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Abstract—A hierarchical interpolative decomposition multilevel fast
multipole algorithm (ID-MLFMA) is proposed to handle multiscale,
dynamic electromagnetic problems. The hierarchical scheme to
conduct the ID skeletonization and to implement the matrix vector
multiplication is discussed. A strategy to improve the efficiency
of ID skeletonization is developed. The hierarchical ID-MLFMA
are investigated by numerical experiments on complex targets,
demonstrating the capability of the hierarchical ID-MLFMA.

1. INTRODUCTION

Efficient and accurate solutions of electromagnetic (EM) scattering
and radiation problems have attained a lot of interest for decades.
Among many full-wave numerical methods, the algorithms based on
method of moments (MoM) have been widely used due to its high
fidelity and superior capability to handle arbitrarily shaped targets.
The computational complexity of MoM is O(N3) for a conventional
direct solver in terms of CPU time, such as LU, and O(mN2) for
an iterative algorithm, where N is the number of unknowns and m
the iteration count. Consequently, rather than direct solvers, iterative
ones in combination with some fast algorithms [1–9] are more popular
in solving MoM systems. Most of these fast algorithms decompose
interactions in MoM systems into near-field interactions (NFIs) and
far-field interactions (FFIs), and then approximate FFIs in some
efficient way. In these fast methods, FFIs are generally independent

Received 10 October 2012, Accepted 7 November 2012, Scheduled 21 November 2012
* Corresponding author: Xiaomin Pan (xmpan@bit.edu.cn).



80 Pan and Sheng

of mesh size of the target of interest. Unfortunately, NFIs, always in
the original MoM form, are highly dependent on the property of the
mesh. As a result, fast methods will become inefficient for the so-
called multiscale applications. In these cases, targets are over-meshed
to conduct wide-band calculations, or partly over-meshed to capture
the tiny geometrical structures.

Many efforts have been reported [10–13] (and references therein)
to solve this problem. As pointed out in [10], the methods based on the
evanescent wave expansion [11] or diagonalizations [12] require extra
computational effort for evaluating the according translation operators
with respect to the original MLFMA. The methods involving multipole
expansions of Green’s functions [2] show bad convergence behavior at
low frequencies. In ID-MLFMA [13], these problems can be eliminated
by the skeletonization approximation [14, 15]. In SVD/QR based
methods [16], the original basis functions are linearly combined in the
approximation. Contrarily, skeletons in ID-MLFMA are identical to
their counterparts of basis/testing functions. A hierarchical scheme
can be reached without many efforts to furtherly improve the generality
and efficiency. Additionally, an effective algebraic preconditioner can
be developed to accelerate the iterative solution since entries of the
skeletonized matrix are selected from the original MLFMA NFI matrix.
In this work, a hierarchical scheme is developed to perform the ID
skeletonization. Based on the proposed scheme, a strategy of reducing
the size of the low-rank matrix to select skeletons is proposed.

The rest of the paper is organized as follows. Section 2
begins with outlines of the conventional MLFMA and the previously
developed ID-MLFMA. Section 3 discusses formulations on how to
construct skeletons hierarchically and how to implement matrix-vector
multiplication (MVM) in a hierarchical manner. Section 4 focuses on
the mixed strategy to reduce the size of low-rank matrices. Section 5
presents some illustrative numerical results, and finally, a summary
and some conclusions are given in Section 6.

2. MLFMA AND NON-HIERARCHICAL ID-MLFMA

2.1. MLFMA

For perfectly electric conducting (PEC) objects, discretization and
testing of surface integral equations yields an N × N dense matrix
equation in the form of

Z · I = V, (1)

where Z is the impedance matrix; I relates with the unknown
equivalent current; and V corresponds to the incident wave. In this
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paper, both basis and testing functions are RWG functions. The matrix
Equation (1) can be solved iteratively, and the required MVM can be
accelerated by FMM or MLFMA [1, 2]. FMM/MLFMA decomposes
MVM into NFIs and FFIs. The former is computed directly, while the
latter is accelerated by FMM/MLFMA. The MVM in FMM reads

Z · I = ZFMM-NFI · I + ZFMM-FFI · I, (2)

with

ZFMM-FFI · I =
∑

o

(
Do ·

∑

s/∈Bo

To,s ·As · Is

)
,

ZFMM-NFI · I =
∑

o

( ∑

s∈Bo

Zo,s · Is

)
,

(3)

where Zo,s is the impedance matrix corresponding to observation group
o and source group s; Is is the coefficient vector of RWG basis functions
in group s; Bo denotes near neighbors of group o; To,s is the translator;
Do and As are the disaggregation and aggregation matrices. The term
ZFMM-NFI ·I in (2) accounts for the contribution from the self-coupling
of group o and its near neighbors. While the other one collects the
contribution from remaining groups.

