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Abstract—This paper presents a generalized volume-surface integral
equation (GVSIE) to solve electromagnetic (EM) scattering of high
contrast inhomogeneous materials. Then the method of moments
(MoM) is employed to solve the GVSIE. The GVSIE technique where
the domain is represented by a corresponding uniform background
medium coupled with a variation, together representing the overall
inhomogeneity, is solve by the method of moments (MoM) using
Schaubert-Wilton-Glisson (SWG) and Rao-Wilton-Glisson (RWG)
basis functions. The adaptive cross approximation (ACA) algorithm
combined with the equivalent dipole-moment (EDM) method are
extended to reduce memory and CPU time. A highly effective
preconditioning strategy is presented to solve the system of equations
without any increase in the computational complexity. Experiments
on several problems representative of scattering simulations are given
to illustrate the potential of the above proposed techniques for solving
EM scattering involving high contrast applications.

1. INTRODUCTION

High contrast inhomogeneous materials can be found in many
useful applications. Numerical studies of electromagnetic scattering
from high contrast inhomogeneous materials are very important.
Perhaps most widely used is the method of moments (MoM). The
approach is always based on solving volume integral equations (VIE)
for inhomogeneous medium [1] or surface integral equation (SIE)
formulations for homogeneous medium [2] of a physical problem. It
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is well known that burdened with the discretization of the object
and the surrounding space, the traditional VIE formulations require
many unknowns leading to computationally intractable problems.
The SIE formulations are often preferred for homogeneous dielectric
objects. Integral equation methods based on the Poggio, Miller,
Chang, Harrington, Wu, Tsai (PMCHWT) formulations [3–5] are
quite flexible in modeling high contrast materials. However, the
SIE is still applicable to piecewise homogeneous media. Therefore,
a generalized volume-surface integral equations (GVSIE) [6] method is
applied to more effectively analyze the electromagnetic (EM) scattering
of high contrast inhomogeneous medium in the paper. The method
involves a novel factorization of material parameters that alleviates the
computational burden associated with typical VIE implementations.
In the method, VIE is only used over regions where the material is
actually varying, while PMCHWT is employed elsewhere along the
boundaries of the equivalent homogeneous background regions. Since
the VIE is only used to account for material perturbations, there is a
significant alleviation in the discretization rate involving high contrast
materials. This method can greatly reduce the number of unknowns,
and then reduce the waste of memory and save a great amount of time.

The MoM with Galerkin testing using Schaubert-Wilton-Glisson
(SWG) [1] and Rao-Wilton-Glisson (RWG) [2] basis functions is
applied to solve the GVSIE. And then the EDM method [7, 8] is
extended to accelerate the impedance matrix filling. However, for
large scale EM problems, the cost to solve this dense matrix equation
produced by EDM/MoM is very expensive and formidable. In order
to deal with large objects, a number of successful techniques have
been extensively used to reduce memory [9–12]. The adaptive cross
approximation (ACA) algorithm [13] which is purely algebraic in
nature and relatively easy to implement has been widely applied. The
ACA algorithm is then used to reduce memory and CPU time in the
paper. To improve the performance of the impedance matrix and
ensure fast convergence, a highly effective preconditioning strategy [14]
is presented to solve the system of equations without any increase in
the computational complexity.

2. GENERALIZED VOLUME-SURFACE INTEGRAL
EQUATIONS (GVSIE)

Considering an arbitrary shaped 3-D high contrast inhomogeneous
media with permeability ¯̄ε and permittivity ¯̄µ, as shown in Figure 1(a).
The structure is illuminated by an incident plane wave (Ei,Hi)
and immersed in a homogeneous medium with permittivity ε0 and
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Figure 1. The equivalence principle for the generalized VSIE.
(a) Original problem. (b) External equivalence. (c) Internal
equivalence.

permeability µ0. Let Sd denotes the outer surface of the high contrast
material, V denotes the volume of the interior space, n is the outward
pointing normal vector on Sd.

According to [6], the domain V can be represented by the
constitutive parameters

¯̄ε = εb
¯̄I + ¯̄ε∆ = εb[ ¯̄I + ε−1

b
¯̄ε∆] = εb ¯̄ε∆, (1)

¯̄µ = µb
¯̄I + ¯̄µ∆ = µb[ ¯̄I + µ−1

b
¯̄µ∆] = µb ¯̄µ∆, (2)

where the uniform terms (εb, µb) constitute an equivalent homogeneous
background region that can be varied by way of the modulation
terms (¯̄ε∆, ¯̄µ∆). By invoking the equivalence principle, two equivalent
problems are formulated, each valid for regions external and internal
to the material. In the equivalent problem for the external region, as
shown in Figure 1(b), the dielectric surface Sd is replaced by a fictitious
surface and the entire region is filled by the homogeneous material of
external medium. The field inside the surface Sd is set to zero. The field
(E1, H1) outside the surface Sd can be equivalent to the field produced
by the equivalent surface source (J1,M1) (J1 = Je

s, M1 = Jm
s ) on Sd.

