD method is 1, while the
CFLN for the ADI-FDTD method and leapfrog ADI-FDTD method is
8. The lossy nature of the medium is clearly depicted by the decaying
Ez waveform.

From Figure 2, we can also observe that the Ez field component of

Figure 1. Simulation setup for PEC cavity.



Progress In Electromagnetics Research M, Vol. 26, 2012 179

0 0.5 1 1.5 2 2.5
 2

 1

0

1

2

3
x 10

 3

Time (ns)

E
z  

(V
/m

)

FDTD CFLN = 1

ADI FDTD CFLN = 8

Leapfrog ADI FDTD CFLN = 8

0 0.5 1 1.5 2 2.5
 2

 1

0

1

2

3
x 10

 3

Time (ns)

E
z 

 (
V

/m
)

FDTD CFLN = 1

ADI FDTD CFLN = 8

Leapfrog ADI FDTD CFLN = 8

(a) (b)

- -

-

-

-

-

Figure 2. Time-domain Ez field component computed using
conventional explicit FDTD, ADI-FDTD and leapfrog ADI-FDTD
method for various CFLN. (a) Relative permittivity εr is 2 and electric
conductivity σ is 0 S/m. (b) Relative permittivity εr is 2 and electric
conductivity σ is 0.02 S/m. The lossy nature of the medium is clearly
depicted by the decaying Ez waveform.

the leapfrog ADI-FDTD method differs slightly from the conventional
explicit FDTD method and ADI-FDTD method during the source
excitation period at time instant t = 0.5 ns. This is due to the different
source excitation scheme of the various FDTD methods. Figure 3 plots
the time-domain Ez field component computed using the conventional
explicit FDTD method, ADI-FDTD method and leapfrog ADI-FDTD
method for CFLN = 1. It is clear that the various methods agree very
well for CFLN = 1, and the discrepancies due to the different source
excitation schemes are not longer visible. As mentioned previously,
the leapfrog ADI-FDTD method is a fully implicit FDTD method.
Therefore, the current source of the leapfrog ADI-FDTD method is
excited implicitly at half time step.

For a practical example, we consider an improvised explosive
device (IED) buried into a ground filled with soil. IED is a threat
to humans as they may explode and incur injuries and even death
to surrounding personnels. High power microwaves (HPM) may be
employed to neutralize such threats by overloading the electronics of
the the IED with high intensity electric fields [18]. Here, we examine
the possible effects of such microwaves on an IED buried in soil.

The simulation setup for the IED buried in a ground filled with
soil is shown in Figure 4. The IED is modeled as a rectangular PEC
box with σ = 1E300 S/m and it is buried 5 cm below the surface of



180 Gan and Tan

the soil. The relative permittivity εr of the soil is 4.4, while the loss
tangent is 0.046 [19]. Hence, the electric conductivity σ of the soil is
0.0338 S/m.

The source is excited in freespace by a sinusoidal modulated
Gaussian pulse given by

Jz = sin [2πf0 (t− t0)] e
−

(
t−t0

τ

)2

(8)
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Figure 3. Time-domain Ez field component computed using
conventional explicit FDTD, ADI-FDTD and leapfrog ADI-FDTD
method for CFLN = 1. (a) Relative permittivity εr is 2 and electric
conductivity σ is 0 S/m. (b) Relative permittivity εr is 2 and electric
conductivity σ is 0.02 S/m.

Figure 4. Simulation setup for improvised explosive device (IED)
buried in ground filled with soil.
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where f0 = 3 GHz, τ = 0.5 ns and t0 = 3τ . The computation
domain has a dimension of 70× 80× 80 grids with uniform cell size of
∆ = ∆x = ∆y = ∆z = 2.5 mm. It is truncated by a PML of 10 cell
thickness [17, 20].

Figure 5(a) presents the received Ez field component located in
freespace at observation point A (51, 40, 60), while Figure 5(b) shows
the received Ez field component in the soil. It is located one cell above
the IED at observation point B (35, 40, 36) The Ez field components
in the two figures propagate almost the same distance away from the
source, but in different media. Note the difference in scales between
the two figures.

By comparing Figures 5(a) and 5(b), it can be observed that
the electric field component in the soil has lower magnitude than the
electric field component in freespace. There are mainly two physical
mechanism involved in this phenomena. Firstly, reflection occurs at
the freespace-soil interface due to the difference in refractive index of
the two media. Therefore, only a portion of the microwave would
penetrate into the soil. Furthermore, such reflection is a function of
incidence angles. For safety and practical reasons, the distance between
the HPM source and the IED is usually quite large. Consequently, the
incidence angle is large and reflection at the material interface is usually
not negligible.

Secondly, the microwaves that penetrate into the soil are further
attenuated due to the lossy nature of soil. Along the propagation in
the lossy soil, power is absorbed by the soil and not by the IED. Note
the IED is only buried quite shallow in the soil in this example. Thus,
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Figure 5. (a) Received Ez fields component in freespace. (b) Received
Ez field component in soil.
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(a) (b)

(c)

Figure 6. Magnitude of electric current density induced on the surface
of the IED. (a) Conventional explicit FDTD method for CFLN = 1.
(b) ADI-FDTD method for CFLN = 4. (c) Leapfrog ADI-FDTD
method for CFLN = 4.

