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Abstract—Synthetic aperture radar (SAR) automatic target recog-
nition (ATR) has been receiving more and more attention in the past
two decades. But the problem of how to overcome SAR target am-
biguities and azimuth angle variations has still left unsolved. In this
paper, a multi-scale local phase quantization plus biomimetic pattern
recognition (BPR) method is presented to solve these two difficulties.
By applying multiple scales local phase quantization (LPQ) on the ob-
served SAR images, the blur and azimuth invariant features can be
extracted, and these features are fusion at consecutive multiple scales
to achieve better results. Then PCA method is applied to further re-
duce the feature dimension and achieve its efficiency. Finally, high
dimensional space geometry covering method based on BPR theory is
adopted to construct hyper sausage neuron links for target recognition.
Experiments on the MSTAR database show that the proposed method
can achieve satisfying recognition accuracy compared with other state-
of-the-art methods.

1. INTRODUCTION

Nowadays, Synthetic Aperture Radar (SAR) is playing an important
role in the field of military remote sensing because of its ability
to imaging with high resolution under all-weather and all-time
condition [1–5]. As a key application of SAR, automatic target
recognition (ATR) based on SAR has a great value both in military and
commercial applications. However, how to interpret the SAR images
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and recognize the true targets correctly still remains to be studied
and explored [6–16]. Currently, the proposed recognition methods for
SAR targets are mainly template-based matching strategy [17] and
model-based reconstruction method [18], together with the kernel-
based method [19] which has been adopted for a wide range of
applications because of its excellent performance. Recently, a multi-
view joint sparse representation based SAR ATR method has been
proposed and has achieved the state-of-the-art results [20]. However,
many problems still haven’t been perfectly resolved due to SAR image’s
special electromagnetic imaging process as a kind of coherent imaging
radar. Generally, serious coherent wave speckle noise exists in the
obtained SAR images, and distributions of targets and background
have been considered for removing the noises [11]. But there are two
main problems still left unsolved: one is the targets’ azimuth angle
orientation variation due to the uncertainty in imaging process; the
other is the inevitable ambiguity (or blur) in SAR imaging due to its
original imaging principle and design. For overcoming the problem
of target azimuth angle variations, multiple classifiers for different
azimuth angles are trained commonly and the azimuth of the probe
target is needed to be estimated beforehand. However, these methods
could not be applied in practice. For the second problem, to the best
of our knowledge, SAR ATR methods presented did not consider the
impact of ambiguity in recognition process and how to suppress it.
Therefore, effective feature extraction and robust recognition method
for overcoming the above two difficulties on SAR ATR has became a
key issues.

In this paper, a multi-scale local phase quantization plus
biomimetic pattern recognition (BPR) method to solve these two
difficulties is presented. By applying local phase quantization (LPQ)
on the SAR images, the blur and azimuth invariant features can be
extracted. In nature and engineering practice, observation and analysis
of objects are often carried by selecting different scales. Thus multiple
scales are selected to extract and fuse the invariant features further for
better results. However, multi-scale feature fusion brings the huge
dimension feature problem. Here the simple principal component
analysis (PCA) method is adopted to reduce the dimension and achieve
the efficiency. Considering the azimuth angle variation of SAR targets,
Biomimetic Pattern Recognition (BPR) [23] is introduced firstly to
accomplish the SAR image recognition as a new application even
though it has been widely used in fields of biometric recognition and has
achieved outstanding performances [24]. According to BPR theory, the
variation of azimuth angle of the same type targets can be considered
as continuous variation, and the high dimensional space geometry
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covering can be constructed by hyper neurons through best coverage of
feature samples. So BPR method is suitable for modeling SAR targets
azimuth angle variation recognition problem and can contribute to
robust results for SAR ATR.

The rest of this paper is organized as follows. Section 2 introduces
the ambiguities exist in synthetic aperture radar and the frequency
domain based ambiguous and rotational invariant feature extraction
method based on local phase quantization. Section 3 presents the
proposed SAR recognition algorithm in the aspects of preprocessing
procedure, multi-scale feature extraction process using multiple LPQ
and BPR based recognition model. Section 4 presents and compares
the experimental results on MSTAR database by choosing different
parameters. Finally, Section 5 draws the conclusion of the paper.