Then (E1, H1) can be expressed as

E1 = Ei + Z1L1(Je
s)−K1(Jm

s ), r ∈ Sd (3)

H1 = Hi +
1
Z1

L1(Jm
s )−K1(Je

s). r ∈ Sd (4)

The interior equivalent situation is shown in Figure 1(c). In the present
situation, in addition to the equivalent surface currents (J2, M2) on
Sd (J2 = −Je

s,M2 = −Jm
s ), we introduce additional the equivalent

volumetric currents Je
v and Jm

v in V. Then the electric and magnetic
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fields inside the target can be expressed as

E2 = Z2L2(−Je
s)−K2(−Jm

s ) + Es
2(J

e
v) + Es

2(J
m
v ), r ∈ V (5)

H2 =
1
Z2

L2(−Jm
s ) + K2(−Je

s) + Hs
2(J

e
v) + Hs

2(J
m
v ). r ∈ V (6)

By enforcing the continuity of the tangential electric and magnetic
fields across each interface, and according to Ji = Ei×ni, Mi = ni×Hi

and n1 = −n2 = n, then combining (3) and (4) with (5) and (6), we
can establish the following two new equations,

−[Z1L1(Je
s)+Z2L2(Je

s)]−[K1(Jm
s )+K2(Jm

s )]+Es
2(J

e
v)+Es

2(J
m
v )

= Ei, r ∈ Sd (7)

−[K1(Je
s) + K2(Je

s)]−
[

1
Z1

L1(Jm
s )+

1
Z2

L2(Jm
s )

]
+Hs

2(J
e
v)+Hs

2(J
m
v )

= Hi. r ∈ Sd (8)

L, K are the operators, given by

Li(X) = −jki

∫
[X +

1
k2
i

∇(∇′ ·X)]GidS′, (9)

Ki(X) = −
∫

X×∇GidS′, (10)

where Gi(r, r′) = e−jki|r−r′|
4π|r−r′| , ki = ω

√
µiεi and Zi =

√
µi
εi

. i = 1, 2 refer
to the free-space and the background-space, e.g., k1 = ω

√
µ0ε0 and

k2 = ω
√

µbεb. Then Equations (5)–(8) constitute the GVSIE.
To solve the system in (5)–(8) numerically, discretization over the

region with material perturbations is carried out using tetrahedral
elements. Specifically, based on the PMCHWT and RWG basis
function, the boundaries of the homogeneous regions are discretized
using the triangular patches. According to the equivalence principle,
the equivalent volumetric electric Je

v(r) and magnetic currents Jm
v (r)

can be written as

Je
v(r) = jω¯̄ke(r) ·D(r), (11)

Jm
v (r) = jω¯̄km(r) ·B(r), (12)

where ¯̄ke(r) and ¯̄km(r) stand for the contrast ratio tensor, can be
defined as

¯̄ke = ¯̄I − ¯̄ε−1
∆ , (13)

¯̄km = ¯̄I − ¯̄µ−1
∆ . (14)
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Once the VIE are constructed, the unknown electric flux density D(r)
and magnetic flux density B(r) can be represented by SWG vector
basis functions [1], namely,

jωD(r) =
Nv∑

n=1

Ie
v,nfv,n(r), (15)

jωB(r) =
Nv∑

n=1

Im
v,nfv,n(r), (16)

in which Nv is the number of faces in V , Ie
v,n and Im

v,n are the unknown
expansion coefficients for the volumetric electric and magnetic currents,
respectively. fv,n denotes the basis function for the nth face of the
tetrahedral cell over the perturbations region V . The surface electric
and magnetic currents on Sd can be represented by RWG vector basis
functions [2], namely,

Je
s(r) =

Nd∑

n=1

Ie
sd,nfs,n(r), (17)

Jm
s (r) =

Nd∑

n=1

Im
sd,nfs,n(r), (18)

where Nd is the total number of the common edges on Sd. Ie
sd,n and

Im
sd,n are the unknown expansion coefficients for the surface electric and

magnetic currents on Sd, respectively, and fs,n represents the nth face
basis function for the nth common edge.

