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Abstract—Excitation of extraordinarily polarized azimuthal eigen
modes by modulated annular electron beam is shown to be
characterized by the increase of instability growth rates compared
with the case of non-modulated electron beam. Interaction between
the modulated beam and azimuthal eigen modes happens in the
range of electron cyclotron frequency in waveguides with metal walls,
which are partially filled with cold magneto-active plasma. Non-
linear set of differential equations, which describs excitation of these
azimuthal modes by an annular electron beam is derived and analyzed
numerically. Different scenarios of the beam-plasma interaction
depending on relation between azimuthal mode number of the exited
waves and periodicity of azimuthal modulation of the beam density,
degree and manner of the beams’ modulation are studied numerically.

1. INTRODUCTION

Active research of plasma filled structures during the last years is
motivated first of all by a request to elaborate electronic devices,
which will be able to generate electromagnetic emission in higher
frequency band, be continuously tunable (over a broad frequency
range) and be of a relatively small-sized. Application of plasma in
plasma filled metal waveguides is intended mainly for neutralization of
a space charge of the transported beams and for creation favorable
conditions for propagation of eigen modes there. A plasma filling
strongly effects on dispersion properties of such waveguide structures.
Various aspects of the problem of an interaction between electron
beams and the eigenmodes of plasma filled waveguides are investigated
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in [1–3]. The main attention is paid there to studying the processes of
waves’ excitation in magneto-active plasma waveguides. However, one
can’t consider the theory of beam-plasma instabilities as a completely
developed theory because process of interaction between charged
particle beams and eigen waves of plasma waveguides essentially
depends on a lot of factors, including dispersion properties of
these waves, their polarization, spatial distribution of their fields,
geometrical peculiarities and design features of the utilized waveguides.

Properties of waveguides with different designs and their eigen
modes are actively studied during last thirty years in order to
elaborate small-sized electromagnetic generators and amplifiers, which
can operate in a wide frequency band and can be smoothly tuned.
Taking into account advantages of plasma filled waveguides over the
conventional vacuum tubes applied in vacuum electronics one can
understand why the more and more attention is paid to elaboration of
magneto-active plasma filled waveguides and/or to waveguides, which
are made of special meta-materials [4, 5]. This allows one to develop
radio-electronic devices, which operate at modes with interesting
features like non-reciprocal waves or unidirectional waves. Among
them, it should be indicated azimuthal eigen modes, which propagate
in cylindrical plasma filled waveguide structures across an external
steady axial magnetic field [6]. As it is shown in [7] azimuthal modes
(AMs) can be excited by charged particle beams rotating above plasma
interface across a strong external steady axial magnetic field.

Results of studying beam-plasma interaction are widely utilized in
different branches of plasma physics, e.g., for studying plasma heating
in fusion devices [8, 9], for studying generation of high power radiation
in various plasma electronic devices [10–15]. Moreover, the relativistic
electron beams are offered to be used even for plasma confinement. In
the paper [16], authors present an example of calculating a steady state
of compact toroidal beam-plasma system consisting of the immobile ion
background and relativistic electron beam.

The possibility of AMs excitation by a relativistic electron beam
rotating over plasma column was shown at the first time in the linear
approximation in the paper [17]. The peak value of a growth rate of this
instability and its dependence on plasma density, the azimuthal mode
number, value of an external steady magnetic field and a thickness
of the vacuum gap, which separates plasma column form metal wall
of the waveguide have been studied analytically and numerically.
Non-linear theory of the AM excitation by a non-modulated charged
particle beam has been presented in [18]. Influence of different plasma
waveguides’ parameters have been investigated therein, including effect
of an external radial electric field. But utilization of an annular charged
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particle beams for excitation of electromagnetic waves is a wide theme,
since its investigation is far from completion. For instance, mechanisms
for the generation and amplification of electromagnetic waves by a thin-
walled annular beam of electrons rotating in a radial electric field in free
space are studied theoretically in [19]. It is shown that electromagnetic
waves can be generated and amplified under the Cherenkov resonance
conditions.

To increase efficiency of a beam-plasma interaction, one can apply
a preliminary spatial modulation of charged particle beams [1, 2, 4].
One of the main branches of a modulated beam application is
construction of powerful super high frequency generators, see, e.g.,
[20]. The evolution of a velocity distribution function of a modulated
beam during its motion in dense plasma is considered in [21]. There
an influence of background plasma inhomogeneity on the modulated
beam evolution is studied numerically and comparison of the results
obtained by simulation with laboratory experiments data is carried out
as well.