The MVM in MLFMA can be written as

Z · I = ZMLFMA-NFI · I + ZMLFMA-FFI · I. (4)

ZMLFMA-FFI · I is a recursive version of ZFMM-FFI · I. MLFMA always
generates a hierarchical tree structure by recursively subdividing the
spatial domain. The computational domain is first enclosed in a box;
subsequently the box is divided into eight children, where each child
is then recursively divided into smaller groups. The recursive division
will not stop until the size of the finest box is less than a given size.
Detailed explanation of MLFMA can be found in [2].

Similar to ZFMM-NFI, ZMLFMA-NFI is numerically available, which
can be written as

ZMLFMA-NFI =




Z1,1 Z1,2 . . . 0
Z2,1 Z2,2 . . . 0

...
... . . .

...
0 . . . ZP−1,P−1 ZP−1,P

0 0 ZP,P−1 ZP,P




, (5)

where P is the number of nonempty finest MLFMA groups. The actual
sparsity pattern of ZMLFMA-NFI is determined by near neighbor lists at
the finest MLFMA level [2].



82 Pan and Sheng

2.2. Non-hierarchical ID-MLFMA

The efficiency of MLFMA degrades rapidly for targets with fine
meshing because the matrix ZMLFMA-NFI heavily depends on the
property of the mesh. To circumvent this problem, ID-MLFMA [13]
has been proposed by combining the interpolative decomposition
(ID) [17] with the conventional MLFMA. Finest MLFMA groups
are further decomposed in ID-MLFMA by a recursive manner; the
condition for discontinuing the decomposition is based on some
predetermined number of basis elements. The ID-MLFMA classifies
levels in the resultant oct-tree into three categories: MLFMA levels,
the transition level and ID levels. The transition level is identical to the
finest MLFMA level. The computations on FFIs at all MLFMA levels
are identically conducted by the conventional MLFMA, while those
on NFIs at the transition level are conducted through the skeleton
approximation at ID levels. In particular, ID-MLFMA classifies
NFIs at the transition level into NFIs and FFIs at ID levels; the
distinction between the two is based upon the so-called one-buffer-box
criterion [2].

Suppose

• LT: the transition level (also the finest MLFMA level); here, the
0-th level is the coarsest level;

• LID: the finest ID level;
• PL: the number of nonempty groups at the L-th level;
• No: the number of unknowns in group o;

• Z(L)
o,s : a No×Ns matrix, the coupling matrix of the pair of groups

o and s (The superscript L indicates that groups o and s are at
the L-th level);

• Bo: near neighbors of group o;
• Co: children of group o;
• ko: the number of skeletons in group o;

• R(L)
p : a kp×Np matrix, mapping original sources to their skeletons

belonging to group p (The superscript L indicates that group p is
at the L-th level);

• L(L)
p : a Np×kp matrix, mapping skeletonized fields to their original

forms in group p;

• S(L)
q,p : a kq × kp matrix, the skeletonized coupling matrix of the

pair of groups q and p at the L-th level.
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According to the above nomenclature, ZMLFMA-NFI = Z(LT)
NFI , which

can be divided into NFIs and FFIs at the (LT + 1)-th level as,

Z(LT)
NFI = Z(LT+1)

NFI + Z(LT+1)
FFI , (6)

with
Z(LT+1)

NFI =
∑

q

∑

p∈Bq

Z(LT+1)
q,p (7)

and
Z(LT+1)

FFI =
∑

q

∑

p/∈Bq

Z(LT+1)
q,p , (8)

where q, p are nonempty groups at the (LT + 1)-th level.
By applying the ID, the FFI submatrix Z(LT+1)

q,p (p /∈ Bq) in (8)
can be approximated as [11]

Z(LT+1)
q,p ≈ L(LT+1)

q · S(LT+1)
q,p ·R(LT+1)

p , p /∈ Bq. (9)

Substituting (9) into (8) and (6), we can arrive at

Z(LT)
NFI ≈ Z(LT+1)

NFI +
∑

q

∑

p/∈Bq

L(LT+1)
q · S(LT+1)

q,p ·R(LT+1)
p

≈ Z(LT+1)
NFI + L(LT+1) · S(LT+1) ·R(LT+1), (10)

where

S(LT+1) =




0 0 . . . S(LT+1)

1,P LT+1

0 0 . . . S(LT+1)

2,P LT+1

...
...

. . .
...

