
Progress In Electromagnetics Research B, Vol. 47, 1–17, 2013

QUASI-NEWTON MODEL-TRUST REGION APPROACH
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Abstract—A novel implementation of aggressive space mapping
(ASM) for the automatic layout synthesis of planar metamaterial
structures is outlined in this article. Specifically, we employ a
model-trust region optimisation approach to significantly reduce the
computational burden associated with the direct optimisation of high-
fidelity models. A Visual Basic for application (VBA) link to a
commercial full-wave electromagnetic (EM) solver is created, to ensure
that the automated Matlab-based platform has complete control of
the design and analysis of the entire ASM process. The validity
and efficiency of our approach is demonstrated with examples of
complementary split-ring resonator (CSRR)-loaded transmission lines,
comparing both modified and unmodified version of the quasi-Newton
iteration within the ASM framework.

1. INTRODUCTION

Automatic synthesis of RF and microwave circuits remains a critical
step in computer-aided design. Although numerous optimisation
processes exist for full-wave EM simulators, they are plagued by
the high computational cost of directly optimising high-fidelity (fine)
models. With the advent of space mapping (SM) and surrogate based
optimisation, this major bottleneck was removed, by replacing the full-
wave model with a low-fidelity (coarse) model [1–3]. The SM technique
aligns the coarse model with the fine model in an iterative optimisation
process, where most of the burden of the multiple system analysis is
placed on the coarse model.

In Bandler’s seminal paper [4], he presents a significantly
improved approach to SM, employing a quasi-Newton iteration in

Received 5 October 2012, Accepted 7 December 2012, Scheduled 10 December 2012
* Corresponding author: Patrick J. Bradley (patrick.bradley@ucd.ie).



2 Bradley

conjunction with first-order derivative approximations updated by
the classic Broyden formula [5]. SM exploits physically-based coarse
models, typically equivalent circuits of the microwave structure under
consideration. This allows the SM algorithm to yield satisfactory
results after a few fine model evaluations. However, reliable equivalent
circuit models may be difficult to develop for certain types of microwave
devices. Moreover, even if only a few iterations of the SM algorithm
are needed, the repeated simulation of the fine model may still
be too computationally prohibitive. Quasi-Newton techniques for
minimisations are popular, particulary whenever the matrix-valued
second derivative of the objective function is not known analytically or
is prohibitively expensive to compute. Unfortunately, it is not unusual
to expend significant computational effort in getting an optimum
solution using a basic quasi-Newton approach.

Quasi-Newton methods, like all Newton-like methods, must be
augmented with auxiliary procedures that increase the likelihood of
convergence to a solution, when good initial approximate solutions
are not available. There are two major augmentations that can be
implemented, backtracking line-search methods, in which step lengths
are adjusted to obtain satisfactory steps, and model-trust region
methods, in which a step is ideally chosen to minimize the norm of
the local linear model within a specified trust region. Backtracking
line-search methods are relatively easy to implement. However, each
step direction is restricted to be that of the initial trial step. While this
step is normally constructed to be a descent direction, it may be only a
weak descent direction, especially if the Jacobian is ill-conditioned [5].
Since model-trust region steps are increasingly in the steepest-descent
direction as the model-trust region radius decreases, these methods
have the potential advantage of producing modified steps. However,
their implementation in practical methods may be problematic [6].

Model-trust region inspired space mapping approaches were first
pioneered by [7] and more recently [3] has refined this approach for
microwave structures. For the purpose of the automated synthesis of
planar metamaterial structures, by building on the work of [8], we
have designed a flexible and efficient optimisation technique based
on the model-trust region algorithm that has been adapted for the
optimisation of a CSRR-loaded transmission line. The resulting
algorithm incorporates a reliable parameter extraction step critical to
the convergence of the technique and includes a comprehensive series
of procedures to ensure a robust implementation. In addition, we also
endeavored to create a fully automated and versatile software platform.
To this end, we employed a Visual Basic for application (VBA) link
to create a interface with our full-wave EM solver, ensuring that the
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automated Matlab-based platform has complete control of the design
and analysis of the entire ASM process.

