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Abstract—This paper addresses the application of measurement on
goodness-of-fit (GoF) for amplitudes of radar clutter sample data
against reference/theoretic parameterized probability density function
(PDF). In general, various existing methods for this problem highly
depend on empirical PDF parameters. This makes GoF assessments
with these methods less perceivable and their accuracies are hard to
control. A new method based on chi-squared type of measurement is
proposed to overcome these difficulties. This method evaluates GoF
by estimating the distance between the true PDF of the clutter data
amplitude and the reference PDF. Hence the distance is statistically
approximately independent with empirical PDF parameters. The new
method has higher accuracy and symmetric property. It is especially
useful for GoF comparison over multiple radar clutter data sets.

1. INTRODUCTION

Sea-clutter and ground-clutter play an important role in radar signal
analysis, modeling and processing. Clutter amplitude distribution
is one of the well-known statistical characteristics in clutter study.
Existing works on modeling and fitting clutter amplitude distribution
include Gaussian based Rayleigh distribution and Compound-Gaussian
distributions such as Weibull, Log-normal, and K, etc. [1–5]. Based on
these studies, clutter amplitude distribution is further incorporated
into design and analysis of constant false alarm ratio (CFAR)
system [6, 7], small target detection [8], target recognition [9], and so
on.

Traditional studies on clutter amplitude generally consists of two
parts — fitting a data set with a specific model and calculating a
goodness-of-fit for the fitting result.
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In the fitting process, parameters for a determined statisti-
cal model are generally estimated by the Method of Moments
(MoM) [2, 8, 10], the Method of Fractural Moments (MoFM) [4, 10]
or Maximum Likelihood estimation (MLE) [7, 10]. In [10], Balleri and
Nehorai demonstrated that for the sea-clutter data distribution model,
MLE overwhelms others and achieves the asymptotically efficient prop-
erty.

After the parameters are determined by the fitting process, one
computes goodness-of-fit (GoF) to measure how the model accords
with the clutter sample data. To compute GoF, there are many
methods such as visual inspection on PDF plot, mean square error
(MSE) of PDF, MSE of the of logarithm PDF, Pearson’s chi-squared
test statistic, Hellinger distance, G-test statistic, Kullback-Leibler
divergence, etc. [2, 4, 8, 11–15]. Among these methods, Pearson’s
chi-squared test, Hellinger distance and G-test belong to the chi-
squared type of statistics, and they have asymptotic approximation
with likelihood ratio statistic [16].

Traditional GoF measurements from different sample data sets are
difficult to compare with each other if sample number or empirical PDF
parameters are not equal. In existing studies on clutter amplitude, GoF
are generally treated as a subordinate procedure. Criteria for fitting
dose not always equivalent with the condition that yield for the best
GoF.

This paper proposes a new measurement for both fitting and
GoF. The measurement is defined as a distance between true PDF
and reference PDF, which is statistically independent of sample data
number and approximately insensitive to parameters in estimating
empirical PDF. In addition, as a cost function in the fitting process,
the measurement is asymptotically approximate to MLE. As a GoF,
it is a symmetric measurement, has a non-negative expectation and
diminishes when true PDF and reference PDF are identical, namely
zero distance.

2. EXISTING CHI-SQUARED TYPE METHODS AND
THEIR LIMITATIONS

The GoF is quantified by a distance, which is traditionally calculated
from an empirical PDF of the radar clutter data set and a reference
PDF. Denote the true PDF that sample data follows as PDFd and the
reference PDF as PDFr.

The estimation of PDFd is acquired via histogram, where the
amplitude is divided into m successive inlaid cells from 0 to a finite
value and a series of observed frequencies are acquired from a set of
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sampled data, denoted as O = [O1, . . . , Om]. Referenced frequencies
are calculated according to the PDFr and the same data number and
cell divisions with O and denoted as R = [R1, . . . , Rm]. Since Radar
clutter amplitude data samples are typically mustered in a finite range,
the range of amplitude is chosen so that the sum of O is close to the
sample data number in practice.