S(LT+1)

P LT+1−1,1
. . . 0 0

S(LT+1)

P LT+1,1
. . . 0 0




, (11)

L(LT+1) =




L(LT+1)
1 0 . . . 0

0 L(LT+1)
2 . . . 0

...
...

. . .
...

0 . . . 0 L(LT+1)

P LT+1




. (12)

R(LT+1) is similarly defined to L(LT+1), which is a block diagonal
matrix. Z(LT+1)

NFI is a sparse matrix similar to ZMLFMA-NFI in (5). The
sparsity pattern of S(LT+1) is determined by that of Z(LT+1)

FFI .
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b11

b12

b21

b22

Figure 1. Generating skeletons hierarchically.

The NFI submatrix Z(LT+1)
q,p in (7) can be further approximated

by the ID at the (LT + 2)-th level as

Z(LT+1)
q,p ≈

∑

w∈Bv

Z(LT+2)
v,w +

∑

w/∈Bv

L(LT+2)
v · S(LT+2)

v,w ·R(LT+2)
w , (13)

where v ∈ Cq and w ∈ Cp. Equation (10) then reads

Z(LT)
NFI ≈ Z(LT+2)

NFI + L(LT+2) · S(LT+2) ·R(LT+2)

+L(LT+1) · S(LT+1) ·R(LT+1). (14)

The procedure through (10) to (14) can be carried out on all ID levels.
The MLFMA-NFI matrix can thus be written as

Z(LT)
NFI ≈ Z(LID)

NFI +L(LID) ·S(LID) ·R(LID)+. . .L(LT+1) ·S(LT+1) ·R(LT+1)

≈ Z(LID)
NFI +

LID∑

i=LT+1

L(i) · S(i) ·R(i). (15)

Hence, ZMLFMA-NFI · I in ID-MLFMA is performed as

Z(LT)
NFI · I ≈ Z(LID)

NFI · I +
LID∑

i=LT+1

(
L(i) · S(i) ·R(i) · I). (16)

Because high rank submatrices corresponding to NFIs at all ID
levels are separated from the ID skeletonization, the resultant FFI
submatrices in the form of data sparse representation are quite sparse.
Therefore, NFIs computed by (16) is much cheaper than by its original
form in (4).

3. THE HIERARCHICAL ID-MLFMA

3.1. Conducting ID Skeletonization Hierarchically

In the following, the hierarchical scheme to select skeletons and to
construct the corresponding projection matrices are discussed.
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Suppose groups b1 and b2 are well separated at the (L− 1)-level.
They both have two child groups, denoted by b11, b12 and b21, b22,
respectively, as shown in Figure 1. The FFI matrix between groups b1

and b2 is

Z(L−!1)
1,2 =

(
Z(L)

11,21 Z(L)
11,22

Z(L)
12,21 Z(L)

12,22

)
=

(
L(L)

11 ·S(L)
11,21 ·R(L)

21 L(L)
11 ·S(L)

11,22 ·R(L)
22

L(L)
12 ·S(L)

12,21 ·R(L)
21 L(L)

12 ·S(L)
12,22 ·R(L)

22

)

=L(L)
1 · S(L)

1,2 ·R(L)
2 , (17)

where

L(L)
1 =

(
L(L)

11 0
0 L(L)

12

)
, S(L)

1,2=

(
S(L)

11,21 S(L)
11,22

S(L)
12,21 S(L)

12,22

)
, R(L)

2 =

(
R(L)

21 0
0 R(L)

22

)
.

The dense matrix S(L)
1,2 can be further approximated by the ID as

S(L)
1,2 = L(L−1)h

1 · S(L−1)
1,2 ·R(L−1)h

2 . (18)

The h in the superscript of L(L−1)h
1 and R(L−1)h

2 means that the
projection matrices are obtained from the corresponding skeletons
instead of the original unknowns. As a result,

Z(L−1)
1,2 = L(L)

1 · L(L−1)h
1 · S(L−1)

1,2 ·R(L−1)h
2 ·R(L)

2

= L(L−1)
1 · S(L−1)

1,2 ·R(L−1)
2 , (19)

where

L(L−1)
1 = L(L)

1 · L(L−1)h
1 , R(L−1)

2 = R(L−1)h
2 ·R(L)

2 .

After carrying out the skeletonization procedure (19)on all FFI
submatrices at the (L− 1)-th level, the resultant FFI matrix reads

Z(L−1)
FFI = L(L−1) · S(L−1) ·R(L−1), (20)

where

L(L−1) = L(L) · L(L−1)h , R(L−1) = R(L−1)h ·R(L). (21)

L(L), R(L−1)h , R(L) and R(L−1)h in (21) are all block diagonal matrices
having the similar definition to L(LT+1)/R(LT+1) in (12).