2. AMBIGUOUS AND ROTATIONAL INVARIANT
FEATURE EXTRACTION VIA LOCAL PHASE
QUANTIZATION

2.1. Ambiguities in Synthetic Aperture Radar Images

The presence of range and azimuth (or Doppler) ambiguities in
synthetic aperture radars (SARs) is due to its incoherent imaging
principle and has been well proved [25–29]. These ambiguities can
be classified as range ambiguities and azimuth ambiguities, which are
shown as Figures 1 and 2. The first one is the response ambiguity at
the receiver by the radar returns from two successive pulses overlaps
when the pulse repetition frequency (PRF) is set too high, where the
parameter of c and fPRF in Figure 1 represent the velocity of light and
PRF respectively. And the latter arises in SAR images from the finite
sampling of the Doppler spectrum at the PRF. Since spectrum repeats
at PRF intervals, the signal components outside this frequency interval
fold back into the main part of the spectrum. In fact, the combination
of range and azimuth ambiguities not only implies a lower limit on
the required area of the physical antenna, but also challenges the post
processing of SAR images.

From the theory of far-field antenna gain, the ambiguity-to-signal
ratios (ASR) of SAR images can be evaluated theoretically. The radar
return at a particular Doppler frequency f0 and time delay τ0

R(f0, τ0) =
∞∑

m,n=−∞
G(f0 + mPRF, τ0 + n/PRF) ·

σA(f0 + mPRF, τ0 + n/PRF) (1)
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Figure 1. Illustration of range ambiguities generation.
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Figure 2. Illustration of azimuth ambiguities generation.

where m and n are nozero integers. PRF is the pulse repetition
frequency, G(f, τ) the antenna gain pattern, and σA(f, τ) the radar
reflectivity. The term with m = n = 0 is the signal and the rest of the
terms constitute the ambiguity.

However, Equation (2) is difficult to evaluate in practice for two
reasons. First, the antenna gain patterns are generally given as a
function of the elevation and azimuth angle off the antenna boresight
and not as a function of f and τ . Secondly, (2) is not suitable for
computation because of the dependence of σA on range, angle of
incidence, et al., are not explicitly indicated.

From the radar reflectivity and Ref. [28], many of the factors that
appear in (2) can be cancelled out when one evaluates the ASR because
they appear both in the signal and in the ambiguity calculation. In
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fact, the ASR can be written as

ASR =

∞∑
m,n=−∞

∫ (PBW )/2
(−PBW )/2 G[e(f + mPRF, τ + n/PRF),

a (f + mPRF, τ + n/PRF)]
[∑

(i)/R4
]
df

∫ (PBW )/2
(−PBW )/2 G[e(f, τ), a(f, τ)] [

∑
(i)/R4] df

(2)

The suppressing of ambiguities of SAR images has been studied
for years. Ref. [25] suppress the azimuth ambiguity by designing ideal
filters and canceling the ambiguity through multiple imaging, but the
method is only suitable for the case of point scatters. Ref. [27] uses
post-processing techniques to obtain ambiguity-free results. It requires
the azimuth ambiguity zones to correspond to nulls in the azimuth
antenna pattern. The energy in the nulls is considered to belong only
to the main scene. A Wiener adaptive filter is then designed to reduce
the ambiguity. Because the parameters of the filter, including the
main scene and the ambiguity intensity, are estimated after imaging,
the ambiguity removal effect relies on the properties of the scene,
the precision of the imaging algorithms, and the antenna pattern
measurement accuracy. Ref. [29] introduces compressed sensing for
azimuth ambiguity suppression and presents two novel methods from
the perspectives of system design and image formation, known as
azimuth random sampling and ambiguity separation, respectively.
However, for SAR automatic target recognition method, specific
feature extraction method for suppressing the ambiguities has not been
reported yet.

