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Abstract—A direct near-field-far-field transformation with helicoidal
scanning for electrically long antennas is proposed in this paper.
Such a transformation, which allows the evaluation of the antenna
far field in any cut plane directly from the acquired near-field data
without interpolating them, relies on the nonredundant sampling
representation of electromagnetic fields and makes use of a prolate
ellipsoidal modelling of the antenna under test for determining the
number of helix turns, whereas the number of samples on each of them
is fixed by the minimum cylinder rule, as in the classical cylindrical
scan. Numerical and experimental tests assessing the effectiveness of
the approach are shown.

1. INTRODUCTION

Many efforts have been spent in the recent years to reduce the
time required for the near-field data acquisition, since this time
is currently very much greater than that needed to carry out the
near-field-far-field (NF-FF) transformation. Such a reduction can
be realized by reducing the number of data to be collected and/or
making faster their acquisition. In this framework, the nonredundant
sampling representations of electromagnetic (EM) fields [1] have been
profitably applied to develop NF-FF transformations with planar,
cylindrical and spherical scannings [2], which generally require a
number of NF data remarkably lower than the standard ones.
In fact, the NF data needed by the corresponding classical NF-
FF transformations are accurately recovered by interpolating the
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minimum set of measurements via optimal sampling interpolation
(OSI) formulas [3]. A considerable measurement time saving can be
then obtained by exploiting continuous and synchronized movements of
the positioning systems of the probe and antenna under test (AUT) [4].
This suggestion has allowed the development of innovative NF-FF
transformations with helicoidal scanning [5–10], and planar [6, 7, 11, 12]
and spherical [6, 7, 13–15] spiral scannings. They are based on the
aforementioned nonredundant representations and use a proper two-
dimensional OSI algorithm to reconstruct the NF data needed by
the corresponding classical NF-FF transformation technique. The
OSI expansion has been achieved: i) by assuming the AUT enclosed
in a proper convex domain bounded by a surface Σ with rotational
symmetry; ii) by developing a nonredundant sampling representation
of the voltage acquired by the probe on the spiral; iii) by choosing
the spiral step equal to the sample spacing required for interpolating
the NF data along a meridian curve (a generatrix in the helicoidal
scanning, a radial line and a meridian in the planar and spherical
scanning, respectively).

With reference to the NF-FF transformation with helicoidal
scanning, which is particularly attractive when dealing with antennas
that concentrate the EM radiation in an angular region centred on
the horizontal plane, the AUT has been considered as enclosed in
the smallest sphere able to contain it in [5, 6], whereas more effective
AUT modellings, allowing a further reduction of the required NF data
in the case of elongated antennas, have been adopted in [8–10] by
properly employing the unified theory of spiral scans for nonspherical
antennas [7]. These effective AUT modellings allow one to consider
measurement cylinders with a radius smaller than one half the antenna
maximum size, thus reducing the error due to the truncation of the
scanning zone. More in detail, an elongated AUT has been considered
as enclosed in a prolate ellipsoid in [8, 9] or in a cylinder ended in two
half spheres in [10].

A probe uncompensated NF-FF transformation with helicoidal
scanning has been proposed in [16] to efficiently determine the antenna
far field directly from the acquired helicoidal NF data. It employs a fast
Fourier transform (FFT) based algorithm to evaluate the antenna far
field without requiring any interpolation step. However, since such an
approach does not take advantage of the nonredundant representations
of EM fields, it needs a useless large amount of NF data.

On the contrary, a direct NF-FF transformation with cylindrical
scanning for long antennas, based on the aforementioned nonredundant
sampling representations and using a prolate ellipsoidal modelling, has
been proposed in [17] and experimentally assessed in [18]. It allows
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the evaluation of the antenna far field in any cut plane directly from
the nonredundant NF data without interpolating them. Moreover, it
exhibits the interesting property to eliminate the characteristic ripple
due to the discontinuity of the near field at the edges of the scanning
zone.

At last, in order to match the advantages of the direct cylindrical
NF-FF transformation with those characteristic of the helicoidal
scanning, a direct NF-FF transformation technique with helicoidal
scanning for volumetrical antennas has been recently proposed in [19].
Unfortunately, this last is not suitable for electrically long antennas,
since it employs the spherical AUT modelling.

The aim of this paper is to develop and validate, both numerically
and experimentally, a direct NF-FF transformation with helicoidal
scanning tailored for elongated antennas. In particular, the number
of helix turns is fixed by the nonredundant sampling representation
along a generatrix, obtained when adopting the prolate ellipsoidal
modelling of the AUT, whereas the number of samples on each of them
is determined by the AUT maximum transverse dimension to simplify
the mechanical scanning and to reduce the computational effort.