Using the extended Galerkin’s method and testing the resultant
integral equations with a set of testing functions, as a result, the
integral equations are converted into a general matrix form. It can
be formally written as



ZDD η0Z
DM ZDDv η0Z

DMv

η0Z
MD η2

0Z
MM η0Z

MDv η2
0Z

MMv

ZDvD η0Z
DvM ZDvDv η0Z

DvMv

η0Z
MvD η2

0Z
MvM η0Z

MvDv η2
0Z

MvMv







IE
sd

IM
sd

/η0

IE
v

IM
v /η0


=




V E
sd

η0V
H
sd

V E
v

η0V
H
v


 (19)

where sub-matrices ZTX (T, X = D, M) constitute matrices of
traditional PMCHWT, and ZTX (T, X = Dv, Mv) constitute matrices
of VIE (It should be noted that there VIE is located in homogeneous
background medium with permittivity εb and permeability µb). When
the modulation terms are removed, then the GVSIE formulations
degenerate into traditional PMCHWT formulations. It should be
noted that the wave impedance of free space η0 is introduced to balance
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the magnitude of each operator and make the whole system better
conditioned.

3. THE HYBRID EDM-ACA

On the dielectric surface Sd, a RWG element is viewed as a dipole
moment model. The nth dipole moment can be obtained by the
integration of the surface current, corresponding to edge element n,
over the element surface:

mt
s,n =

∫

T±n
fs,ndS′ ≈ ls,n(rc−

s,n − rc+
s,n). (t = D, M) (20)

Similarly, in region V where the material is actually varying, a SWG
common face containing two inner adjacent tetrahedrons or a SWG
boundary face containing one tetrahedron is viewed as a dipole model.
The nth volume electric dipole moment and magnetic dipole moment
corresponding to tetrahedrons can be written as

mt
v,n=

∫

T±n
fv,ndV ′≈av,n

¯̄kx+(r)·(rc
ns−rc+

v,n

)
+av,n

¯̄kx−(r)·(rc−
v,n−rc

ns

)
,

(t=Dv;Mv and x=e; m) (21)

where rc±
v,n and rc

ns are the centroid radius vectors of a pair of
tetrahedrons T±n and the nth boundary face associated with T+

n ,
respectively, and av,n is the area of the nth common face associated
with T±n or the area of the nth boundary face.

Referring to Refs. [7, 8], the radiated electric and magnetic fields of
the nth infinitesimal electric dipole at the field point can be expressed
as

Et
i(r)=

ηi

4π

[(
Mt

u,n−mt
u,n

)(jki

R
+C

)
+2Mt

u,nC

]
, (t=D; Dv and u=s; v)(22)

Ht
i(r)=

jki

4π
(mt

u,n ×R)C, (t = D; Dv and u = s; v) (23)

Similarly, the radiated electric and magnetic fields of the nth
infinitesimal magnetic dipole at the field point can be expressed as

Et
i(r)=−

jki

4π
(mt

u,n ×R)C, (t = M ; Mv and u = s; v) (24)

Ht
i(r)=

1
4πηi

[(
Mt

u,n−mt
u,n

)(jki

R
+C

)
+2Mt

u,nC

]
, (t=M; Mv and u=s; v)(25)

in which

Mt
u,n =

(R ·mt
u,n)R

R2
, (t = D;Dv,Mv and u = s; v) (26)



Progress In Electromagnetics Research M, Vol. 27, 2012 89

C =
1

R2
[1 +

1
jkiR

], (27)

where R = rmn = rm − rn, and R = |R|. rm and rn are the
center radius vectors of the nth and the mth equivalent dipole models,
respectively.

Then the elements of the impedance matrix are calculated by

ZDT
mn ≈ ls,m[e−jk2RET

2 (R)|R=rm−rn · (rc−
s,m − rc+

s,m)],

(T = Dv,Mv), T±s,m ∈ Sd (28)

ZDT
mn ≈ −ls,m

[(
e−jk1RET

1 (R)+e−jk2RET
2 (R)

)∣∣∣
R=rm−rn

·(rc−
s,m−rc+

s,m

)]
,

(T = D, M), T±s,m ∈ Sd (29)

ZMT
mn ≈ −ls,m

[(
e−jk1RHT

1(R)+e−jk2RHT
2(R)

)∣∣∣
R=rm−rn

·(rc−
s,m−rc+

s,m

)]
.