Since excitation of AMs by uniform annular beam was studied
in [18] then in order to develop theory of AMs excitation the present
paper is devoted to non-linear theory of azimuthal eigen modes’
excitation by the annular electron beam, which density is preliminary
modulated. The paper is organized as follows. Formulation of the
problem is presented in Section 2. Section 3 is devoted to discussion
of the obtained results. Conclusions are summarized in the Section 4.

2. BASIC EQUATIONS

Let’s consider cylindrical metal waveguide of radius R2 inside which a
column of cold magneto-active plasma of radius R1 is located co-axially.
It’s supposed that an external constant magnetic field ~B0 is oriented
along the waveguides’ axis of symmetry ~z. Fields of extraordinary
polarized AMs is assumed to depend on azimuthal angle ϕ and time t as
follows: ∼ f(r) exp(imϕ− iωt), where natural number m is azimuthal
mode number, ω is eigen frequency of the AM, dependence upon radial
coordinate r can be found from solution of Maxwell equations. Along z
direction, the waveguide is assumed to be uniform, so that the studied
electromagnetic perturbations are independent upon z coordinate. An
annular electron beam rotates in the vacuum layer R2 > r > R1

between the plasma column and a metal wall of the waveguide.
The set of differential equations, which describes a nonlinear stage

of the excitation of these modes by an electron beam, can be obtained
from the hydrodynamic equations for the plasma, Maxwell’s equations
for AMs fields, and momentum equation for the beam electrons. The
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beam is described by model of macro-particles. Since the beam and
plasma densities are such that inequality nb ¿ np is valid then
one can neglect both the effect of the beam on the AMs dispersion
properties and the effect of the self-field of the beam on the AMs
electromagnetic field. We restricted our consideration by the case of
weak beam instability, where the ratio nb/np ¿ 1 is a small parameter
of the problem. Therefore our theory describes excitation of the AM,
increasing of the wave envelop amplitude up to maximum value, and
saturation of the instability due to the capturing of the beams’ particles
into potential wells of the wave. Thus such strong non-linear effects
like an oscillation of dense electron bunches in potential wells of the
excited waves are out of scope of the paper.

Tangential component of the AM magnetic field is described by
inhomogeneous Bessel equation [22], which right-hand part Fb(r) is
determined by the electron beam that moves above the plasma column.
In the case, when flows of charged particles are absent in the region
R2 > r > R1 (it means jr = jϕ = 0 and hence Fb = 0) expressions for
the AMs coincide with that are obtained in [6] for studying dispersion
properties of these modes in the case of a dense plasma (Langmuir
frequency is larger than electron cyclotron frequency). Thus for
tangential components of the AMs fields one can derive the following
expressions in the region occupied by the electron beam:

H(B)
z (r) = C1Jm(ς) + C2Nm(ς)− π

2
Jm(ς)

ς∫

ς1

xNm(x)Fb(x)dx

+
π

2
Nm(ς)

ς∫

ς1

xJm(x)Fb(x)dx, (1)

E(B)
ϕ (r) = −iC1J

′
m(ς)− iC2N

′
m(ς) +

iπ

2
J ′m(ς)

ς∫

ς1

xJm(x)Fb(x)dx

− iπ

2
N ′

m(ς)

ς∫

ς1

xJm(x)Fb(x)dx +
4π

iω
jϕ, (2)

here we omit dependence of the fields upon azimuthal angle ϕ and
time t, which is mentioned at the beginning of the Section, in order
to simplify these expressions. They can be considered as Fourier-
coefficients for tangential components of magnetic and electric fields
in the space of time-azimuthal angle, thus they are functions of
radius, azimuthal mode number m, and eigen frequency ω. The other
notations are as follows: Fb(x) = − 4π

ωx [ ∂
∂x(xjϕ) − imjr], ς = kr,
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ς1 = kR1, δ(y − y0) is delta function. Applying model of macro-
particles, the expressions for electric current density for the beam

are written here as follows: jr = −|e|
N∑

j=1
δ(r − rj)δ(ϕ − ϕj)∂r

∂t ,

jϕ = −|e|
N∑

j=1
rδ(r − rj)δ(ϕ− ϕj)∂ϕ

∂t , in expressions for electric current

densities the summation index “j” indicates the number of the beam
particle, N is total quantity of the macro-particles, which models this
electron beam. More detailed derivation of the Equations (1) and (2)
is presented in [18].