Let x be the amplitude coordinate. Suppose PDFr and PDFd are
expressed as pdfr(x) and pdfd(x) over x respectively. The functions
pdfr(x) and pdfd(x) are assumed to be continuous and smooth. Given
histogram cells are sufficient small, we have the following

{
Ri ≈ n · csi · pdfr(xi),
E[Oi] ≈ n · csi · pdfd(xi),

(1)

where E[·] denotes the statistical expectation, n the number of data
sample, and csi the histogram cell-size for the i-th cell. In addition,
Oi follows a binomial distribution as B(n, csi · pdfd(xi)) [17]. For
large n and small csi · pdfd(xi), Poisson distribution with parameter
n ·csi ·pdfd(xi) can be used as an approximation [18]. We assume large
n and small csi in the following sections therefore Oi approximately
follows a Poisson distribution.

We define the chi-squared type measurement χ2 to be

χ2 =
m∑

i=1

η(Ri, Oi), (2)

where ηi = η(Ri, Oi) is individual calculation for a pair (Ri, Oi) in a
single cell and we designate µ(·) as a cell function. In the following, χ2

P ,
χ2

G, χ2
H and χ2

M are chi-squared type of measurements with different
cell functions. Ideally, χ2 follows a non-central chi-squared distribution
and when PDFr and PDFd are equal (null hypothesis), the non-central
parameter is expected to be zero.

In [2], Pearson’s chi-squared test statistic is

χ2
P =

m∑

i=1

ηPi =
m∑

i=1

(Ri −Oi)
2

Ri
. (3)

Performance of χ2
P , especially under null hypothesis, depends

on extent of approximation of ηPi towards chi-squared distribution.
Another chi-squared test statistic known as G-test statistic is proposed
as the replacement of Pearson’s chi-squared test statistic for higher
accuracy, defined as

χ2
G =

m∑

i=1

ηGi =
m∑

i=1

2Oi ln
Oi

Ri
. (4)
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In [16], Koehler and Larntz proved that χ2
P and χ2

G are asymptotically
equal. Compared with Pearson’s chi-squared test statistic, G-test
statistic has better approximation to the theoretical chi-squared
distribution. There is less bias when χ2

G is used in replacement of
χ2

P .
From (3) and (4), χ2

P and χ2
G depend on the empirical PDF

parameters such as, the sample number, the histogram cell-size and
the range of the PDF.

In addition, (3) and (4) are asymmetric measurements in compare
with Hellinger distance [19], denoted as χ2

H . In [19], Cha uses ‘addition’
method to transform asymmetric distance into symmetric one. It
transforms χ2

P and χ2
G into a symmetric chi-squared and Jeffrey’s

statistic respectively. However, these two modifications contain caveats
of either divide by zero or log of zero in implementation.

3. PROPOSED METHOD

Based on existing chi-squared type measurements, we define a new
symmetric measurement as

χ2
M =

m∑

i=1

ηMi =
m∑

i=1

(fa(Ri)− fb(Oi))
2 , (5)

where fa(·) and fb(·) are defined in (8). We have

E[χ2
M ] =

m∑

i=1

E
[
fa(Ri)2 + fb(Oi)2 − 2fb(Oi)fa(Ri)

]

=
m∑

i=1

fa(Ri)2 + var(fb(Oi)) + E[fb(Oi)]2 − 2fa(Ei)E[fb(Oi)]

=
m∑

i=1

var(fb(Oi)) + (fa(Ri)− E[fb(Oi)])
2 , (6)

where var(·) is the variance operator.
It is desirable that the expectation of the measurement gets a

constant minimum under null hypothesis. This is equivalent to the
following conditions{

fa

(
Ri|Ri=E[Oi]

)− E[fb(Oi)] = 0,

var(fb(Oi)) = constant.
(7)

To meet the requirements, we define{
fa(Ri) = E [fvst opt(q|λ=Ri)] ,
fb(Oi) = fvst opt(Oi),

(8)
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where q is a Poisson random variable with parameter λ, fvst opt(·) is
the optimized variable stabilizing transform (VST) [20]. For a Poisson
random variable v with parameter λ, var(fvst opt(v)) ≈ 1 for λ > 4.
As addressed in [21], it is impossible to simultaneously achieve good
stabilization for all parameter values. Error in measurement caused by
this imperfection is inevitable. The optimized VST is a proper trade
off between performance and simplicity.

fvst opt(v) =
2(v + 3/8 +

√
3/12)√

v + 3/8 +
√

3/6
. (9)

Compared with many other VSTs such as Anscombe, Freeman &
Tukey, (10) has better approximation to constant variation [18].