(T = D,M), T±s,m ∈ Sd (30)

ZMT
mn ≈ ls,m[e−jk2RHT

2 (R)|R=rm−rn · (rc−
s,m − rc+

s,m)].

(T = Dv, Mv), T±s,m ∈ Sd (31)

In (28)–(31), the ls,m is the length of mth common edge associated
with a pair of triangle patches T±s,m and rc±

s,m is the centroid radius
vector of T±s,m.

ZY T
mn≈sign(m,n)





av,m

[
e−jk2RΓT

2(R)|R=rm−rn·(rc−
v,m−rc+

v,m)
]
,

T±m ∈V
av,m[e−jk2RΓT

2 (R)|R=rm−rn · (rc−
ms − rc+

v,m)],
T+

m ∈ V and T−m 6∈ V

(32)

where Y = Dv; Mv, T = D, M,Dv,Mv and Γ = E;H, and

sign(m,n) =





+ elsewhere

− T±v,m ∈ V and T±v,n ∈ V
. (33)

In (32), the rc±
v,m and rc

ms are the centroid radius vector of a pair
of tetrahedrons T±v,m and the mth boundary face, respectively. av,m

is the area of the common face associated with T±v,m or the area of
the mth boundary face associated with T+

v,m. Equations (28)–(32) are
the exact expressions and valid at arbitrary distances from the dipole.
Considering the accuracy and efficiency of the algorithm, the EDM
can be applied when the distance between the source and the testing
function location is greater than 0.15λ0 (λ0 is the wavelength in free
space).
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As is well known to all that with an increase in size of the
object, the elements of the impedance matrix increase quickly and
the calculation will cost much memory and CPU time. In this
article, the ACA [13] is employed to mitigate this problem. The ACA
algorithm is a matrix decomposition algorithm, thus impedance matrix
is decomposed into a series of the sub-matrix block with different
sizes. The diagonal blocks corresponding to self-group interactions
or the interactions of two touching groups are to be computed via the
conventional EDM/MoM approach. The numerically rank-deficient
matrix blocks corresponding to interactions of well-separated groups
will be efficiently compressed through the ACA algorithm. Considering
two groups such as group i and group j which are a well-separated
group pair and include Ni and Nj dipoles respectively, the interactions
Zji between the two groups can be approximated by the ACA, as

Z̃ji = UNj×rV r×Ni , (34)

where r denotes the effective rank of the submatrix Zji. Further, UNj×r

is a matrix of size Nj × r, and V r×Ni is a matrix of size r ×Ni. The
more detail of the ACA algorithm can be found in Ref. [13]. The goal
of the ACA is to achieve error matrix

‖Rji‖F = ‖Zji − Z̃ji‖F ≤ ε‖Zji‖F , (35)

where ε is a given tolerance, and ‖ · ‖F represents the matrix Frobenus
norm. The accuracy of the ACA can be easily controlled by a given
tolerance ε. In the paper, the tolerance ε = 10−2 is used in the ACA
algorithm. Clearly, compared with the conventional EDM/MoM, the
submatrices are efficiently compressed by the ACA, which reduces the
complexity of the memory and the CPU time cost in MVPs from
O(NiNj) to O(r(Ni + Nj)).

Since the elements of impedance matrices [ZTT (T = Dv,Mv)] and
[ZTT (T = D, M)] are not in the same order, the EDM/MoM based
on the GVSIE formulation results in poorly-conditioned matrices and
thus the generalized minimum residual (GMRES) iterative algorithm
converges very slowly. In order to improve the performance of the
impedance matrix and ensure fast convergence, one effective way is to
precondition the coefficient matrix so that the modified system can
converge significantly in much less iterations than the original one
does. Although we have introduced wave impedance η0 to balance the
magnitude, the elements of impedance matrices [ZTT (T = Dv,Mv)] are
still smaller than those of [ZTT (T = D, M)], and then we consider that
the basis functions for the dielectric volume are replaced by the new
form f′v,n = cfv,n (where c is a coefficient to be determined), refer to [14].
Thus, the principal diagonal elements of the new impedance matrix
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are nearly in the same order and then the condition number of the
preconditioned matrix is significantly decreased compared with that of
original one which ensures the faster convergence of the preconditioned
matrix.

4. NUMERICAL RESULTS

All the simulations are performed on a personal computer with the
Intel(R) Pentium(R) Dual-Core CPU E2200 with 2.0 GHz (only one
core was used) and 2.0 GB RAM. The GMRES iterative solver is
employed to obtain an identical residual error 0.001.