2. AGGRESSIVE SPACE MAPPING IMPLEMENTATION

The basic structure under study is a complementary split-ring
resonator (CSRR)-loaded transmission line with CSRRs etched in the
ground place as shown in Figure 1(a). As discussed in [9, 10], CSRRs
behave as electrical dipoles that can be excited by axial electric fields
and exhibit negative permittivity upon their resonance. Typically
CSRRs are used for the synthesis of compact planar filters or to
improve the performance of existing ones.

Due to the small electrical dimension of CSRRs at resonance, the
unit cell can be described by means of a lumped-element equivalent

(a)

(b)

Figure 1. (a) Topology of the CSRR loaded transmission line for a
single unit periodic structure and (b) the simplified lumped element
equivalent circuit model for two unit periodic structure where Zs

and Zp are the series and shunt impedance of the T-circuit model
repetitively.
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circuit, Figure 1(b), where L and C are the per-unit-cell inductance
and capacitance of the host line. CSRRs are modelled as a resonant
tank (Lc, Cc) electrically coupled to the line through Cm [11]. In order
to infer a relationship between the response of the full-wave simulator
and the circuit model, three distinct characteristic frequencies must be
identified [9, 10, 12]; the transmission zero frequency fz, the reflection
zero frequency f0, and the frequency fp providing −90◦ phase shift
for S21. Based on these characteristic frequencies, and after some
derivation, we can arrive at the following expression for the lumped
elements [11]

Lc =
− (

Lω2
p

(
ω2

p − ω2
z

))
((

ω2
o − ω2

p

) (
ω2

0 − ω2
z

)) (1)

Cc = 1/
(
ω2

0Lc

)
(2)

while L, C can be calculated from traditional transmission line
equations [13]†.

The ASM methodology exploits underlying fast-to-compute, low-
fidelity models that can validate high-fidelity designs when classical
optimisation algorithms are impracticable. Formally, the goal of the
ASM is to solve

x∗f = arg minf (r (xf )) (3)

where f is the objective function given by

f (r (xf )) = ‖r (xf ) ‖2 = ‖y∗c − P (xf ) ‖2 (4)

and P (xf ) = yf = [Lc, Cc, L, C] is the extracted model parameters
obtained from the EM response. The solution of which, will generate
an optimum set of geometry values x∗f , that approximate the optimum
response of the low fidelity model y∗c = [L∗c , C∗

c , L∗, C∗] (the subscript
f and c refer to the fine and course models respectively).

The ASM algorithm, as outlined in Appendix A, is essentially a
construction of four main modules; a module for the determination
of the initial geometry xf = [r, d, w, c], a link to a EM solver
that provides the fine model response (S-parameters), a parameter
extraction module that determines the model parameters from the EM
response P (xf ), and an optimisation algorithm that provides the next
set of geometry parameters. In order to characterise the initial CSRR
dimensions, we employ expressions given in [9, 14]]. This approach
requires fixing c, s (the CSRRs ring width, split width) to a reasonable
value and linking the transmission line length l to r (the CSRRs
† Due to hyper-sensitivity of the reflection zero frequency to small variations in the
geometry it is recommended to using traditional transmission line equations to extract
the electrical parameters L, C so as to ensure a stable ASM algorithm.
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outer radius), in order to univocally determine the initial geometry.
To obtain the transmission line width w, classical expressions for the
characteristic impedance are used [13, 15], based on L and C. From
the initial full-wave EM response based on x1

f , we extract the circuit
parameters P (xf ) using Equation (2), in order to obtain the objective
function f .

To achieve fast convergence, the Broyden quasi-Newton approach
requires the initial iterative to be in the neighborhood of the solution
but it is also dependant on a good choice of J1, the initial Jacobian
approximation. This approximation must attempt to be close to the
true Jacobian at the solution J (x∗f ), therefore setting J1 = J(x1

f ) is a
prudent choice. This is achieved by observing the changes in P (xf )
values in response to small perturbations in the geometry variables x1

f

using the forward-difference formula.
Although most commercial EM solver programs now come with

some numerical optimisation, they lack the versatility of optimisation
routines that are available within Matlab. The powerful analysis tools
available in Matlab make it a ideal platform for the design, analysis and
control of a Matlab-based ASM software system that can be interfaced
with a EM simulator to provide a fully automatic looped optimisation
process. In this paper, we use a VBA link to create a interface with
CST Microwave Studio‡, but a similar approach can be implemented
for Ansoft HFSS, while COMSOL provides live-link functionality for
Matlab.