2.2. Frequency Domain Feature Extraction based on Local
Phase Quantization

In this paper, contrary from designing of ideal filters for preprocessing
the ambiguous SAR images, we considered extracting the ambiguous
invariant local phase feature in frequency domain [30–33]. For SAR
images, ambiguity of the observed image is inevitable due to the
existence of range ambiguities and azimuth ambiguities. Thus the
observed image g(x) can approximately be expressed as a spatial
convolution of the original image f(x), given by

g(x) = f(x) ∗ h(x) (3)

where h(x) is the point spread function (PSF) of the ambiguities, ∗
denotes 2-D convolution and x is a vector of image coordinates [x, y]T .
In the Fourier domain, this corresponds to

G(u) = F (u) ∗H(u) (4)
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where G(u), F (u), and H(u) are the discrete Fourier transforms (DFT)
of the blurred image g(x), the original image f(x), and PSF h(x),
respectively, and u is a vector of coordinates.

Since the radar is moved relatively to the target in SAR, we can
assume the blur PSF h(x) is centrally symmetric, namely h(x) =
h(−x), and as a consequence its phase can be given by

∠H(u) =
{

0, if H(x) ≥ 0
−π, if H(x) ≤ 0

(5)

Thus the phase of the observed image ∠G(u) at the frequencies,
where H(u) is positive, is invariant to centrally symmetric ambiguity.
It results that the original phase information of the observed SAR
image by Fourier transform is remained unchanged.

To use the phase information, Short-Term Fourier Transform
(STFT) is computed over a M by M local rectangular window Nx

at each pixel x of the image f(x) defined by

F (u, x) =
∑

y∈Nx

f(x− y)e−j2πuT y
(6)

The responses at only four frequency points u = [u1, u2, u3, u4] are
considered in LPQ where u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T , u4 =
[a,−a]T and a is the frequency parameter. Let

F c
x = [F (u1, x), F (u2, x), F (u3, x), F (u4, x)] (7)

Fu = [Re(F c
x), Im(F c

x)]T (8)

where Re(·) and Im(·) return real and imaginary parts of a complex
number, respectively. Thus, eight output response images are
generated for a single image f(x), four of which are real response
images FRe

u and the other four are imaginary response images F Im
u .

The quantized LPQ code for each pixel x is encoded into a decimal
number between 0–255 as

LPQ(x) =
3∑

i=0

(
I(FRe

ui
(x)

)× 22i + I
(
F Im

ui
(x))× 22i+1

)
(9)

where

I(x) =
{

1, x ≥ 0
0, others

(10)

Finally, a histogram hf of these integer values from all pixels in
image f(x) is composed and used as a 256-dimensional feature vector.
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3. THE PROPOSED METHOD

3.1. SAR Image Preprocessing Based on Centroid Location

To extract the region of interest (ROI) and eliminate the background
noise, a simple image interception preprocessing procedure [19] is
applied to the original SAR image. The method first locates the
centroid of an SAR image

(xc, yc) =
(

m10
m00

, m01
m00

)
(11)

where
mpq =

∑
x

∑
y

xpyqf(x, y) (12)

Here, (x, y) denotes a pixel’s coordinate of the image and f(x, y)
denotes the pixel amplitude. After the centroid (xc, yc) is located,
a L × L matrix is intercepted on the original SAR image centered at
(xc, yc).

3.2. Improved Feature Extraction with Multi-scale Local
Phase Quantization

In the proposed method, multi-scale LPQ is adopted to extract better
features of SAR images. Multiple histograms of various scales by
changing filter local window size M is calculated and concatenated
into a single vector. Thus final multi-resolution descriptor for SAR
image can be presented as follows

Tf = [h1,f , h2,f , . . . , hυ,f ] (13)

where υ denotes the number of scales. Five LPQ images calculated
at different scales where M is 13, 23, 33, 43, and 53 respectively is
illustrated in Figure 3.

The multi-scale LPQ method can not only avoid the direct
calculation on the amplitude information subjected to noise by
quantifying the phase information in a local image window and
interpret the SAR image at different scales, but also obtain more
blur invariant and rotational invariant characteristics of the original
SAR targets. For the high dimensionality and information redundancy
brings by feature fusion, simple principal component analysis (PCA)
method is adopted to extract the statistically independent information
as a basis for BPR here.
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Figure 3. A SAR image (128× 128) and its five scale LPQ resultant
images (a)–(f).