2. THEORETICAL BACKGROUND

For reader’s convenience, the key steps of the classical probe
compensated NF-FF transformation with cylindrical scanning [20], as
well as those relevant to the reconstruction of the probe voltage from
a nonredundant number of its samples lying along a helix [8], are
summarized in this section.

2.1. Classical NF-FF Transformation with Cylindrical
Scanning

Let us consider a probe scanning a cylinder of radius d in the antenna
NF region, and adopt the cylindrical coordinate system (ρ, ϕ, z)
to denote an observation point in the NF region. According to the
classical probe compensated NF-FF transformation with cylindrical
scanning [20], the modal coefficients aν and bν of the cylindrical wave
expansion of the field radiated by the AUT are related to: a) the two-
dimensional Fourier transforms I1

ν and I2
ν of the output voltages of the

probe for two independent sets of measurements (the probe is rotated
90◦ about its longitudinal axis in the second set); b) the coefficients
(cm, dm) and (c′m, d′m) of the cylindrical wave expansion of the field
radiated by the probe and the rotated probe, respectively, when used
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as transmitting antennas. The key relations [20] are:

aν (τ) =
β2

Λ2∆ν (τ)

[
I1
ν (τ)

∞∑
m=−∞

d′m (−τ)H
(2)
ν+m (Λd)

−I2
ν (τ)

∞∑
m=−∞

dm (−τ) H
(2)
ν+m (Λd)

]
(1)

bν (τ) =
β2

Λ2∆ν (τ)

[
I2
ν (τ)
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cm (−τ) H
(2)
ν+m (Λd)

−I1
ν (τ)
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c′m (−τ) H
(2)
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]
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∆ ν (τ) =
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(2)
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(2)
ν+m (Λd)

−
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c′m (−τ) H

(2)
ν+m (Λd)
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dm (−τ)H
(2)
ν+m (Λd)(3)

I1,2
ν (τ) =

∞∫

−∞

π∫

−π

V 1,2 (ϕ, z) e−jνϕejτz dϕdz (4)

wherein Λ = (β2−τ2)1/2, H
(2)
ν (·) is the Hankel function of second kind

and order ν, β the wavenumber, and V 1, V 2 the output voltages of the
probe and the rotated probe at the point of cylindrical coordinates (d,
ϕ, z).

Note that the Fourier transforms (4) of the probe and rotated
probe voltages can be efficiently evaluated via the FFT algorithm.
Moreover, the sample spacings of the NF data are ∆z ≤ λ/2 and
∆ϕ ≤ π/(βρ′) = λ/(2ρ′), where ρ′ is the radius of the smallest cylinder
enclosing the AUT (minimum cylinder rule) and λ is the wavelength.

Once the modal coefficients aν and bν have been determined,
the FF spherical components of the electric field in the spherical
coordinate system (r, ϑ, ϕ) can be efficiently evaluated by performing
the summations in the following relations via FFT:

Eϑ(r,ϑ,ϕ)=Fϑ (ϑ,ϕ)
e−jβr

r
=−j2β

e−jβr

r
sinϑ

∞∑
ν=−∞

jνbν(β cosϑ) ejνϕ (5)

Eϕ(r,ϑ,ϕ)=Fϕ (ϑ, ϕ)
e−jβr

r
=−2β

e−jβr

r
sinϑ

∞∑
ν=−∞

jνaν(β cosϑ) ejνϕ (6)
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Figure 1. Helicoidal scanning: prolate ellipsoidal modelling.

2.2. Nonredundant Sampling Representation on a Cylinder

Let us consider an elongated AUT, enclosed in a convex domain
bounded by a surface Σ with rotational symmetry, and a nondirective
probe scanning a proper helix lying on a cylinder of radius d in the NF
region. An effective modelling for such a kind of AUT is obtained by
choosing Σ coincident with a prolate ellipsoid having major and minor
semi-axes equal to a and b (Figure 1). Since the voltage measured by
a nondirective probe has the same effective spatial bandwidth of the
AUT field [21], the nonredundant representations of EM fields [1] can
be applied to it. Accordingly, in order to obtain the representation of
the probe voltage on an observation curve C, it is convenient to adopt
an optimal analytical parameterization r = r(η) to describe C and to
introduce the “reduced voltage”

Ṽ (η) = V (η)ejψ(η), (7)

where V (η) is the measured probe voltage, ψ(η) a proper phase
function, and η an optimal parameter used to describe C. The
bandlimitation error, occurring when Ṽ (η) is approximated by a
spatially bandlimited function, becomes negligible as the bandwidth
exceeds a critical value Wη [1], so that it can be effectively controlled
by choosing a bandwidth equal to χ ′Wη, where χ′ > 1 is the bandwidth
enlargement factor.