3. MODEL-TRUST REGION

Model-trust region methods are heuristic procedures, that combine the
strengths of both the steepest-descent method and the quasi-Newton
method [5, 16]. The steepest-descent method guarantees progress
toward the goal of a local minimum. However, if the solution landscape
is not well-conditioned, it will take a long time for the program to reach
the final goal. The quasi-Newton method, on the other hand, converges
quickly in the vicinity of a local minimum, but can diverge or cycle
when starting far from a local minimum [5]. This combined approach
guarantees convergence to a local minimum from any starting search
point by searching in a direction that interpolates between steepest-
descent (Cauchy) and the quasi-Newton direction. Favoring steepest-
descent when progress is slow and moving to quasi-Newton as progress
improves.
‡ Due to the high Q nature of the outlined structure a time step stability factor of < 1 is
recommended.
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The model-trust region methods produce a trial step by
minimising a quadratic model of the objective function subject to a
constraint on the length of the trial step to a restricted ellipsoidal
region [17]. The diameter of this region is expanded and contracted in
a controlled way based upon how well the local model predicts behavior
of the objective function. At each iteration of a model-trust region
method, the objective function f is replaced by a quadratic model of
f(xk) centered on the current iterate k, denoted by

mk(xk+s)=f(xk)+sT∇f(xk)+
1
2
sTHks=f(xk)+sTJT r+

1
2
sTJTJs (5)

where Hk = JTJ is used as the approximate Hessian in the model
function and J is the approximate Jacobian [8]. The model function
is trusted to accurately represent f only from points with a sphere
of radius δ centred on the current point. A candidate for the next
iterative is then yielded by solving a sequence of subproblems in which
the model is appropriately minimised with the model-trust region

min mk (xk + s) subject to ‖s‖ ≤ δ. (6)

Although principally we seek the optimal solution of Equation (6), it
is enough for the purpose of global convergence to find an approximate
solution that lies within the trust region and gives a sufficient reduction
in the model. A simple strategy is to minimise the model along the
steepest-descent direction −JT rk, subject to the model-trust region
bound. However, it has been shown that this approach has a
unacceptably slow rate of convergence. To improve the convergence
speed in the terminal phase we must allow for approximations in the
quasi-Newton direction. The double dogleg technique is such a method,
that approximates the solution of the model-trust region problem by
minimising mk along a piecewise linear path [17]. When δ is small, xk+1

is more in the direction of the steepest-descent direction sc = −λJT
c rc,

and moves in the direction of the quasi-Newton direction as the model-
trust region radius increases.

The Cauchy point is defined by the unconstrained minimiser of
the objective function along the steepest descent direction and given
by sc = −λJT

c rc, where

λ =

(‖JT rc‖2
2

)
(
(JT rc)

T (JTJ)JT rc

) . (7)

The line segment connecting the Cauchy point to the quasi-Newton
direction is parameterised by

xk+1 (τ) = xk + sc + τ
(
ηsn − sc

)
0 ≤ τ ≤ 1 (8)
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Figure 2. The single (point 2) and double dogleg paths xk+1.

where τ is calculated to ensure xk+1 is on the curve such that ‖s‖2 = δ.
An original choice of η = 1, results in the single dogleg [18], as shown in
Figure 2 (point 2). In the double dogleg strategy, where η = 0.8γ+0.2,
better performance was observed by introducing a bias towards the
quasi-Newton direction [6, 19].