3.3. The Proposed Algorithm Based on Biomimetic Pattern
Recognition

Biomimetic Pattern Recognition (BPR) is introduced to the field of
SAR target recognition as a new application. Compared with other
pattern recognition methods, for instance Support Vector Machine
(SVM) [21] which has been developed based on the concept of optimal
separating hyper-plane, BPR emphasis on the process of learning which
can be considered as the distinction between the learned samples and
the infinite unlearned samples. Its theoretical basis is the continuity
law of similar samples in the feature space. By applying the topology
into the high dimensional feature space, it accomplishes the recognition
process using the high dimensional geometry coverage. The basic
principle of the theory can be described as the followed mathematical
formula: In the feature space Rn, set A is assumed to include all the
samples which belong to class A. And if there exits any two samples
x and y in set A, then there must be a set B for any ε > 0:

B = {x1, x2, · · · , xn|x1 = x, xn = y, n ⊂ N, ρ(xm, xm+1) < 0,

ε > 0|n− 1 ≥ m ≥ 1, m ⊂ N)} (14)

where B ⊂ A, ρ(xm, xm+1) is the distance between xm and xm+1.
Hence, azimuth angle variations of the same type target can be

considered to be continuous in characteristic. For both the obtained
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samples and those unknown samples from the same type, hyper
neurons are selected to construct several hyper links in the purpose
of best coverage. Thus it indicated that BPR is relative robust to the
SAR target azimuth angle variation without estimating the azimuth
angle in advance. In addition, the multi-scale approach also contributes
to the final BPR recognition performance due to the high dimension
feature information beneficial to geometry construction. BPR hyper
sausage neuron links construction process is shown as Algorithm 1.
The flowchart of the proposed SAR recognition algorithm is shown as
Figure 4.

Algorithm 1. BPR Hyper Sausage Neuron Links Construc-
tion Process
Input: SAR target training set R (each class has N samples, and each
sample is a 256 ∗ 1 feature vector)
Output: Hyper sausage neuron links of all training classes.
Start:
Step 1. For the first class in set R, find out the nearest two samples
(i and j) among these N samples using Euclidean distance, that is
Dij = arg minDxy, where Dxy means the distance from sample x to
sample y. where x, y ∈ {1, 2, . . . , N}.
Step 2. Build single hyper sausage neuron with sample i and sample j,
and then calculate the Euclidean distances from the rest N−2 samples
to the neuron. If there are any sample distances less than a threshold
K, it is considered to be worthless samples and this sample should be
discarded.
Step 3. After removing the worthless samples, calculate the distances
again from the rest samples to the sample i and sample j, assuming
that the newly added sample is k.
Step 4. Repeat Step 2 and Step 3 with j and k. A hyper sausage
neuron link can be finally constructed after all N samples have been
trained.
Step 5. Keep looping Step 1 to Step 4 until all classes in set R have
been trained. In the end, hyper sausage neuron links of all training
classes in R have been constructed.
End.

4. EXPERIMENTAL RESULTS

In the following experiments, the MSTAR SAR database provided
by the US DARPA/AFRL MSTAR project team is used in order to
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Figure 4. Flowchart of the proposed SAR recognition method.

Table 1. Configuration of three target types in MSTAR database.

Training Set Number Testing Set Number
T72 SN132 232 T72 SN132 196

T72 SN812 195
T72 SNS7 191

BMP2 SNC21 233 BMP2 SN9563 195
BMP2 SN9566 196
BMP2 SNC21 196

BTR70 SNC71 233 BTR70 SNC71 196

evaluate the proposed algorithm’s recognition performance. It was
collected by Sandia National Laboratory in 1995 and 1996, respectively,
using X-band, HH polarization, 0.3× 0.3 m2 high-resolution spotlight
SAR [17]. The target set is divided into training set and testing
set while both two sets contain multiple types of ground military
target including T72 (Main Battle Tanks), BMP2 (Armored Personal
Carriers), BTR70 (Armored Personal Carriers) etc.. The mentioned
three targets’ optical images and their SAR images are illustrated in
Figure 5, and the configuration of them is shown as Table 1. The
original size of each image chip is 128 × 128 and the variation of the
azimuth angle of every type target in MSTAR database is from 0 to 360
degree, Figure 6 is the illustration of selected T72 SAR images rotated
along the clockwise direction. Contrary from Ref. [17], the azimuth of
targets are not classified beforehand for better results here.
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(a) (b) (c)

Figure 5. Optical and observed SAR images of three targets in
MSTAR: (a) T72, (b) BTR70, (c) BMP2.