HPM systems might be more effective in neutralizing IED threats in
freespace, rather than IED buried in soil or in general lossy media.

Figure 6 shows the magnitude of the electric current density
induced on the surface of the IED for the conventional explicit FDTD
method, ADI-FDTD method and leapfrog ADI-FDTD method. Fairly
good agreement can be seen for the various methods. The maximum
surface electric current density for the conventional explicit FDTD
method, ADI-FDTD method and leapfrog ADI-FDTD method is 5.6E-
3A/m, 6.0E-3 A/m and 6.2E-3 A/m, respectively.

4. CONCLUSION

This paper has presented an unconditionally stable leapfrog ADI-
FDTD method for lossy media. Conductivity terms of lossy media
have been incorporated into the leapfrog ADI-FDTD method in an
analogous manner as the conventional explicit FDTD method since
the leapfrog ADI-FDTD method is a perturbation of the conventional
explicit FDTD method. Implementation of the leapfrog ADI-FDTD
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method for lossy media with special consideration for boundary
condition has been provided. Numerical results and examples have
been presented to validate the formulation. This formulation might
also suggest how we can readily extend the leapfrog ADI-FDTD
method to model dispersive media as a future work.

The leapfrog ADI-FDTD method for lossy media can be used
to efficiently model complex structures with practical material
parameters. This is achieved by properly defining the conductivity
terms of the media at the required locations in the computational
domain [21].

APPENDIX A. DISCUSSION ON THE DERIVATION OF
THE LEAPFROG-ADI FDTD METHOD FOR LOSSY
MEDIA

In this section, we discuss the derivation of the leapfrog ADI-FDTD
method for lossy media, by following strictly the previous derivation
of the leapfrog ADI-FDTD method from the conventional ADI-FDTD
method for lossy media.

For simplicity, we assume a medium with permittivity ε,
permeability µ and electric conductivity σ. The magnetic conductivity
σ∗ is not considered here, but may be appended accordingly, if
necessary. The update equation for the Ex field component of the
conventional ADI-FDTD method in the first procedure for electrically
lossy media is given by
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where time-averaging is adopted. Likewise, the update equation for
the Hz field component of the conventional ADI-FDTD method in the
first procedure can be expressed as

H
n+ 1

2
z = Hn

z +
∆t

2µ

(
∂yE

n+ 1
2

x − ∂xEn
y

)
(A2)

The implicit update equation for Ex can be obtained by substituting
(A2) into (A1) as

E
n+ 1

2
x =

(
1−∆tσ

4ε

)
(
1+ ∆tσ

4ε

)En
x +

∆t
2ε(

1+ ∆tσ
4ε

) ∂y

[
Hn

z +
∆t

2µ

(
∂yE

n+ 1
2

x −∂xEn
y

)]

−
∆t
2ε(

1 + ∆tσ
4ε

) (
∂zH

n
y

)
(A3)



184 Gan and Tan

and after some manipulations, the implicit Ex update equation for the
conventional ADI-FDTD method for the first procedure reads
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To formulate the leapfrog ADI-FDTD method for lossy media,
we first consider the second procedure of the conventional ADI-FDTD
method, but at the previous time step. The Ex update equation can
then be written as
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while the Hz update equation can be expressed as
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Next, we substitute (A6) into (A5) and obtain
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4ε

) ∂y

[
Hn

z −
∆t

2µ

(
∂yE

n− 1
2

x −∂xEn
y

)]

−
∆t
2ε(

1 + ∆tσ
4ε

)∂zH
n
y (A7)

Finally, we substitute (A7) into the implicit tridiagonal Ex update
equation (A4) of the first procedure to arrive at

E
n+1

2
x −

∆t
2ε(

1+ ∆tσ
4ε

) ∆t

2µ
∂2

yE
n+1

2
x =

(
1−∆tσ

4ε

)
(
1+ ∆tσ

4ε

)
{(

1−∆tσ
4ε

)
(
1+ ∆tσ

4ε

)E
n−1

2
x +

∆t
2ε(

1+ ∆tσ
4ε

) ∂yH
n
z

−
∆t
2ε(

1 + ∆tσ
4ε

) ∆t

2µ
∂2

yE
n− 1

2
x +

∆t
2ε(

1 + ∆tσ
4ε

) ∆t

2µ
∂y∂xEn

y −
∆t
2ε(

1 + ∆tσ
4ε

)∂zH
n
y

}

+
∆t
2ε(

1 + ∆tσ
4ε

)∂yH
n
z −

∆t
2ε(

1 + ∆tσ
4ε

) ∆t

2µ
∂y∂xEn

y −
∆t
2ε(

1 + ∆tσ
4ε

)∂zH
n
y (A8)

Referring to (A8), it is clear that the mix partial derivative (∂y ∂x En
y )

terms do not cancel off due to the additional (non-unity) coefficient
1−∆tσ

4ε

1+∆tσ
4ε

. This cancellation is essential for the formulation of the leapfrog

ADI-FDTD method. Thus, the aforementioned derivation in this
section does not directly leads to the leapfrog ADI-FDTD method for
lossy media.
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