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Abstract—The analysis of scattering of objects buried below a
random rough surface is of practical interest. In reality, the random
rough surface may be of an extensive periodic structure. To deal
with this more realistic situation, this paper presents a Monte-Carlo
MPSTD numerical technique developed for investigating the scattering
of a cylinder buried below a random periodic rough surface. The
computation model is formulated in two steps. In the first step, only
the random rough surface is considered and the periodic boundary
condition (PBC) is enforced at the two ends of a period of the rough
surface. Then, in the second step, a cylinder is placed below the
random rough surface and the interaction between the buried cylinder
and the rough surface is taken into account. In each of the two steps,
the fields are computed employing the MPSTD algorithm developed
in the authors’ previous work. Sample numerical results are presented
and validated.

1. INTRODUCTION

Over the last a few decades, significant research has been conducted
on the analysis of electromagnetic scattering of buried object for its
practical importance in both military and civil applications, such as
subsurface investigation and target detection. In reality, the media
interface may be a random rough surface, which could be of extensive
periodic structure. It is important to incorporate the nature of the
random rough surface in the electromagnetic scattering study because
of its substantial impact on the scattered signal of the buried object.

To study the scattering of a buried object near a random rough
surface, both analytical and numerical methods have been developed
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in the frequency domain. An application of the small perturbation
method (SPM) for studying the scattering is presented in [1]. For a
numerical simulation of objects above or below a rough surface, integral
equations have been formulated and solved by the method of moments
(MoM) [2–9]. In particular, itwas employed together with a steepest-
descent fast multipole method [4–7]; and in the analysis presented
in [5, 8, 9], a layered structure was considered. Meanwhile, the finite
element method (FEM) has been combined with Monte-Carlo method
to study scattering from objects on a rough sea surface [10].

As an effective time-domain method, the Monte-Carlo finite-
difference time-domain (FDTD) method has been developed to study
this kind of scattering problems, including that of an object above a
random periodic rough surface [11]. Being compared with the surface
integral equation method, the FDTD approach is more effective for
modeling inhomogeneous objects and complex geometries. And either
pulsed or continuous wave (CW) illumination can be used, propagation
of both the total and scattered fields can be observed in the time
domain. However, this method has major drawbacks. As pointed
out in [12, 13], the FDTD approach based on the classical Yee scheme
with quadratic cell mapping in space gives the modeled structures
a “staircase nature” and requires a number of grids per wavelength.
Numerous numerical examples reported in the literature have verified
that a fine discretization of 10–20 cells per minimum wavelength is
required to obtain acceptable accuracy of solutions. Furthermore, the
classical FDTD approach is ill-suited for arbitrary geometries with
multiple materials.

Recently, the pseudospectral time-domain (PSTD) method has
been developed and successfully applied to solve various problems of
practical interest, such as determining the electromagnetic scattering
by objects placed in an open space [14–21] and investigating the
scattering of two-dimensional (2D) cylinders buried in a half space
with a planar [22, 23] or an undulating surface [23]. This method
has been systematically presented in [24]. As pointed out in [15],
“The pseudospectral schemes can be thought of as a maximum
order finite-difference schemes and as such takes the role of the
royals among numerical schemes for the solution of partial differential
equations. As we shall learn properly formulated pseudospectral
schemes yield not only superior accuracy but does so in a very efficient
manner as compared to low-order FDTD schemes.” This has been
demonstrated by a number of numerical experiment results reported
in the literature [17, 22, 23]. Moreover, the spatial grid is not staggered
like the one used in the classical FDTD Yee scheme, so that the
derivation, programming and representation of materials are more
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straightforward. This is extremely beneficial when a random rough
surface is involved in the computation. Also, as indicated in [23], in
contrast to the classical FDTD Yee scheme with the “staircase nature”,
the multidomain pseudospectral time-domain (MPSTD) approach is
well suited for complicated geometries with a great flexibility. This
nature warrants a good potential of the MPSTD method for application
in the analysis of scattering involving random rough surfaces, the
geometry of which is apparently complex and needs special attention.
But to the best knowledge of the authors, the MPSTD method that is
more effective than the classic FDTD approach had not been applied
in combination with the Monte-Carlo method for determining the
scattering of objects buried below a random rough surface, which may
better simulate media interfaces in reality and is of practical interest,
until most recent time.