In the plasma region (r ≤ R1) spatial distribution of the AMs axial
magnetic field H

(P )
z (r) is described by the modified Bessel function

Im(r) [22] and the radial and azimuthal electric fields can be find out
using its solution [18]. Absence of MacDonald function in expression
for H

(P )
z (r) is explained by necessity to satisfy the boundary condition

on restriction of the value of AMs fields on the axis of the waveguide.
So let’s write down expression for AMs fields in the plasma region:

H(P )
z (r, ϕ, t) = A0

+∞∑
m=−∞

+∞∫

−∞
Im(ξ) exp(imϕ− iωt)dω, (3)

E(P )
ϕ (r, ϕ, t) =
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imε2

ε1ξψ
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i
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∂
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)
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z ,

E(P )
r (r, ϕ, t) =

(
m

ξψ
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ε2

ψε1

∂

∂ξ

)
H(P )

z ,

(4)

here A0 is constant of integration, and argument of the Bessel
function is as follows: ξ = ςψ, ψ =

√
(µ2 − 1)ε1, µ = ε2ε

−1
1 ,

ε1 and ε2 are components of plasma dielectric permittivity in the
fluid approximation [23]. Let’s restrict our consideration by the case
of collisionless plasma, then explicit expressions for the indicated
components of the dielectric permittivity tensor can be written as
follows:

ε1 = 1−
∑
α

Ω2
α

ω2 − ω2
α

, ε2 =
∑
α

ωαΩ2
α

(ω2 − ω2
α) ω

, (5)

here Ωα and ωα are plasma and cyclotron frequencies of the plasma,
respectively (subscript α applied here indicates type of the plasma
particles, for ions α = i, and for electrons α = e).

Using standard procedures [5, 18] of determination of a mean
value and separation of the amplitude and phase of the excited waves’
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envelope, one can derive equations for amplitude and phase of the
envelope of AM under the condition of resonant excitation of the eigen
mode. Their explicit forms are as follows:

dE

dt
= − αbDp

NzPL

N∑

j=1

[m

w

dRj

dt
L1(ςj) · sin(mϕj + Θ− ωt)

+R2
j

dϕj

dt
L2(ςj) · cos(mϕj + Θ− ωt)

]
, (6)

dΘ
dt
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]
, (7)

here E = E
(P )
ϕ /Bo is dimensionless amplitude of the envelope, Θ is

its phase, αb = nb/np is dimensionless density of the beam, L =
Jm(ς1)N ′

m(ς2)− J ′m(ς2)Nm(ς1),

L1(ςj) = Jm (ςj) N ′
m (ς2)− J ′m (ς2) Nm (ςj) ,
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,

ς2 = kR2, w = ω/Ωe, D(w,m, ς1,2) = 0 is dispersion equation of
the AMs propagating in the considered waveguide (see [6]) under the
condition of αb = 0 (that means absence of the beam), Rj = rjΩec

−1

is dimensionless radial co-ordinate of the j-th particle of the beam.
It is suitable for formulate momentum equation, which describes

the beams’ electrons motion, using terms of their impulses ~p = γme
~V

(γ is relativistic factor), because it allows one to take into the account
a weak relativism of the beam:

d~p

dt
= e ~E(B) +

e

c

[
~V ×

(
~H(B) + ~B0

)]
. (8)

Analyzing Equation (8) that describes motion of the beams’ particles,
one can see that it is a non-linear equation because fields of the AM in
the region occupied by the beam depend upon the current density of
the beams’ electrons jr and jϕ (see Equations (1) and (2)). Radial v
and azimuthal u dimensionless impulses of the beam particles can be
determined using derivatives of the radial co-ordinate R and angular
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co-ordinate ϕ over time, respectively. Let’s write down them in the
following form:

v = pr/(cme), u = pϕ/(cme). (9)
Expressions for radial and azimuthal impulses of the beam particles can
be written using derivatives of radial and angular particles’ coordinates
over time, respectively:

dRj/dt = |ωe| vj/(zγj), dϕj/dt = |ωe|uj/(zγjRj). (10)
By the way of substituting expressions (1) and (2), which are obtained
for the AM fields in the region R1 < r < R2 into the Equation (8),
one can drive the following equations for derivatives of radial vj and
azimuthal uj components of the impulse for j-th particle of the beam
over time (meaning of the index j possess the value from 1 until N):
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here R1j = rjR
−1
1 − 1, δ = c/Ωe is skin-depth, z = |ωe|/Ωe. According

to results of [6], AM can propagate in the range of electron cyclotron
frequency in such waveguides if inequality z < 1 is satisfied, so we
apply here this condition.