First, we consider the scattering problem of a high contrast two-
layer concentric sphere with inner radius r2 = 0.1λ, outer radius
r1 = 0.5λ, εr2 = 20 and εr1 = 10. The bistatic radar cross sections
(RCS) results are obtained for a plane wave at normal incidence with
θ = 0◦, φ = 0◦. According to the factorization, we chose εb = 10
with in the regions where ε∆ = 2. Then the VIE in (5) and (6) are
only invoked inside the smaller embedded sphere instead of the entire
scattering domain and the PMCHWT is only applied on the surface
of the larger sphere. In order to ensure the accuracy of the result,
the smaller embedded sphere is discretized into tetrahedrons by λ/20
average edge length, and then only 1236 unknowns are produced, the
larger sphere is discretized by triangle elements λ/12, and then 1986
unknowns are produced. It should be remarked here that the magnetic
surface current unknowns could be in consistent with the electric
surface current unknowns, as a result, the total unknowns are 5208. By
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comparison, if the usual VIE was used throughout the entire dielectric
domain, it would require approximately 300000 unknowns. Obviously,
the GVSIE method can reduce the total number of unknowns greatly
compared with the conventional VIE method. In the ACA algorithm,
all the unknowns are divided into 36 nonempty groups and the size of
each group is 0.2λ.

Figure 2 gives the bistatic RCS for θθ polarization calculated
by the Mie, EDM, EDM-ACA and EDM-ACA with a preconditioner
(multiplying c (c = 174547)). The results have been compared
with that from [6]. The memory needs 263 MB when only EDM is
used, and the convergence number is 580, then it cost 2570 s. After
employing ACA algorithm, the convergence number is unchanged,
but the memory requirements are reduced to 209 MB, then 1295 s are
needed. However, the results of EDM and EDM-ACA methods have
some errors when compared with those of the Mie solution and [6]
because of the ill-conditioned impedance matrix. The accuracy has
been greatly improved after multiplying c (c = 174547)), and the
memory requirements and time are further reduced to 200 and 1039 s,
respectively. The result calculated by the EDM-ACA method after
preconditioning is in excellent agreement with those of the Mie solution
and [6]. So, all the results of the next example are calculated by EDM-
ACA after preconditioning.

We next consider a hemisphere radome being illuminated by a
plane wave propagating along the z direction at the frequency of
0.15GHz. The inner and outer diameters of the radome are 0.8 m and
1.0m, respectively, and εr = 4. The radome is discretized into 3538
tetrahedrons and 1296 triangle cells by λg/10 average edge length,
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and then 7724 volumetric unknowns and 1944 surface unknowns are
produced, thus resulting in total 11612 unknowns. If VIE is used
for the problem, 30126 unknowns are needed. It can be seen from
Figure 3(a) that with the selected ε∆, our formulation compares
well with [15] and the PMCHWT method (ε∆ = 1). To further
demonstrate the robustness of our method, a higher contrast material
is presented in Figure 3(b) where the permittivity of the radome is
increased to εr = 17.97 − j14.57. The radome will be modeled using
different background medium and different variation, so as to represent
a material having an εr. All of the chosen backgrounds medium are
lossy to ensure fast convergence (if the backgrounds medium are not
lossy, they can not converge in 1000 steps). The discretization density
is same to that of εr = 4. All results are calculated by EDM-ACA after
multiplying c (c = 1000). The results compare well with each other, as
are shown in Figure 3(b). The curves slightly shifted away from that
calculated by PMCHWT with the increase of ε∆. It is due to the mesh
error, that is to say the larger ε∆ is, then the more meshes are needed.
It is important to further note that although the contrast of the radome
was increased, and different background medium are chosen, the same
discretization density was used for all of them. The presented results
suggest that there has some sense in which the GVSIE is applied in
the analysis of scattering from high-contrast material.

5. CONCLUSIONS

The GVSIE formulation is used for the calculation of electromagnetic
scattering from high contrast materials. The advantage of the GVSIE
is that the VIE is only invoked within region where the material
is actually varying, and PMCHWT is employed at the boundaries
of the volume region where Green’s functions for the high contrast
background medium are used. The GVSIE solved by the MoM using
SWG and RWG basis functions leads to fewer unknowns making it
useful in computing scattering applications of arbitrary shaped high
contrast media. Further, the EDM-ACA method combined with a
preconditioner is implemented to reduce memory requirements, CPU
time and improve accuracy for solving the electromagnetic scattering
problems.
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