Most recently, a Monte-Carlo MPSTD algorithm has been
developed for investigating the scattering of a 2D cylinder buried below
a random rough surface [25]. But the investigation is limited for a
random rough surface of finite length.

However, in reality, a random rough surface may be of an extensive
periodic structure. To take care of the more realistic situation, in this
paper, the Monte-Carlo MPSTD algorithm presented in the authors’
previous work [25] is further developed for studying the scattering of
a 2D cylinder buried below a random periodic rough surface. One
notes that due to the existence of the buried cylinder, the structure
loses its periodic nature; and it is hard to compute the scattering in
a finite computation domain by one step. To face this challenge, we
propose a two-step MPSTD numerical technique. In the first step, only
the random periodic rough surface is considered so that the periodic
boundary condition (PBC) can still be used to simulate the extensive
periodic rough surface. Then, in the second step, the near-zone field
scattered by the entire periodic rough surface obtained in the first
step is used as the excitation to the buried cylinder to determine the
scattering from the buried cylinder and that due to the interaction
between the cylinder and the rough surface. The length of a period
of the periodic rough surface is taken to be much longer than the
correlation length of the random rough surface and be sufficiently
large compared with the dimension of the buried cylinder, then the
computation can still be carried out in a finite computation domain as
described in Section 3. The rest of this paper is organized as follows.
In Section 2, we formulate the computation model for the scattering of
a random periodic rough surface alone, where the periodic boundary
condition (PBC) is enforced. Then, in Section 3, a cylinder buried
below the random rough surface is considered and the computation
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model is developed in two steps. Using the computation model, sample
numerical results are obtained, presented, and validated in Section 4.
Finally, conclusions are drawn in Section 5.

2. COMPUTATION MODEL FOR SCATTERING FROM
A RANDOM PERIODIC ROUGH SURFACEALONE

2.1. Introduction to a Random Periodic Rough Surface

In the computation model for simulating the scattering of an extensive
random rough surface, the rough surface must be artificially truncated
at the two ends of the computation domain that is of finite length.
This truncation would force the current on the rough surface to be
zero at the truncation edges. Subsequently, such an abrupt change of
surface current would cause artificial reflection from the two edges.
To prevent the current discontinuity, a tapered incident wave has
been introduced in spatial or spectral domain to make the excitation
decay gradually and become negligible at the surface edges [26]. But
as the incident angle increases, especially at low grazing angles, the
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illuminated area becomes large, which would require huge memory
and cause complexity, making the numerical simulation difficult.

In this paper, we study an extensive random periodic rough surface
shown in Fig. 1, where L is the length of one period. To simulate the
statistic characteristics of the roughness of a random rough surface, L
should be greater than several correlation lengths lc and in general it
is taken to be [27]

L ≥ 15lc. (1)

Then the diffraction from the truncated edges can be eliminated
by enforcing a periodic boundary condition (PBC) there [26, 28, 29].
According to the Floquet Theorem [30], by enforcing the PBC, the
fields along an extensive periodic rough surface can be readily described
by the fields in one period cell. In this way, only one period of rough
surface needs to be included in the computation domain, which can
significantly improve the computation efficiency.

2.2. Formulation of the Computation Model

The MPSTD computation domain for studying the scattering from a
random periodic rough surface is depicted in Fig. 2. For simplicity,
the perfectly matched layer (PML) [23–25] regions surrounding the
“regular” region are not included there. As shown in this figure, the
computation domain is divided into two regions: the total field region
and the scattered field region. In the total field region enclosed by
A′B′E′F ′, the field is the sum of the incident field to the rough surface,
which is the driving composite field described in [25], and the field
scattered by the rough surface. In the scattered field region enclosed
by C ′D′F ′E′, only the field scattered by the rough surface exists.
The incident fields are injected at the four total-field/scattered-field
(TF/SF) interfaces A′F ′, F ′E′, E′B′ and B′A′.