According to [7, 8], a two-dimensional OSI scheme to reconstruct
the voltage from a nonredundant number of its samples collected
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by the probe along a helix can be obtained: a) by developing a
nonredundant sampling representation of the probe voltage on the
helix; b) by choosing the helix step equal to the sample spacing
required to interpolate the data along a generatrix. In particular, the
bandwidth Wη and parameterization η relevant to a generatrix, and
the corresponding phase function ψ are [7, 8]:

Wη =(4a/λ) E
(
π/2

∣∣ ε2
)
, (8)

η=(π/2)
[
1 + E

(
sin−1 u

∣∣ ε2
)
/E

(
π/2

∣∣ ε2
)]

, (9)

ψ=βa

[
v

√
v2 − 1
v2 − ε2

− E

(
cos−1

√
1− ε2

v2 − ε2

∣∣ε2

)]
, (10)

where u = (r1−r2)/2f and v = (r1+r2)/2a are the elliptic coordinates,
r1,2 being the distances from observation point P to the foci of the
ellipse C ′, intersection curve between a meridian plane and Σ, and 2f
is the focal distance. Moreover, ε = f/a is the eccentricity of C ′ and
E (·|·) denotes the elliptic integral of second kind.

The parametric equations of the helix, when imposing its passage
through a fixed point Q0 of the generatrix at ϕ = 0, are:

{
x = d cos(φ− φs)
y = d sin(φ− φs)
z = d cot[ϑ(η)]

, (11)

wherein φ is the parameter describing the helix, φs the value of φ
at Q0, and η = kφ. The helix is obtained as projection of a proper
spiral wrapping the ellipsoid Σ modelling the AUT on the scanning
cylinder via the hyperbolas at η = const [8]. The parameter k
is chosen such that the helix step, determined by two consecutive
intersections with a given generatrix, is equal to the sample spacing
∆η = 2π/(2N ′′ + 1) needed for the interpolation along a generatrix,
where N ′′ = Int(χN ′) + 1 and N ′ = Int(χ′Wη) + 1. Accordingly, being
∆η = 2πk, it follows that k = 1/(2N ′′ + 1). The function Int(x) gives
the integer part of x and χ > 1 is an oversampling factor needed to
control the truncation error [3].

A nonredundant representation along the helix is then obtained
by enforcing the optimal parameter ξ for describing it equal to β/Wξ

times the arclength of the projecting point on the spiral wrapping Σ
and by choosing the related phase γ coincident with that ψ relevant
to a generatrix. Moreover, the bandwidth Wξ is chosen equal to β/π
times the length of the spiral wrapping Σ from pole to pole [7, 8].

By exploiting these results, the voltage at P on the generatrix at
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ϕ can be recovered via the following OSI expansion [8]:

Ṽ (η(ϑ), ϕ) =
n0+q∑

n=n0−q+1

Ṽ (ηn) ΩN (η − ηn) DN ′′ (η − ηn) (12)

wherein ηn = ηn(ϕ) = η(φs) + kϕ + n∆η = η0 + n∆ η, n0 =
Int[(η − η0)/∆η], 2q is the number of retained samples, and

DN ′′ (η)=
sin [(2N ′′ + 1) η/2]
(2N ′′ + 1) sin(η/2)

;

ΩN (η)=
TN

[
2 cos2 (η/2)/cos2 (η̄/2)− 1

]

TN [2/cos2 (η̄/2)− 1]

(13)

are the Dirichlet and Tschebyscheff sampling functions [3], TN (·) being
the Tschebyscheff polynomial of degree N = N ′′ −N ′ and η̄ = q∆η.

The samples Ṽ (ηn) could be retrieved [8] via an expansion along
the helix, similar to (12), thus allowing the recovery of the voltage
at any point on the cylinder. However, the proposed direct NF-FF
transformation avoids the explicit interpolation of the nonredundant
acquired data to recover those needed to carry out the classical NF-FF
transformation with cylindrical scanning [20] or [22].