Substituting (8) into (5), we have a modified measurement as

χ2
M =

m∑

i=1

ηMi =
m∑

i=1

(E[fvst opt(q|λ=Ri
)]− fvst opt(Oi))

2. (10)

Measurement χ2
M is also an chi-squared statistics similar to χ2

P .
From [22], χ2

P follows a non-central chi-squared distribution with
(m − 1 − p) degrees of freedom, where p is a value between 0 and
the number of independent parameters of the PDFr. For large m, we
set p = 0 for simplicity with ignorable error and assume χ2

M follows a
non-central chi-squared distribution with (m− 1) degrees of freedom.
Then its mean and variance can be inferred from (6) as




E[χ2
M ] ≈ m− 1 +

m∑

i=1

(E[fvst opt(q|λ=Ri)]−E[fvst opt(Oi)])
2,

var(χ2
M ) ≈ 4E[χ2

M ]− 2(m− 1).

(11)

We make a preliminary comparison among three cell functions,
ηP , ηG and ηM in (3)–(5). Let a cell has a reference frequency of λr

and a Poisson distributed observed frequency with parameter λd.
In Figures 1 and 2, the expectations for the three cell functions

under the condition of unequal (λr, λd) pairs and their swapped value
alternatives are represented by solid lines and dotted lines. Specifically,
we call the measurements for (λd = 8 + ∆λ, λr = 8 − ∆λ) and
(λd = 8 − ∆λ, λr = 8 + ∆λ) as a combination. Combinations for
E[ηP ], E[ηG] and E[ηM ] are distinguished by circle marker and asterisk
marker and no marker, respectively.

Figure 1 shows that, ηM is the only symmetric measurement
among the three. For the solid line and the dotted line for E[ηM ]
is superposed, while combinations for both E[ηP ] and E[ηG] are
separated.
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Figure 1. Expectation of η for
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Figure 2. Expectation of η for
unequal (λr, λd) pairs for small
∆λ.

Figure 2 shows E[ηG] is less asymmetric than E[ηM ], when the
difference between λr and λd is relatively small. When λr and λd are
equal, E[ηG] is biased from 1 unlike E[ηP ] and E[ηM ].

As sums of independent individual measurements, χ2
P , χ2

G and
χ2

M inherit characteristics form their cell functions. Therefore χ2
M is a

more accurate symmetric measurement.
Define 




DP =
[
χ2

P − (m− 1)
]
/n,

DG =
[
χ2

G − (m− 1)
]
/n,

DM =
[
χ2

M − (m− 1)
]
/n,

(12)

where n is the number of data sample. Provided that χ2
M

approximately follows a non-central chi-squared distribution with
(m − 1) degrees of freedom, DM is a shifted and scaled version of
a non-central chi-squared variable. Refer to (11), it has





E[DM ] ≈ 1
n

m∑

i=1

(E[fvst opt(q|λ=Ri)]− E[fvst opt(Oi)])
2,

var[DM ] ≈ 1
n2

(4nE[DM ] + 2(m− 1)) .

(13)

We now prove that E[DM ] is approximately independent to n, cs
and insensitive to the amplitude range u.

From (9), fvst opt(v) ≈ 2
√

v, therefore
{

E [fvst opt(u|λ=Ri)] ≈ E
[
2
√

q|λ=Ri

]
,

E [fvst opt(Oi)] ≈ E
[
2
√

Oi

]
,

(14)
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and 



E

[√
q|λ=Ri

]
∝

√
n · csi · pdfr(xi),

E
[√

Oi

]
∝

√
n · csi · pdfd(xi).