Also, as shown in Fig. 2, a period of rough surface is included
in the computation domain. At its side boundaries a′d′ and b′c′, the
periodic boundary conditions, for Ez as an example, are enforced [31],

Ez(xb′c′ , y, t) = Ez(xa′d′ , y, t− L/vx), (2a)
Ez(xa′d′ , y, t) = Ez(xb′c′ , y, t + L/vx), (2b)

where vx = v/ sin θ is the phase velocity in x direction, and θ is the
incident angle. At normal incidence, θ = 0, we can simply set the nodal
values of the fields on the periodic boundaries at left- and right-hand
sides equal at every time step.



184 Dai, Liu, and Xu

3. COMPUTATION MODEL FOR SCATTERING FROM
BURIED CYLINDER BELOW RANDOM PERIODIC
ROUGH SURFACE

After placing a cylinder below a random periodic rough surface,
the structure is no longer periodic. Hence, the periodic boundary
condition cannot be used anymore and the computation model must
be modified. The new computation procedure is thus decomposed into
two steps [11]. The key idea of the two-step approach is similar to
that of a “three-wave” method presented in [32–34], which has been
successfully used in the finite-difference time-domain (FDTD) analysis
of scattering of an object buried below a planar media interface. As
shown in [32], in such an FDTD analysis, first, the incident, reflected,
and transmitted fields associated with the planar media interface are
calculated in the absence of an object. Then, the calculated composite
field (also called as the “three-wave” field), which is the sum of the
incident and reflected field in the upper half space and the transmitted
field in the lower half space, is employed as the driving field of an
object near the interface to determine the scattering of the object
and interface combination. It is indicated in [32] that in principle,
the interface involved in this approach that consists of two steps may
be of any geometry; but one understands that if the media interface
is a random rough surface instead of a planar surface, the scattered
field by the rough surface, rather than the reflected and transmitted
field associated with a planar interface, should be calculated first.
Based on this key idea, the computation presented in this paper is
performed in two steps. In the first step, the scattering of a random
periodic rough surface is computed in the absence of an object so
that the periodic boundary condition can still be used to confine the
computation domain in a finite region. The computation domain for
this step is the same as that depicted in Fig. 2, and the MPSTD
algorithm is employed to compute the near-zone field, which is the
sum of the incident field and the scattered field from the rough surface.
In the second step, a cylinder is placed below the rough surface and
the near-zone field obtained in the first step is used together with the
incident field to excite the buried cylinder and the interaction between
the buried cylinder and the rough surface is taken into account. The
computation domain is shown in Fig. 3, where the total field (TF)
region is enclosed by abef, and the region outside abef is defined as
the scattered field (SF) region. The dimensions of abef and fecd are
the same as that of a′b′e′f ′ and f ′e′c′d′ depicted in Fig. 2, respectively,
and the boundaries ad, bc and fe correspond to a′d′, b′c′ and f ′e′ used
in Fig. 2.
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Figure 3. The computation domain for a cylinder buried below a
random rough surface (The second step).

In the first step of the computation, the incident field is injected at
the TF/SF boundary and the periodic boundary condition is enforced
as illustrated in Fig. 2. The electromagnetic fields must satisfy the 2-D
Maxwell’s equations,
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under a TMz plane wave incidence. This equation is solved numerically
employing the MPSTD algorithm presented in [23–25]. In particular,
the electromagnetic fields and their spatial derivatives appearing
in Equation (3) are represented by a tensor-product Chebyshev-
Lagarange polynomial. To take care of the time derivatives of the fields
appearing in this equation, a Runge-Kutta method is employed for the
time integration to advance the solution to the next time step. In
the solution procedure, special attention is paid to the random rough
surface, which is generated and treated as presented in the authors’
previous work [25].