3. DIRECT NF-FF TRANSFORMATION

An efficient NF-FF transformation for evaluating the far field directly
from the helicoidal NF data is described in this section. By taking into
account the OSI expansion (12) and relation (7), the Fourier transforms
(4) can be rewritten as:

I1,2
ν (τ) =

∑

n∈Nr

∫ 2π

0

{
Ṽ 1,2 (ηn, ϕ) e−jνϕ

·
∫ ∞

−∞
DN ′′ (η(z)− ηn) Q (η(z)− ηn) e−jψ(z)ejτzdz

}
dϕ (14)

where Nr is the set of indexes of all considered NF turns. Ṽ 1,2(ηn, ϕ)
are the samples of the reduced voltage at the intersection points
between the generatrix at ϕ and the scanning helix, and Q = ΩN ,
if |η(z)− ηn| ≤ q∆η, or Q = 0, otherwise.

The integration over z gives, for any fixed ϕ:

Gnτ (ϕ) =
∫ zf

zi

DN ′′ (η(z) − ηn)ΩN (η(z) − ηn) e−jψ(z)ejτzdz (15)
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where zi = z(ηn + q∆η) and zf = z(ηn − q∆η). Now, by substituting
this last relation into (14), it results:

I1,2
ν (τ) =

∑

n∈Nr

∫ 2π

0
Ṽ 1,2 (ηn, ϕ) Gnτ (ϕ) e−jνϕdϕ (16)

Such a relation involves an integration over ϕ that can be
efficiently performed via the FFT algorithm, if the number of the
voltage samples on each helix turn is always the same and equal to
the smallest integer MH , product of powers of 2, 3 and 5 equal or
greater than 2[Int(χ′βρ′) + 1]. In such a way, the samples lying on
the helix at ϕm = m∆ϕ = 2πm/MH with m = 0, . . . , MH − 1 are all
aligned. Accordingly, it results:∫ 2π

0
Ṽ 1,2 (ηn, ϕ) Gnτ (ϕ) e−jνϕdϕ

=
2π

MH

MH−1∑

m=0

Ṽ 1,2 (ηm,n, ϕm) Gnτ (ϕm)e−j 2πmν
MH (17)

where
ηm,n = ηn(ϕm) = η(φs) + kϕm + n∆η (18)

The summation can be efficiently performed via a direct FFT
algorithm.

Note that the Gnτ (ϕm)’s can be calculated (once and for all) for
given sets of antennas, since they depend only on the measurement
cylinder radius and on the AUT modelling. Moreover, from the
efficiency viewpoint, it is convenient to employ this method to evaluate
only the FF samples necessary to reconstruct the antenna pattern via
the OSI expansion in [23], properly modified to deal with even numbers
of samples along the meridians and parallels:

Fϑ,ϕ (ϑ(η), ϕ)

=
2N ′′

F − 1
2N ′′

F

n0+q∑

n=n0−q+1

{
ΩNF

(η−ηn)DN ′′
F−1(η−ηn)

2M ′′
n−1

2M ′′
n

·
m0+p∑

m=m0−p+1

Fϑ, ϕ(ηn, ϕm,n)ΩMn
(ϕ−ϕm,n)DM ′′

n−1(ϕ−ϕm,n)

}
(19)

wherein n0 = Int [η/∆η], m0 = Int [ϕ/∆ϕn], and
ηn=n∆η=nπ/N ′′

F ; N ′′
F =2

[
Int(χN ′/2)+1

]
; NF =N ′′

F−N ′ (20)

ϕm,n=m∆ϕn = mπ/M ′′
n ; M ′′

n = 2i ≥ Int(χM ′
n) + 1;

M ′
n=Int [χ∗β sinϑ(ηn)] + 1 (21)

Mn=M ′′
n −M ′

n; χ∗ = 1 + (χ′ − 1)[sinϑ(ηn)]−2/3 (22)



Progress In Electromagnetics Research M, Vol. 26, 2012 165

The need of an OSI expansion tailored for an even number of
samples along the parallels arises from the use of an efficient power of
two FFT algorithm for computing (5) and (6). Whereas, N ′′

F has been
chosen according to (20) in order to have FF samples on the equator.
Obviously, there is no need to extract the phase factor from the far-field
expression, since it is constant on the far-field sphere.

At last, it must be pointed out that the direct NF-FF
transformation allows the reconstruction of the antenna far field in
any cut plane at ϕ = constant and not only in those achievable by
evaluating (5) and (6) via the FFT algorithm. Moreover, as shown
in [19] and verified in the next section, it exhibits the very interesting
feature to eliminate the ripple due to the discontinuity of the near field
at the scanning zone edges.

4. NUMERICAL AND EXPERIMENTAL RESULTS

Some numerical and experimental results assessing the effectiveness of
the proposed direct NF-FF transformation with helicoidal scanning are
shown in this section.