Once a new point has been decided, a check must be performed
to ensure that this step is satisfactory, that is to say that the new
point will ensure a sufficient decrease in the objective function f . The
condition to accept xk+1 is based on [17]

f (xk+1) ≤ f (xk) + α (Jrk)
T s (9)

where (Jrk)T is an approximation to ∇f(xk), and α is a constant
chosen to be 10−4. This step-acceptance criteria requires that the
rate of decrease from f(xk) to f(xk+1) be at least some fraction α of
the initial rate of decease in that direction. If xk+1 is unacceptable
we reduce the model-trust region and minimise the same quadratic
model on the smaller model-trust region. The model-trust region is
reduced by a factor λ, between upper and lower heuristic safeguards
of 0.5 and 0.1, and returned to the approximate solution of the
minimisation problem by the double dogleg method. The reduction
factor is determined by finding the minimiser of a quadratic that
models f(xk + λs), which occurs at

λ = − (Jrk)
T s

2
(
f (xk+1)− f (xk)− (Jrk)

T s
) . (10)

The model-trust region radius is then set to δ = λ unless λ ∈
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[0.1δ, 0.5δ], where instead λ is set to the closer endpoint of the
safeguard interval [17]. These safeguards are in place to ensure that
the model-trust region radius is not inadvertently decreased by an
aggressive amount based on a poorly modelled quadratic in this region.
However, if the new iterative is satisfactory, we must then decide
whether the model-trust region should be changed. We base this choice
on the agreement between the model function mk and the objective
function f at previous iterations. Given a step s, we compare the
ratio of the actual reduction ∆fact ≡ f(xk+1)− f(xk) to the predicted
reduction by the model function ∆fpre ≡ mk(xk+1)− f(xk)

ρ = (f (xk+1)− f (xk)) /
(
(Jrk)

T s + 0.5sT
(
JTJ

)
s
)

. (11)

If there is a good agreement between the current quadratic model
and the objective function (ρ ≥ 0.75) then we can safely double the
trust region radius at the next iteration. However, if the model has
overestimated the decrease in the objective function (ρ ≤ 0.1) then
we shrink the radius by half, otherwise the model-trust region is kept
unaltered.

As an additional step to improve the convergence of the model-
trust region method, measures should be put in place to aggressively
increase the trust region radius if the proceeding iteration was very
successful. In this case, we may consider computing a larger step using
the current model with a doubled model-trust region radius. This may
be justified by the need to avoid a situation where the model-trust
region has contracted, and now needs to be increased rapidly having
entered a region where the function is better approximated, avoiding
the need for unnecessary small step sizes. This approach of internal
doubling [17] is particularly useful as a safeguard when the algorithm
may start to converge to a point that looks like a local minimiser but
then finds a way out, and requires a rapid increase in the model-trust
region to recover the algorithm. The decision to justify an internal
doubling is based on the previous principle of comparing the actual
reduction to the predicted,

‖fpre − fact‖2 <= 0.1‖fact‖2. (12)
In this case, δ is an underestimate of the radius in which the model
m adequately represents f , and therefore we need to double δ and
compute a new xk+1, using the current model. However if the new
step is unsuccessful we then step back to the previous computed step.

4. RESULTS

In order to demonstrate the efficiency and robustness of the model-
trust space implementation of the ASM synthesis technique, we apply
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it to the determination of the geometric parameters for a single and
periodic CSRR loaded transmission line structure.

4.1. Case Study A

Following the procedure outlined in the previous sections the optimised
electrical target parameters (y∗c = [Lc = 6.76 nH, Cc = 0.97 pF, L =
4.47 nH, C = 2.63 pF])§ are first obtained using a circuit simulator.
This in turn provides us with the initial layout for the full-wave
EM simulator (x1

f = [r = 4.18 mm, d = 0.2mm, w = 1.6mm, c =
0.20mm]), the transmission line length is contained to l = 3r, the split
gap s = 0.07r, while a Taconic CER-10 substrate is employed with a
thickness of 1.27mm and dielectric constant εr = 10 (of course, if the
circuit parameters are extreme it might not be possible to generate a
physical layout. Limited design guidelines for CSRR-loaded lines are
available, and should be used to provide some useful intervals over
which CSRRs can be used [20].

Given these initial parameters we now compare the effectiveness of
the model-trust space ASM algorithm to a unmodified quasi-Newton
algorithm. A decision on convergence is based on testing whether xk+1

approximately solves our optimisation problem, that is if f(xk+1) ≤
(tol = 0.05). In this case, convergence is achieved after 3 steps of
the unmodified Quasi-Newton iteration and 5 steps of the model-trust
space implementation, Figures 3(a), 3(b). All the requirements needed
to achieve a quadratic convergence were evident in the example, the
solution landscape was well-conditioned, as highlighted by the contour
plot of Figure 4(a), the initial Jacobian was a good approximation to
the true Jacobian at the solution J (x∗f ), and the initial iterative was in
the neighborhood of the solution. Although the model-trust approach
was slower to converge, its internal doubling safeguards, as discussed
in Section 3, insured that only two extra steps were required to achieve
convergence.