Then, the near-zone field obtained in step 1 is used together with
the incident field in the second step as the excitation source to the
buried cylinder, which is injected on the TF/SF boundaries. The
sources introduced at the top and bottom TF/SF boundaries are the
incident field used in step 1; the sources enforced at the left and right
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boundaries are the near-zone field obtained in step 1. In this way, the
near-zone field in the region enclosed by a′b′c′d′ from step 1 can be
transported to the region enclosed by abcd in step 2. The Maxwell’s
equations given in Equation (3) with the new excitation source are
solved one more time employing the MPSTD algorithm. The field in
the total field region enclosed by abef is the sum of (a) the incident
field, (b) the scattered field from the random periodic rough surface
alone excited by the incident wave, (c) the scattering due to the buried
cylinder excited by the near-zone field obtained in step 1, and (d) the
scattering due to the interaction between the cylinder and the rough
surface. The fields existing in the total-field and scattered-field regions
in steps 1 and 2 are illustrated in Figs. 4(a) and 4(b). One notes that
among the three components of the scattered fields, part (b) — the
scattered field from the random periodic rough surface alone is indeed
from the entire periodic structure due to the application of PBC based
on Floquet theorem; and hence part (c) — the scattering from the
buried cylinder is due to the excitation from the entire random periodic
rough surface. Only part (d) — the interaction between the buried
cylinder and the random periodic rough surface is an approximation
— it is taken to be for one period of the rough surface that is right
above the buried cylinder only; the interaction between the buried
cylinder and the other parts of the rough surface is neglected due to the
requirement that the computation domain must be finite. Therefore, it
is important to have the length L of one period of the random periodic
rough surface to be sufficiently large compared with the size of the
buried cylinder so that the interaction between the cylinder and the
other periods of the rough surface, which are at larger distances away
from the cylinder, is weaker; and hence can be neglected as a good
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approximation. This is to be demonstrated in a numerical example
presented in Section 4. In addition, L must be much greater than
the correlation length lc to simulate the statistic characteristics of the
roughness of a random rough surface as mentioned in Section 2.

Since the rough surface involved in this work has a random nature,
a statistic average of the scattering needs to be determined by a Monte-
Carlo procedure presented in [25]. First, a set of random rough surfaces
with Gaussian spectrum is generated. Then, the two-step MPSTD
algorithm formulated above is employed to determine the scattering
of a buried cylinder below each of the rough surfaces generated.
And finally, the statistic average of the scattering is determined after
numerical tests to make sure that the result converges.

4. NUMERICAL RESULTS

Using the two-step approach formulated above, sample numerical
results are obtained, presented, and validated in this section. For
all the numerical results presented, the excitation is taken to be a
normal TM z plane wave incidence propagating in −y direction, the
time domain function of which is the first derivative of Blackmann-
Harris window function with central frequency fc = 100 MHz. The
random periodic rough surface is of period L = 8 m (2.67λ0) in parts
(1) and (2) and of period L = 10 m (3.33λ0) in part (3); and the
correlation length lc = 0.3 m (0.1λ0), which satisfies the requirement
L ≥ 15lc. It is of rms height σrms = 0.3m (0.1λ0), unless otherwise
specified. The medium above the rough surface is assumed to be
free space and the medium below the rough surface is an isotropic,
lossless medium with µr = 1 and εr = 3, unless otherwise indicated.
The incident wave is originated in the upper half space above the
rough surface. The incident fields are the fields of the incident wave
propagating in the absence of the rough surface and the buried cylinder.
In all the computation domains presented in this section, the most
outer subdomains are the PML regions. The statistic average of the
scattering is taken for 15–18 realizations of the random rough surface
after a series of numerical tests as described in [25] to make sure that
the results converge.

4.1. Verification of the Periodic Boundary Condition and
Validation of the Two-step Approach

In the first numerical example, we consider a random rough periodic
surface alone. The computation domain is shown in Fig. 5(a), in which
the total field region is the region −6 ≤ x ≤ 6, −6 ≤ y ≤ 2, and
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Figure 5. Scattering from a random periodic rough surface. (a) The
computation domain. (b) Fields observed at two points separated by
a period of the rough surface.

the scattered field exists in the region −6 ≤ x ≤ 6, 2 ≤ y ≤ 4.
The left and right periodic boundaries are located at x = −4 and
x = 4. The statistic average of 15 rough surface realizations is taken
after a convergence test [25]. The numerical results are shown in
Fig. 5(b) for the electric field observed at two different observation
points x = −4.2182 and x = 3.7818 along y = 1, which are separated
by a distance of the length of a period. From this figure, one sees
that the fields at these two points are identical, which underlines
that the resulting fields are indeed periodic after applying the periodic
boundary condition.