(15)

Substituting (15) into (14), we have
(E[fvst opt(q|λ=Ri)]−E[fvst opt(Oi)])

2

∝ n · csi

(√
pdfr(xi)−

√
pdfd(xi)

)2
(16)

Substituting (16) into (13), n is canceled out. We have

E[DM ] ∝
m∑

i=1

csi

(√
pdfr(xi)−

√
pdfd(xi)

)2
(17)

The summation can be approximated by integration
m∑

i=1

csi

(√
pdfr(xi)−

√
pdfd(xi)

)2
≈

∫ u

0

(√
pdfr(x)−

√
pdfd(x)

)2
dx, (18)

where amplitude range u = xm + csm/2. Parameter csi and m
also vanish. For Radar clutter data, the amplitude PDF is typically
monotonous decreasing with x. For sufficient large u, it holds for∫ u

0

(√
pdfr(x)−

√
pdfd(x)

)2
dx≈

∫ ∞

0

(√
pdfr(x)−

√
pdfd(x)

)2
dx. (19)

The integration in (18) is insensitive to u, as long as u is large and
so dose E[DM ].

4. NUMERICAL EXPERIMENTS

We present two simulations and an experiment. The first simulation
presents the performance of the proposed method. The second one
compares the estimating performance of the proposed method with
that of traditional methods. The last experiment demonstrates an
application of the proposed method on a real radar data set.

In the first two simulations, we use a Log-normal and a K
distribution, defined as (20), for PDFd and PDFr. The default
configurations are listed in Table 1. The parameters for distributions
are chosen so that they represent typical amplitude PDF for non-
Gaussian clutter with long tails [23].




fLog-normal(x, µ, σ) =
1

xσ
√

2π
exp

−(lnx− µ)2

2σ2
,

fK(x, b, v) =
2b

Γ

(
bx

2

)v

Kv−1(bx).
(20)
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Table 1. Default configurations for the simulations.

value symbol
Scale parameter 0.5 µ

Shape parameter 0.7 σ

K parameter 1 1 b

K parameter 2 5 v

Sample number 100000 n

Cell size 0.02 cs

Maximum histogram range 20 u

Table 2. Distance vs. shape parameter.

DP DG DM

σr = 0.7− 0.005, σd = 0.7 + 0.005 0.000215 0.000471 0.000410

σr = 0.7 + 0.005, σd = 0.7− 0.005 0.000646 0.000471 0.000409

σr = 0.7− 0.01, σd = 0.7 + 0.01 0.00117 0.00164 0.00161

σr = 0.7 + 0.01, σd = 0.7− 0.01 0.00218 0.00171 0.00161

σr = 0.7− 0.02, σd = 0.7 + 0.02 0.00521 0.00630 0.00645

σr = 0.7 + 0.02, σd = 0.7− 0.02 0.00846 0.00682 0.00646

σr = 0.7− 0.03, σd = 0.7 + 0.03 0.0118 0.0140 0.0146

σr = 0.7 + 0.03, σd = 0.7− 0.03 0.0199 0.0157 0.0146

Results of the first simulation are shown in Table 2. They are
averaged distances from 1000 independent experiments. Denote the
shape parameters for PDFd and PDFr by σd and σr respectively.
σd and σr in Table 2 are centralized in 0.7, and their separation is
gradually increased to produce a series of mismatch situations.

The property of symmetry measurement is shown by DM .
DM increases monotony with difference between σr and σd, and
insensitive to whether the pair swaps value. On the opposite,
asymmetric measurement produces significantly different results on
pairs of swapped shape parameters. This is clearly demonstrated by
DP and DG. It is also shown that asymmetry produces less bias on DM

when σr and σd are closer. For all simulations, DG is less asymmetric
than DP , as expected. Despite of asymmetry, DG is greater than DM

when the difference between the shape parameters is approximately
smaller than 0.02, as the result of bias in DG.

For DM , performance of normalization against the number of data
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sample and the histogram cell-size are demonstrated by Figures 3
and 4. In Figures 3 and 4, each marker represents an independent
experiment. The solid lines and dotted lines string those results that
have same shape parameter configurations. Fluctuations on each line
are result of stochastic nature of empirical PDF.