The resulting circuit parameters after convergence are (P (x5
f ) =

[Lc = 6.74, Cc = 0.97, L = 4.47, C = 2.63]), with corresponding
geometric optimised values of x8

f = [r = 3.97mm, d = 0.25mm, w =
1.87mm, c = 0.17mm]). These results, as depicted in Figure 4(b),
show both the agreement with the target response and the
discrepancies of the initial layout parameters (P (x1

f ) = [Lc =
8.71, Cc = 0.82, L = 5.05, C = 2.51]).

§ Note that the electrical parameters are given in nH and pF so as to prevent any scaling
issues within the modified quasi-Newton algorithm.
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Figure 3. (a) The unmodified quasi-Newton iteration and (b) model-
trust space iteration illustrating both the objective function values
before and after refinement.
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Figure 4. (a) Contour plot of the log (objective function values)
over a range of r and w values using the optimum values for c and d
and (b) transmission and reflection coefficient for the initial and final
solution of a single-unit periodic CSRR-loaded transmission line.

4.2. Case Study B

The initial example clearly shows how all the requirements for a
successful quasi-Newton approach are adhered too. Thus an ASM
utilising this approach can be very effective. However, when operating
with a less well-defined space (Figure 6(b)), taking large unconstrained
steps within the solution landscape, can result in the iteration getting
caught in a false minimum. In this example, we will show that by
taking measured controlled steps whose direction can be modified,
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these effects can be mitigated and will result in a significantly more
robust ASM optimisation algorithm.

The target response was given from the design specifications of a
two-unit periodic CSRR loaded transmission device with total length
of 2l and are given by (y∗c = [Lc = 10.9 nH, Cc = 0.26 pF, L =
4.25 nH, C = 1.53 pF]) and (x1

f = [r = 2.5 mm, d = 0.21mm, w =
1.08mm, c = 0.20mm]). As before we use a Taconic CER-10 substrate
with a thickness of 1.27 mm, dielectric constant εr = 10, split gap
s = 0.07r and the transmission line length is contained to l = 3r. Based
on these conditions we compare the effectiveness of the model-trust
space ASM algorithm to a unmodified quasi-Newton algorithm and a
modified Quasi-Newton with a backtracking line-search procedure [17].
To safeguard against stagnation a maximum of 3 backtrack steps were
enforced in the implemented line-search quasi-Newton approach.

Unlike the previous case the unmodified quasi-Newton approach,
Figure 5(a), and the modified approach with backtracking line-search,
Figure 5(b), fails to converge with the more difficult solution space. It
is evident, that the model-trust region method, Figure 6(a), converges
to a norm of 0.048 at iteration 8. However, after step 3 the model-trust
region radius is reduced 5 times with a double dogleg step taken on each
occasion. On the penultimate step, the radius remains unaltered and
a Cauchy step is subsequently taken which triggers the stop criteria.

The difficulties encountered by the line search algorithm are
negated with the model-trust region method by overcoming two central
problems. The first issue is the need to retain the same step direction
regardless if this quasi-Newton step is unsatisfactory, and secondly the
ability to transition smoothly between the steepest-descent direction
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Figure 5. (a) The unmodified quasi-Newton iteration and
(b) modified quasi-Newton iteration with backtracking line search.
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Figure 7. (a) Transmission and reflection (b) coefficient for the initial
and final solution of a two-unit periodic CSRR-loaded transmission
line.

and quasi-Newton direction in a controlled manner. Coupled with
provisions to deal with complex situations, where the step bound
may need to contract and then expand based on the representation
of the quadratic model, the ASM with model-trust space optimisation
provides an effective algorithm for the automatic synthesis of planar
microwave structures.

Justification for the need for an effective automated synthesis
approach is evident in Figure 7, which shows the comparison between
the initial (P (x1

f ) = [Lc = 13.61, Cc = 0.15, L = 3.74, C = 1.20]) and
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final response (P (x8
f ) = [Lc = 10.88, Cc = 0.29, L = 4.22, C = 1.54]).