The second example is devoted to validate the two-step MPSTD
approach. Since there is not existing result in the literature for the
same problem solved in this work, we employ the two-step approach
to study a simpler geometry, which is a circular PEC cylinder buried
below a random rough surface of finite length; and then compared
the numerical results with published data. As shown in Fig. 6(a), the
random rough surface exists in the region of −4 ≤ x ≤ 4; it becomes
a flat interface for x < −4 and x > 4. The numerical results of
the electric field Ez obtained by employing the two-step approach is
observed at (0, 2) and compared with the published data [25]. From
the comparison illustrated in Fig. 6(b), one sees that the two sets of
data fall on top of each other.

4.2. Scattering from Random Periodic Rough Surface Alone

As a partial check of the two-step approach, in this section, we
employ it to compute the fields due to a random periodic rough
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surface, in absence of the buried cylinder, first. The geometry and
the computation domain are the same as that illustrated previously in
Fig. 5(a), hence it is not repeated here. The periodic boundaries are
located at x = −4 and x = 4 in step 1 and the TF/SF boundaries
are at x = −4 and x = 4 in step 2. Since there is no buried cylinder,
one predicts that the field in the total field region obtained in step 2
should be the same as that obtained in step 1; and no field should be
found in the scattered field region in step 2 since there is no scatterer.

Numerical results of spatial distribution of the electric field
obtained at a specific moment t = 20 ns in step 1 and step 2 are
shown in Figs. 7(a) and (b), respectively. The phenomena illustrated
in the figures are exactly as what is predicted above. The near zone
field obtained in step 1 is successfully transferred to step 2 and no field
exists in the scattered field region. In addition, it is of interest to note
that the field distribution presented in both figures well represent the
shape of the rough surface depicted in Fig. 5(a).

Then, in Fig. 8, we present the same results but as a function of
time observed at four observation points. At point (1, 1), which is in
the total field region in both steps 1 and 2, the fields obtained in these
two steps are exactly the same as expected. At (−1, 3) that is in the
scattered field region in step 1 and is in the top scattered field region
enclosed by fecd in step 2, the two sets of data also fall on top of each
other as they are supposed to be. At points (−5,−5) and (5, 1), which
are in the total field region in step 1 but in the left and right scattered
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(a) (b)

Figure 7. Spatial distribution of the electric field obtained at t =
20ns. (a) In step 1. (b) In step 2.
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field regions in step 2, the scattered field obtained in step 2 is zero as
expected since there is no scatterer. The observations made above can
serve as a partial check of the correctness of the numerical results.

Next, we present the numerical results corresponding to different
lower half-space εr2 and various rms height σrms . The results shown in
Fig. 9 are for the electric fields observed at (0, 2) for εr2 = 3, εr2 = 2,
and εr2 = 1. From the data presented, one notes that the electric filed
gradually reduces to that in free space as εr2 varies from 3, to 2, then
1; as expected.

Figure 10 illustrates the numerical results of the electric field
observed at (0, 2) for various rms heights of the random periodic rough
surface, 0.3m (0.1λ0), 0.2 m (0.067λ0), 0.1 m (0.033λ0) and for a flat
surface. From this figure, one sees that the result of the field gradually
converges to the analytical result for a flat surface (σrms = 0) as the
rms height of the rough surface decreases from 0.3 to 0.2, to 0.1, and
finally to 0, as it is supposed to be. The observations made on the
two examples above can be used as a partial check of the correctness
of their numerical results.