To derive a complete set of differential equations, which describe
beam-plasma interaction one can apply the following boundary
conditions. Tangential electric field of the AMs is equal to zero on
the surface of a metal wall of the waveguide:

E(B)
ϕ (R2) = 0. (13)

There is no azimuthal electric current on the surfaces of a metal wall
of the waveguide:

jϕ (R2) = 0. (14)
Axial magnetic field of the AMs is continuous on the plasma column
interface r = R1:

H(B)
z (R1 + 0) = H(P )

z (R1 − 0). (15)
And the last condition is concerned with azimuthal electric field of the
AMs; its form is similar to the form of the previous condition (15):

E(B)
ϕ (R1 + 0) = E(P )

ϕ (R1 − 0) . (16)
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But really it is a non-linear condition, because expression of tangential
electric field of the AMs in the region occupied by the electron beam
E

(B)
ϕ (r) is determined by electric current density (see Equation (2)),

unlike the expressions for an AM fields in the region r ≤ R1.
Solution of the set of equations for amplitude (6) and phase (7) of

the AMs envelope, motion equations for the beams’ electrons (10)–(12)
has been found by the Runge-Kutta method of the fourth order, which
is widely used for the research of such problems [1, 2, 14, 15]. Quantity
of the beams’ macro — particles was assumed to be here N = 2000.
To describe the interaction between charged particle beam and a metal
wall of the waveguide, the model of mirror reflection of the particles
from the wall has been applied (the particles do not disappear after
such an interaction with the wall) [1, 18].

Results of the numerical analysis of the resonant plasma-beam
instability of the AMs are presented in Figures 1–6. Condition of the
resonant instability means that eigen frequency ω of the AM is equal
to N0-th harmonic of electron cyclotron frequency (ω = N0|ωe|/γ).
Taking into the account results of linear theory of interaction between
annular electron beams and AMs [7, 17] azimuthal wave number and
radius of the waveguide have been chosen in such way that the following
equation was satisfied: |m|δ ≈ 0.4R1. This chose is determined by the
fact that just in this case value of the growth rates of resonant plasma-
beam instability was found to be maximal.

3. DISCUSSION OF THE OBTAINED RESULTS

Making numerical analysis of this resonant plasma-beam interaction
the following values of the plasma filled waveguides’ parameters and
initial values of the beams’ parameters have been applied. The
following meanings of initial values have been chosen: for the amplitude
of the AM envelope E(τ = 0) = 10−3, for the envelopes’ phase Θ(τ =
0) = 0, for the radial impulses of the beams’ particles vj(τ = 0) = 0 and
for the angular impulses of the particles uj(τ = 0) ≈ zRj(τ = 0). This
approximate equation for azimuthal impulse of the beams’ particles
was valid with accuracy 2%. It means that at the first time of the beam-
plasma interaction, particles of the electron beam move with azimuthal
velocity, which value satisfies the condition Vϕ ≈ |ωe|(R1 + R2)/(2γ).
Thus initially the particles move in the gap between the plasma column
and wall of the waveguide without collisions with both the column and
the wall. Dimensionless density of the beam was αb = 10−2, the AM
azimuthal mode number was chosen as m = 3. Initial location of
the beams’ particles along azimuthal angle ϕ was described by sine-
law, along radial co-ordinate the particles were distributed randomly
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within middle third part of the gap between the plasma column and
metal wall of the waveguide. Geometrical parameters of the waveguide
were as follows: ∆ = R2/R1 − 1 = 0.3, external magnetic field and
density of the plasma were chosen by such manner that the following
relation between electron cyclotron frequency and plasma frequency
was valid: z = 0.099. The specific meaning of the small parameter
z < 1 has been chosen arbitrary, but condition of its smallness was
obtained in [6], while the AM eigen frequency can be related to the
range of electron cyclotron resonance. The present research has been
performed for the cases when azimuthal angular circumference 2π of
the beam was equal to two, three and four periods (n = 2, 3 and
4) of the spatial modulation of the beam, respectively. Location of
the macro-particles in the both co-ordinate space and phase space are
indicated in the corresponding figures as dots. Hence one can visually
estimate: where concentration of the beams’ particles is larger and
where its value is smaller.