Figure 6. SAR target T72 with azimuth angle variations (0◦–360◦).

4.1. Experiments on Triple Scales for Selection of the Best
Image Size L

From the observed SAR images shown in Figure 6, there are target and
speckle noises in it. Thus preprocessing method is needed to perform
to locate the region of interest (ROI) in order to reduce the impact
of background noise and highlight the feature information of the ROI
from the observed image. For MSTAR data, the ROI image size is
assume to achieve best performance between the size value of 49 and
64. So these image sizes and the original image size are evaluated here
in the experiments. Consecutive triple scales of LPQ are adopted to
verify the best size for the proposed method. In view of the testing set
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not including rejection targets and the purpose of checking the multi-
scale approach’s performance, the BPR method is only treated as a
classifier rather than its inherent recognition function which can reject
unlearned samples, without estimating the targets’ azimuth angle in
advance.

As Table 2 shows, 16 preprocessed image size values from 49 to 64
have been chosen to examine the recognition performance compared
with image size 128 × 128. The best true recognition performance is
achieved when the image size takes the value of 55. Table 3 gives the
corresponding detailed scale value of local window size parameters for
computing STFT in LPQ. It shows that the performance of L = 128
is not as good as the previous sizes which all have reached 90 percent
recognition rate at least. Therefore, the above experimental results
proved that the preprocessing procedure can improve the recognition
rate by eliminating the background noise. In this paper, L = 55 is
considered to be appropriate for multiple LPQ feature extracted and
is adopted in the following experiment by its good performance.

Table 2. Performance of three target types under triple scale values
fusion.

L/Index True Recognition Rate (%)
1 2 3 4 5 6

49 90.88 92.06 93.6 94.52 95.38 95.55
50 92.12 93.09 93.49 94.8 95.43 95.15
51 92.64 92.75 93.6 94.92 96.17 95.21
52 92.41 93.78 94.23 95.60 95.66 95.66
53 92.41 93.72 94.46 95.66 96.12 95.15
54 92.35 94.29 94.46 95.94 96.00 95.43
55 92.70 93.83 94.92 96.35 95.89 95.09
56 93.10 93.95 95.26 96.06 95.20 95.20
57 93.38 94.23 95.89 95.83 95.26 94.86
58 93.50 94.35 95.66 95.77 95.37 95.09
59 93.72 94.52 96.06 95.72 95.43 94.75
60 93.78 95.15 96.23 95.03 95.49 94.35
61 93.55 95.09 96.06 95.09 95.37 94.06
62 93.84 95.15 95.89 95.49 95.49 94.18
63 94.18 95.26 96.23 95.26 94.57 94.01
64 94.36 95.15 96.06 95.37 94.46 94.29
128 87.59 87.13 87.94 86.01 86.46 84.99
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Table 3. Detailed scale value corresponding to Table 2.

L/Index
Integrated Local Window Sizes [M1M2M3] Computed In LPQ

1 2 3 4 5 6

49–64 [33 31 29] [31 29 27] [29 27 25] [27 25 23] [25 23 21] [23 21 19]

128 [53 51 49] [51 49 47] [49 47 45] [47 45 43] [45 43 41] [43 41 39]

4.2. Experiments on Multi-scale LPQ and PCA for Efficient
Feature Extraction and Dimension Reduction

By choosing consecutive integrated local window size Ms value,
multiple integrated LPQ scales can be fusion as a feature descriptor.
With the number of scales increasing, the dimension of a feature vector
grows rapidly. High dimensionality can be benefited to the distribution
of samples in the feature space and hence construct better geometry
covering in order to improve the recognition rate. Experimental results
of 8 scales LPQ fusion at most are shown in Table 4.

It is clear displayed that the performance of true recognition rate
(TRR) has an overall upward trend with the increase of scale levels in
Table 4. This trend shows that relative high feature dimensions can
be conducive to the enhancement of the recognition rate. Table 4 also
shows that the performance of T72, BMP2 and BTR70 by the proposed
method can achieve a TRR of 94.33%, 96.59%, and 99.49% respectively.
T72 and BMP2 achieve the worse result than BTR70 because of the
existence of the other two variant configuration targets which are lack
with training samples, while BTR70 has only one configuration with
training samples which is easier for recognition. But it is proved that
the proposed multi-scale method does work to improve the recognition
rate of T72 and BMP2 increasing more than 4 percentages and 1
percentage, respectively.