This figure clearly illustrates the discrepancies between the initial
estimation of the geometric parameters and the final optimised values
x8

f = [r = 3.0mm, d = 0.26mm, w = 1.21mm, c = 0.22mm]).

5. CONCLUSIONS

In this paper, we presented a novel and efficient automated
implementation of an ASM synthesis approach for planar metamaterial
structures. Built on a Matlab inspired ASM platform with a fully
intergraded VBA controlled EM solver suite, this ASM approach yields
satisfactory results after only a few fine model evaluations. Thus
eliminating the computational expense of direct optimisation of the
high-fidelity full-wave EM model. At the core of this approach is a
quasi-Newton model-trust region optimisation algorithm that provides
the robustness required to implement an ASM process by combining
the global convergence properties of steepest-descent and the fast local
convergence of quasi-Newton’s methods. The validity of this approach
was confirmed by comparing modified and unmodified versions of the
quasi-Newton method within the ASM framework, with the model-
trust region method clearly outperforming both versions of the quasi-
Newton approaches. In both case studies the ASM, with model-trust
space optimisation, provides a robust and versatile platform for the
automatic synthesis of planar microwave structures.

APPENDIX A. AGGRESSIVE SPACE MAPPING WITH
MODEL-TRUST REGION ALGORITHM

begin ASM with Model-trust region
while ‖rk‖2 > tol

call[s, δ, newton] ← Double Dogleg (newx, J, rk, δ)
xk+1 ← (xk + s)
if (xk+1 < xmin or xk+1 > xmax) then constrain xk+1 endif
while (xk+1 − xk) < 0.01 then xk+1 ← (xk+1 + s) endwhile
simulate [ωz, ωp, ω0, Z0] ← Model (xk+1)
Lc ← − (

Lω2
p

(
ω2

p − ω2
z

))
/

((
ω2

0 − ω2
p

) (
ω2

0 − ω2
z

))
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Cc ← 1/
(
ω2

0Lc

)
, yf ← [Lc; Cc; L; C], rk+1 ← (y∗c − yf )

ared ← (‖rk+1‖2 − ‖rk‖2), slope ← (Jrk)
T s

if ared >= α ∗ slope then
λ ← −slope/ (2 (ared− slope))
if retcode = 3 then

δ ← 0.5δ, retcode ← 0, newx ← true, xk+1 ← xk, rk+1 ← rk

else
newx ← false, retcode ← 2
if λ < 0.1δ then δ ← 0.1δ

elseif λ > 0.5δ then δ ← 0.5δ

else δ ← λ

endif
endif

else
pred ← slope + 0.5sT

(
JTJ

)
s

if retcode 6= 2 and (‖pred− ared‖2 <= 0.1‖ared‖2

or ared <= slope)
and newton = false

newx ← false, retcode ← 3, xk+1 ← xk, rk+1 ← rk,
δ ← 2δ

else
newx ← true, retcode = 0
if ared >= 0.1pred then δ ← 0.5δ

elseif ared <= 0.75pred then δ ← 2δ

else δ ← δ endif
endif

endif
if newx = true then

J = J +
(
rk+1sT

)
/

(
sT s

)
, k = k + 1

endif
endwhile
end ASM with Model-trust region

begin Double Dogleg
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if newx then

λ ← (‖JT rc‖2
2

)
/

((
JT rc

)T (
JTJ

)
JT rc

)
, sc ← −λJT

c rc,

sn ← −J−1rc

γ ← λ
((‖JT rc‖2

2

)2
/

((
JT r

)T (
JTJ

)−1 JT rc

))
,

η ← 0.8‖γ‖2 + 0.2
endif
if ‖sn‖2 <= δ then

newton ← true, s ← sn, δ ← ‖s‖2, return
else newton ← false
endif
if η‖sn‖2 <= δ then s ← δ/‖sn‖2, return
else if ‖sc‖2 >= δ then s ← δ/‖sc‖2, return
else s ← sc + τ (ηsn − sc), where τ is the largest value in [0, 1]

such that ‖s‖2 <= δ

endif
end Double Dogleg
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