In Figure 1, one can see that electron beam, whose density has
been preliminary spatially modulated, interacts with the AM more
effectively than in the case of spatially uniform electron beam. Numeral
1 marks the curve obtained in the case of application the beam
with initial spatial uniform distribution. Numeral 2 marks the curve
calculated in the case of continuous beam with weakly modulated
density. And the last curve marked by numeral 3 presents result
obtained in the case of strongly modulated beam, which initially was
composed of specially separated bunches. In the lower half-space of
Figure 1, dependence of the AMs phases Θ on time is presented. One
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Figure 1. Variation of the amplitude of AM envelope (in upper half-
space) and its phase (in lower half-space) with a time in the cases: 1
— spatially uniform beam; 2 — weakly modulated beam; 3 — stronly
modulated beam; azimuthal mode number m = 3, ∆ = 0.1.
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Figure 2. The same as in Figure 1, but for the cases of different
meanings of the period of initial spatial modulation of the beam: n = 2,
3 and 4.

can see that changing of the envelope phase Θ for all presented cases
correlates with changing of the corresponding AM envelop amplitudes
with time.

Influence of the value of spatial modulation period of the beam
electrons on development of the resonant plasma-beam instability of
the AM has also been investigated. Results of this investigation are
represented in Figure 2. One can see that if period n of the spatial
modulation of the annular electron beam at the initial time of beam-
plasma interaction coincides with the azimuthal mode number then
the resonant beam instability develops more quickly. If the period n
of initial spatial modulation is not equal to azimuthal mode number of
the excited AM then the resonant beam instability develops during the
time interval, which is approximately equal to that interval, which was
typical for the case of application of spatially uniform (non-modulated)
electron beam. The calculations are performed until the time, when
the AM envelop amplitude starts to oscillate nearby some value. This
means that instability comes into the strongly non-linear stage, where
dense small-sized bunches interact with the wave, which has a finite
value amplitude.

Figure 3 illustrates dynamics of spatial distribution of the beam
particles in the case when weakly modulated electron beam initially
is characterized by the period of its modulation n = 4. One can see
that development of the resonant beam instability leads, at first, to
the formation of three groups of beam electrons and then capturing
of them into potential wells of the AM with azimuthal mode number
m = 3. Gradually the electrons, which initially were separated into
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τ = 0 τ = 5.5

τ = 7.5 τ = 9.0

Figure 3. Variation of spatial distribution of the beams’ particles with
time. Parameters m = 3, n = 4, ∆ = 0.3. The following moments of
dimensionless time were chosen τ = 0.0, 5.5, 7.5 and 9.0.

four groups, start to roll down into the bottoms of three (because
m = 3) potential wells of the AM and then three groups of the captured
beams’ particles start to create three dense bunches. To illustrate such
development of the instability we have chosen the following moments of
time: the first moment corresponds to initial value of time, the second
moment corresponds to intermediate value of time interval (between
the starting moment and the moment, when the amplitude of envelope
reaches its first maximum), the third moment corresponds to the first
maximum of the amplitude of the AM envelope and the fourth moment
corresponds to its first minimum. In spite of relatively small value of
the tangential component of AM field [6] as compared with magnetic
component of its field, one can see that finally just three bunches
have been formed, which correlates with the value of azimuthal mode
number m = 3.

Phase portraits of the beams’ particles (azimuthal impulses vs
azimuthal angles) calculated during development of this instability
are presented in Figure 4 for the same moments of time, which are
illustrated in Figure 3. Here one can see creation of three groups of
the captured beams’ particles from initial four separated groups of the
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τ = 0 τ = 5.5

τ = 7.5 τ = 9.0

Figure 4. Phase portraits of the beams’ particles: azimuthal impulse
vs azimuthal angle obtained under the same conditions as it is done in
Figure 3. External continuous circle represents the maximal meaning
of the azimuthal impulse u = zR2, at the center of the circle u = 0.

beam electrons as well. The presented phase portraits illustrate losses
of initial energy of the electron beam. One can see that gradually
azimuthal impulses of the electrons decrease (the dots, which represent
the particles move to the center of the phase portrait) and values of
the electrons impulses become such as located closer to the bottoms
of potential wells of the AM. As well one can see that the most part
of the beam electrons are gathered in relative narrow angular sectors,
which quantity is equal to the value of azimuthal mode number m = 3.