However, high dimension feature vector brings the problem
of long time consuming computation and information redundancy.
Thus Principal Component Analysis (PCA) method is employed
here to extract the statistically useful information and reduce the
dimensionality of the original fusion feature. Experimental results of
PCA based multi-scale LPQ is shown as Table 5. PCA dimension from
8 to 1280 is evaluated for 8 integrated scales LPQ here. As expected,
the TTR rises with the output dimension increasing. And it reaches
the highest true recognition rate 96.92% when the dimension set as
512. Comparing Table 5 with Table 4, we could find that the same
best recognition result can be achieved at a lower cost by using PCA
after the multi-scale approach, because the dimension of the highest
TTR in Table 4 is 8×256 while only 512 in Table 5, which is four times
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Table 4. Highest recognition result of various scale levels (L = 55).

Scale Level
True Recognition Rate (%)

Detailed Scale Value
T72 BMP2 BTR70 MEAN

1 scale 89.69 95.57 100.0 95.09 [23]

2 scales 91.41 95.23 100.0 95.55 [25 23]

3 scales 93.13 96.42 99.49 96.35 [27 25 23]

4 scales 92.27 95.57 100.0 95.95 [27 25 23 21]

5 scales 92.27 95.74 100.0 96.00 [27 25 23 21 19]

6 scales 92.78 95.4 99.49 95.89 [29 27 25 23 21 19]

7 scales 92.44 96.76 100.0 96.40 [27 25 23 21 19 17 15]

8 scales 94.33 96.59 99.49 96.8 [27 25 23 21 19 17 15 13]

Table 5. Recognition result of PCA dimension reduction on 8 scales
LPQ.

Dimension
True Recognition Rate (%)

T72 BMP2 BTR70 MEAN
8 72.16 77.68 93.37 81.07
16 86.08 86.88 98.47 90.48
32 91.24 92.67 99.49 94.47
64 91.07 95.06 99.49 95.2
128 92.1 96.42 100.0 96.17
256 93.64 95.91 100.0 96.52
512 94.33 96.42 100.0 96.92
768 94.33 96.59 99.49 96.8
1024 94.33 96.59 99.49 96.8
1280 94.33 96.59 99.49 96.8

of the latter dimension. Thus it would save much precious time in the
later decision process after applying the PCA method to the extracted
multi-scale feature.

4.3. Comparison with Other Proposed Algorithms

To be more general, a comparison with other proposed algorithms is
presented in Table 6. Among the listed algorithms, JSRC [20] is a
novel kind of joint sparse representation based multi-view automatic
target recognition method. Adaptive boosting algorithm is used in
reference [22] to fuse the coarse and fine features extracted on targets
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Table 6. Optimal recognition performance comparison of various
proposed methods.

Recognition Methods Accuracy
Template Matching [17] 40.76%

SVM [21] 90.92%
Single-View SRC [20] 92.30%

JSRC [20] 95.60%
Adaptive Boosting [22] 96.12%
Multi-scale LPQ+BPR 96.92%

to accomplish recognition. Compared with these five SAR recognition
methods, the proposed multi-scale LPQ plus BPR method achieve
better recognition performance in the case of no prior information
of targets’ azimuth angle. The significant improved performance
shows that the combination of LPQ feature extraction method, multi-
resolution representation and BPR recognition model outperforms
other techniques.

5. CONCLUSION

A SAR automatic target recognition algorithm based on multi-scale
Local Phase Quantization (LPQ) plus Biomimetic Pattern Recognition
(BPR) has been proposed in this paper. Multi-scale representation
is applied here to describe the phase information extracted by LPQ
in a higher feature dimension and BPR is introduced to accomplish
the high dimensional space geometry covering on training samples.
Experimental results confirm that the proposed algorithm is a feasible
and robust method for SAR image recognition. Moreover, PCA
method is also adopted and verified by experiments in order to
enhance the efficiency by reducing the feature dimension. However,
the recognition performance of T72 and BMP2 still have large margin
to be improved, so the variant configuration target recognition problem
can be considered as a key issues in future research.
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