4.3. Scattering from Buried Cylinder below a Random
Periodic Rough Surface

In the next a few examples, we present the numerical results of the
scattering of a circular PEC cylinder buried below a random periodic
rough surface. As indicated in the previous section, it is important to
have the length L of one period of the random periodic rough surface
to be sufficiently large compared with the size of the buried cylinder so
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that the interaction between the cylinder and the other periods of the
rough surface, which are at larger distances away from the cylinder, is
weaker; and hence can be neglected as a good approximation. This is
demonstrated in a numerical example presented below. As illustrated
in Figs. 11(a), 11(b), and 11(c), a period of the rough surface right
above the buried cylinder is located in −5 ≤ x ≤ 5 and the length of a
period L = 10m remains unchanged; but the computation domain
is taken to be of different lengths of 14 m (−7 ≤ x ≤ 7), 18m
(−9 ≤ x ≤ 9), and 22 m (−11 ≤ x ≤ 11). The numerical results of the
electric field observed at (0, 2), (−3, 2), and (−4, 2) are presented in
Figs. 11(d), 11(e), and 11(f), respectively; and in each of these three
figures, the numerical results for the different computation domain
lengths are compared with each other. The comparisons show that
increasing the computation domain length beyond the period right
above the buried cylinder has little effect on the numerical results.
This demonstrates that the length of the period of the random periodic
surface considered in the computation is sufficiently large so that the
interaction between the buried cylinder and the other periods of the
rough surface (x < −5 and x > 5) can indeed be neglected and the
total length of the rough surface included in the finite computation
domain is adequate; hence verifies that the two-step MPSTD approach
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Figure 11. Comparison of the numerical results for different
computation domain lengths. (a) Computation domain of length of
14m, (b) 18 m, (c) 22m. (d) Comparison of the results at (0, 2), (e) at
(−3, 2), (f) at (−4, 2).

presented in Section 3 works effectively for a random periodic rough
surface with a period of sufficiently large length.

In addition, numerical tests have been performed to verify the
effectiveness of the two-step approach as L increases. The results of
the numerical tests show that using a laptop with an Intel Core i3 CPU
processor, the CPU time needed for one realization is 10 minutes for
L = 10 m and is 14 minutes as L is increased to 14 m. From the limited
CPU time increase, it is expected that the two-step MPSTD method
can also effectively work well for larger L.

Then, the spatial distributions of the electric field, for the
configuration depicted in Fig. 11(a), obtained at t = 20 ns, 26 ns, and
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(a) 

(c)

(b)

 (d)

(e)  (f)

Figure 12. Spatial distribution of the fields obtained at different
moment. (a) Ez at t = 20ns, (b) Hy at t = 20 ns, (c) Ez at t = 26ns,
(d) Hy at t = 26 ns, (e) Ez at t = 50 ns, (f) Hy at t = 50 ns.

50 ns are shown in Figs. 12(a), (c), and (e); and the corresponding
magnetic field distributions are depicted in Figs. 12(b), (d), and (f). It
is of interest to observe that the electric field distribution obtained at
t = 20ns shown in Fig. 12(a) clearly illustrates the shape of the random
rough surface but it only depicts a portion of the buried cylinder.
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This is due to the fact that the incident field hits the random rough
surface first and then the buried cylinder; and at t = 20 ns only a
portion of the cylinder is illuminated by the incident wave. But as time
progresses, the incident wave travel farther in the lower half space. At
t = 26ns, the scattering from the random rough surface as well as the
buried cylinder appears in the left and right scattered field region. At
t = 50ns, the incident field covers the whole buried cylinder and hence
its complete shape is well illustrated in Figs. 12(e) and (f), as expected.

As a partial check, next, we present the numerical results of the
scattering corresponding to different relative permittivity εr2 of the
lower half space. As shown in Fig. 13(a), εr2 can significantly alter the
scattering, and as it changes from 3, to 2, then to 1.01, and finally to
1, the result converges to that in free space, which perfectly matches
the analytic result [35] presented in Fig. 13(b), as it is supposed to be.

Another partial check is performed by comparing the numerical
result of the electric field obtained at (0, 2), which is in the middle
of a period L of the random periodic rough surface with L = 10m
as depicted in Fig. 11(a), with that observed at the same point for a
random rough surface of finite length L, beyond the two ends of which
is a flat interface (x < −5 and x > 5) that is not a periodic structure.
For a sufficiently large L compared with the dimension of the buried
cylinder it is expected that the two results should be about the same.
This is exactly what is illustrated in Fig. 14.