To compare the case of n = 4 with the case of n = 3, one can
look at the pictures presented in Figures 5 and 6. Distribution of the
beams’ particles in co-ordinate space and phase space are shown there,
respectively. The co-ordinate distribution and phase portraits are
presented there once again at the initial moment of time, intermediate
moment of time, moment of the first maximum of the amplitude of
the AM envelope and the moment of its first minimum. Comparison
of the second pictures in Figures 3 and 5 allows one to conclude that
reformation of the electron beam shape due to influence of the AM
with azimuthal mode number m = 3 happens faster in the case n = 3
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τ = 0 τ = 3.5

τ = 5.5 τ = 7.0

Figure 5. The same as in Figure 3, but n = 3, ∆ = 0.3.

as compared with the case n = 4. Process of gathering the beam
electrons into three potential wells of the AM field is also happens
faster in the case n = 3 rather than in the case n = 4 (see the third
pictures in Figures 3 and 5). This means that the AM growth rate in
the case n = m = 3 is larger than in the case n = 4. This conclusion is
confirmed by results presented in Figure 2 (compare lines marked by
n = 3 and n = 4).

The second conclusion concerned with distinguishing features of
the AM instabilities in the cases n = 4 and n = 3 can be made
after comparison the corresponding phase portraits. This peculiarity
is also seen in the pictures with spatial distributions of the beams’
electrons illustrated as dots, but it is less pronounced as compared
with the phase spaces filled with the illustrating dots. Thus one can
see that distribution of the beams’ electrons in the AM field for the case
n = m = 3 (Figure 6) is practically symmetrical. In other words, the
dots in all three groups are located in the same manner. But in the case
n = 4 (see last three pictures in Figure 4), location of the dots in these
three groups is not symmetrical. This is connected with the fact that at
initial stage of the resonant beam-plasma instability, the AM field has
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τ = 0 τ = 3.5

τ = 5.5 τ = 7.0

Figure 6. The same as in Figure 4, but n = 3, ∆ = 0.3.

no time and no ability to separate four initial groups of electrons into
three identical groups. Thus in the case n = 4, one group of electrons
consists of the lager quantity of the particles as compared with two
other groups at the initial stage of the instability (it means until the
beginning of the stage of saturation of the instability). Therefore,
this dense group of electrons being in the phase synchronism with the
excited AM can transfer more quantity of its kinetic energy into the
wave energy as compared with the case n = 3. This is confirmed by
results presented in Figure 2, namely maximum of the AM envelope
amplitude in the case of n = 3 is less than that in the case of n = 4.

4. CONCLUSIONS

Resonant beam instability of azimuthal modes (AMs) has been studied
numerically using one mode approximation. Nonlinear self-consistent
set of differential equations has been derived and analyzed by Runge-
Kutta method of the fourth order. Obtained results allow one to make
the following conclusions:

1. Preliminary spatial modulation of the electron beam leads to
increasing growth rates of the resonant beam instability, the time
interval needed for the attainment of saturation stage of this instability
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becomes shorter as compare with the case of uniform (non-modulated)
electron beam. This is explained by absence of a necessity to perform
separation of the beam electrons into such quantity of groups, which
will be able to move under the condition of phase synchronism with
the excited AM.

2. Correlation between the period n of initial spatial modulation
of the beam electrons and value of the azimuthal mode number of the
studied AM influences strongly on the development of its resonant
beam instability. If the beam is initially composed of groups of
electrons, whose quantity is not equal to azimuthal mode number then
development of AM instability has approximately similar scenario as
it was in the case of non-modulated electron beam, namely the AM
first of all will separate the electrons into such quantity of groups that
will be equal to the mode number.

3. Strengthening of a degree of a spatial modulation of the electron
beam and decreasing of the beam thickness lead to increasing of the
AMs instability growth rates. During the first time the instability is
developed accordingly to prediction of the linear theory created for
interaction between an annular electron beam and AMs, which can
propagate in different frequency ranges [7, 17]. At the non-linear stage
of the instability changing of the AM envelop amplitude is similar to
the results obtained in [18] for the case of the non-modulated beam.

4. During development of the resonant beam instability the beams’
electrons loss their energy for excitation of the azimuthal mode;
the waves’ field captures the electrons into its potential wells; these
electrons roll down into the bottom of the wells and create there groups
of the captured electrons with a small value of azimuthal impulse.
Quantity of these groups is equal to azimuthal mode number of the
excited AM. Saturation of AM instability is characterized by creation
of high density bunches from the captured electrons, which are localized
in a space with a narrow angular sizes.

The obtained results can be useful for investigations in the
branches of plasma electronics and gas discharges in plasmas, where
flute modes can be excited.
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