In Figure 3, the fluctuations on all four lines decrease as n gets
larger. Except for the fluctuations, DM with the same shape parameter
configuration remains largely constant with respect to a large range of
sample data number. This supports the idea that DM is approximately
independent to the sample data number. Besides, results in the two
dotted lines are closely enlaced. This further suggests that DM is a
symmetric measurement.
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Figure 4 shows the independence of DM from the histogram cell-
size cs, in both match and mismatch of empirical and reference PDF
conditions, as a result of the proposed normalization operation.

In Figure 4, DM remains a constant for a large range of the cell-
size except some fluctuations. Recall for (13), the fluctuation in DM

consists of two components. One is proportional to the expectation of
DM , and another is proportional to (m− 1).

In case that shape parameters in PDFd and PDFr are unequal,
DM has positive mean value, and fluctuation is dominated by the
former component. In case that shape parameters in PDFd and PDFr

are equal, that fluctuation is dominated by the later component. The
two solid line stringed results illustrate the trend that fluctuation
reduces as cell-size increases.

The relation within variance of DM and the expectation of DM ,
as expressed in (13), is verified by a simulation and shown in Figure 5.

One hundred different shape parameter pairs are randomly chosen
from 0.6 to 0.8 for PDFr and PDFd. For each PDFr and PDFd pair,
E[DM ] and var(DM ) are drawn from 200 independent experiments.
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solid line for the proposed method, line with dot marker for ML.
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The results are plotted as dots in Figure 4. Comparing with theoretic
ones in (13), the simulated result complies with the theory.

This implies the variance of DM can be predicted from DM

through (13). The variance of DM is generally increasing along with
the expectation of DM . The scatter pattern in Figure 5 also suggests
the larger uncertainty lies in this relationship. This is a practically
useful property of DM , because the higher accuracy of DM is expected
when it is close to 0 to guarantee the faithfulness and the greater
sensitivity of the measurement.

In the second simulation, we use a Log-normal distribution and a
K distribution to compare parameter estimating performances of the
proposed method and the traditional ones. The parameters of two
distributed data sets are estimated by the Maximum Likelihood (ML)
estimator and the Method of Moments (MoM) [24], respectively. For
the new method, parameters are obtained by minimizing DM .

We consider saturation in the simulation, i.e., in the data set, the
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amplitude of all samples are upper bounded to the maximum amplitude
u. In the simulation, average proportions of saturated samples in
the data set for the both distributions are monotonously decreasing
from 0.4% to 0.02% with respect to u. Figures 6 and 7 suggest that
saturation causes significant bias on the ML estimator and MoM. There
is no observable bias on the proposed method for all u. For larger u,
where saturation is ignorable to ML estimator and MoM, comparison
of estimating accuracies can be made, approximately. The variances of
the estimated parameters by the proposed method for all u are similar
to those made by ML estimator and smaller than MoM’s in their near
saturation free region. This suggests that the proposed method has a
similar estimating accuracy to the ideal ML estimator despite of certain
amount of saturation.

In the last experiment, we use an IPIX’s Grimsby 1998 sea clutter
data to demonstrate the application of the proposed method on a real
data set, i.e., file 155 (19980227 214328 antstep.cdf) 9 meter range
resolution HH polarization [25]. The empirical PDF acquired from
the data set is shown in Figure 8. We use 4 different Compound-
Gaussian distribution based clutter models to fit the empirical PDF
and calculated their distance with the proposed method, respectively.
The result shows all models are approximately fit well with the
empirical PDF. Still, differences can be observed from the tail region
and the magnified local portion. On the other hand, the DM s
(distances) quantify the fit qualities more accurately and their message
accords with the figure. It suggests that model 4 has the minimum
distance and the best fit.
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5. CONCLUSION

This paper describes a modified goodness-of-fit measurement for radar
clutter amplitude probability density function. The proposed method
has advantages over existing ones in many aspects.

The proposed method provides a symmetric measurement, which
is approximately independent from empirical PDF parameters such
as, the sample number, the histogram cell-size and the range of the
PDF. It can be used to make comparison over GoFs with multiple
data sets without identical empirical PDF parameters. In addition,
the variance estimation of the measured distance is provided, which is
mainly dependent on the sample data number. With this variance, we
can assess the accuracy of GoF.
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