The numerical simulation refers to a uniform planar array of
elementary Huygens sources polarized along the z axis and covering
an elliptical zone in the plane y = 0, with major and minor semi-axes
equal to 12λ and 3λ. They are spaced by 0.5λ and 0.6λ along the x and
z axes, respectively. An open-ended WR-90 rectangular waveguide, at
the frequency of 10 GHz, is chosen as probe. The helix wraps a cylinder
with radius d = 10λ and height h = 120λ.

Figures 2 and 3 show the reconstruction of the antenna FF
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pattern in the principal planes obtained by using the presented NF-FF
transformation technique. As can be seen, the exact and reconstructed
fields are practically indistinguishable, thus assessing the effectiveness
of the approach. A further example relevant to the antenna FF pattern
reconstruction in the plane at ϕ = 60◦ is reported in Figure 4, in order
to show the capability of the technique to accurately reconstruct the
antenna far field in any cut plane.

It must be stressed that the number of used samples is
4 341, significantly less than that (14 460) required by the classical
cylindrical NF-FF transformation [20] and by the helicoidal scanning
technique [16] to cover the same scanning zone.

The experimental validation has been performed in the anechoic
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chamber of the UNISA Antenna Characterization Lab, provided of
an advanced cylindrical NF facility, supplied by MI Technologies.
An open-ended WR90 rectangular waveguide is used as probe and
its response has been collected on a cylinder with d = 19.6 cm and
h = 240 cm. The amplitude and phase measurements are carried out
by means of a vectorial network analyzer. Two monopulse antennas,
operating at 10 GHz in the sum mode, have been considered in the
laboratory tests. They have been assembled using two pyramidal horns
(8.9 × 6.8 cm), two straight and two curved rectangular waveguides,
and a hybrid tee. In the former case (AUT 1), they are arranged
to form a H-plane monopulse antenna (see Figure 5), wherein the
distance between the two pyramidal horns centers is 26 cm. In the
latter (AUT 2), an E-plane monopulse antenna is realized and the
distance between the horns centers becomes 26.5 cm. Both the AUTs,
located in the plane y = 0, have been modelled as enclosed in a prolate
ellipsoid, having major and minor semi-axes equal to 24 cm and 6 cm,
and 23.7 cm and 6.3 cm, respectively.

The FF pattern in the principal planes E and H reconstructed
via the direct NF-FF transformation has been compared with that
(reference) obtained by using the MI software from NF data measured
on the classical cylindrical grid. In particular, Figures 6 and 7 refer
to FF reconstructions when considering the AUT 1, whereas Figures 8
and 9 are relevant to those of AUT 2. As can be seen, a very good
agreement results in both the cases, thus assessing the effectiveness of
the technique.

It is worth noting that direct NF-FF transformation incorporates
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the probe characterization and therefore it has been necessary to
characterize [24] the employed probe according to [25], as done
in the software package MI-3000 implementing the standard probe
compensated NF-FF transformation [22], and verify that practically
identical results are obtained when the same NF data are transformed
by using the MI package or our version of the probe compensated NF-
FF transformation [20].

It must be stressed that the proposed technique exhibits the
particular property to eliminate the ripple caused by the discontinuity
of the near field at the edges of the scanning surface (see Figure 8).
Note that such an effect is now visible, since the near field level at the
edge of the scanning cylinder is about 20 dB higher than for the AUT 1
case. Accordingly, the greater the amount of discontinuity at the edge
of the scanning cylinder, the more visible the characteristic property
of the direct helicoidal NF-FF transformation technique to eliminate
the ripple.

Note that the number of used samples is 1 986 for the AUT 1
case and 2 202 for the AUT 2 one, significantly less than those (5 796
and 6 440) required by the MI software and by the helicoidal scanning
technique [16] to cover the same scanning zone.

5. CONCLUSIONS

In this paper, an effective direct helicoidal NF-FF transformation for
long antennas has been proposed and assessed both numerically and
experimentally. It allows the antenna far field evaluation in any cut
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plane directly from the helicoidal NF data without interpolating them
and exhibits the interesting feature to eliminate the ripple caused by
the discontinuity of the near field at the edges of the scanning surface.
To simplify the mechanical scanning and to reduce the computational
effort, a sampling arrangement different from that relevant to the
rigorous application of the nonredundant sampling representation on
the helix results. In particular, the number of the helix turns is fixed
by the sampling representation using the prolate ellipsoidal modelling
and the number of data on each of them according to the minimum
cylinder rule, as in the classical cylindrical scanning.
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