Next, we compare the two sets of data at a different point
(4.434, 2), which is close to the right end of a period of the random
periodic rough surface. The comparison presented in Fig. 15 shows a
significance difference (the maximum difference is about 110%) of the
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Figure 13. (a) Ez observed at (1, 2) for various εr2. (b) Comparison
of the numerical result with analytical solution for εr2 = 1.
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Figure 14. Comparison of Ez
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period of arandom periodic rough
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rough surface of finite length.
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Figure 16. (a) Ez observed at (−3, 2) for various σrms.
(b) Comparison of the results obtained by two different methods for a
flat interface.

scattering corresponding to the random periodic rough surface and that
of finite length. This is due to the fact that the scattering observed
at a point near the end of a period contains the contribution from
the adjacent period of the rough surface, which does not exist for a
random rough surface of finite length. Such a significance difference
between the two sets of numerical results indicates that it is necessary
to extend the analysis of scattering involving a random rough surface
of finite length to cover the more realistic case, in which a random
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periodic rough surface is considered.
In Fig. 16, the numerical results of the electric field corresponding

to various rms height σrms of the random rough surface are presented.
As illustrated in Fig. 16(a), when σrms varies from 0.3, to 0.2, then
to 0.1, and finally to 0, the result converges to that for a flat media
interface. Furthermore, as shown in Fig. 16(b), the results obtained
by the two-step approach for the flat interface is exactly the same as
that got from the “regular” Monte-Carlo MPSTD algorithm presented
in [25] as expected.

The two-step Monte-Carlo MPSTD numerical technique devel-
oped in this work can be employed for determining the scattering of
a cylinder of arbitrary shape buried below a random periodic rough
surface. The last sample numerical result is for the scattering of a
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Figure 17. Spatial distribution of Ez obtained at different moments.
(a) Geometry and computation domain. (b) Ez at t = 25 ns, (c) Ez at
t = 50ns.
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rectangular PEC cylinder of dimension 2 m × 2m (0.67λ0 × 0.67λ0)
with its axis along (0,−3), buried below a random periodic rough sur-
face. The geometry and computation domain with grids are depicted
in Fig. 17(a). In Figs. 17(b) and (c), the spatial distributions of Ez at
two moments t = 25 ns and t = 50 ns are presented. Similar to what
has been seen in Fig. 12, one observe that the electric field distribu-
tion obtained at t = 25 ns shown in Fig. 17(b) illustrates the shape of
the random rough surface but it only depicts a portion of the buried
rectangular cylinder. This is due to the fact that the incident field hits
the random rough surface first and then the buried cylinder; and at
t = 25 ns only a portion of the cylinder is illuminated by the incident
wave. But as time progresses, the incident wave travel farther in the
lower half space. At t = 50 ns, the incident field covers the whole buried
rectangular cylinder and hence its complete shape is well illustrated in
Fig. 17(c).

5. CONCLUSIONS

A two-step Monte-Carlo MPSTD numerical technique is developed and
implemented for the analysis of scattering of a cylinder buried below
a random periodic rough surface. In addition to the advantages of
the MPSTD technique over the traditional FDTD method mentioned
in the section of “Introduction”, the benefit of using the two-step
approach is described as the follows. As shown in Section 3, after
placing a cylinder below the random periodic rough surface, the
structure is no longer periodic and the periodic boundary condition
(PBC) does not hold any more, hence it is hard to solve this problem
within a finite computation domain. To overcome this difficulty, we
decompose the solution of this complicated problem into two steps.
In the first step, only the random rough surface is considered so
that the PBC still holds and hence can be enforced to simulate
the entire random periodic rough surface by only one period of the
rough surface contained in a finite computation domain. Then, in
the second step, the near-zone field obtained in the first step is used
together with the incident field as the excitation source to the buried
cylinder to determine the electromagnetic fields taking into account
the scattering of the buried cylinder as well as the interaction between
the buried cylinder and the rough surface. As explained in Section 3
and demonstrated in Section 4, for a sufficiently large length L of one
period of the random periodic rough surface, the computation domain
can still be confined in a finite region. In this way, taking the two-step
MPSTD approach, the difficulty caused by placing a buried cylinder
below a periodic rough surface has been overcome and the computation
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can be carried out effectively without losing its accuracy.
To extend the combination of the two-step MPSTD technique

with the Monte-Carlo analysis presented in this paper, the authors are
currently studying the scattering of a cylinder embedded in a layered
half space with random rough interfaces, which may more faithfully
simulate the real earth and thus has a potential of both civil and
military applications including subsurface investigations and target
detections.
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