(18) and (20) show the essence of the hierarchical scheme to select
skeletons. In particular, after projection matrices L(LID) and R(LID) at
the finest ID level are generated, projection matrices at the L-th level
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can be computed by a recursive manner as

L(L)=L(LID) · L(LID−1)h ·, . . . , ·L(L)h =L(LID) ·



L∏

i=LID−1

L(i)h


 , (22)

R(L)=R(L)h ·, . . . , ·R(L−1)h ·R(LID) =

(
LID−1∏

i=L

R(i)h

)
·R(LID). (23)

By making use of (22) and (23), the MLFMA-NFI matrix in (6) can
be written as

Z(LT)
NFI ≈Z(LID)

NFI +
LID∑

i=LT+1


L(LID) ·

i∏

m=LID

L(m)h ·S(i) ·
LID∏

m=i

R(m)h ·R(LID)


. (24)

In (24), L(LID)h and R(LID)h are unit matrices.

3.2. Implementing MVM Hierarchically

According to (24), MVM in the hierarchical ID-MLFMA can be carried
out as

Z(LT)
NFI ·I ≈ Z(LID)

NFI ·I

+
LID∑

i=LT+1


L(LID) ·

i∏

m=LID

L(m)h ·S(i) ·
LID∏

m=i

R(m)h ·R(LID) ·I

. (25)

Compared with the MVM in the form of (16), the one based
on (25) is generally more efficient. Suppose the well-separated groups
g1 and g2 are at the L-th level. Further assume:

• both groups g1 and g2 have 4096 unknowns;
• both groups g1 and g2 have 256 skeletons, which are referred to as

skeletons at the L-th level;
• both groups g1 and g2 have eight children at the (L + 1)-th level;
• unknowns and skeletons (at the L-th level) of groups g1 and g2

are both evenly distributed across their 8 children;
• each child group has 128 skeletons, which are referred to as

skeletons at the (L + 1)-th level;
• using the approach described in (22) and (23), the same two sets

of 256 skeletons can be selected for groups g1 and g2, where each
child contributes 32 skeletons to its parent.
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Therefore, the MVM needs 262, 144 = (2 × 128 × 512 × 8 + 2 × 32 ×
128× 8+256× 256) operations by the hierarchical strategy in (25). In
contrast, it requires 2, 162, 688 = (2×256×4096+256×256) operations
through the approach described in (16). Obviously, the MVM is more
efficiently performed by (25) than by (26).

4. REDUCING THE SIZE OF THE LOW-RANK MATRIX

To cut down the cost of ID skeletonization, reducing the size of the
ZLR matrix is always beneficial. Here, the ZLR matrix is referred to
the low-rank matrix to which the ID is applied in the skeletonization
procedure. In this section, an efficient strategy to reduce the size of
ZLR is developed by making use of the obtained skeletons.

The two approaches to generate ZLR, namely, O-FFI matrix
approach and the AS matrix one, have been studied and compared
comprehensively in [11]. The O-FFI matrix approach is to generate
ZLR associated with a given group by concatenating all FFI
submatrices of this group. The AS matrix approach is to obtain ZLR

based on the MoM interaction matrix between the group of interest
and a sufficient large artificial sphere enclosing this group. If the O-
FFI matrix approach is used, ZLR is a (2×Nq)×Ntot matrix for group q,
where Ntot =

∑
p/∈Bq

Np. In contrast, ZLR becomes a (2×Nq)×Na matrix

in the AS matrix approach, where Na is the number of unknowns to
discretize the artificial sphere. In general, Na ¿ Ntot, especially when
the ID group q is small in size. Therefore, the AS matrix approach
is far more efficient than its O-FFI counterpart because the second
dimension of ZLR is cut down a lot.

The AS matrix approach can be revised into its skeletonized
variation in hierarchical ID-MLFMA, denoted by the skeletonized AS
(S-AS) matrix approach. The S-AS approach generates ZLR for group
q according to skeletons of q’s children instead of original unknowns
in q. As a result, ZLR will become a (2 × N ′

q) × Na matrix, where
N ′

q =
∑

v∈Cq

kv. Since N ′
q is generally much smaller than Nq, the size of

ZLR is reduced. If group q locates at the finest ID level, N ′
q = Nq.

A recursive version of the O-FFI matrix approach, denoted as the
skeletonized FFI (S-FFI) matrix approach, can be similarly developed
in hierarchical ID-MLFMA. Particularly, the S-FFI matrix approach
concatenates skeletonized submatrices S(L+1)

v,w and (S(L+1)
w,v )H instead of

their original counterpart to generate ZLR for group q, where v ∈ Cq,
w ∈ Cp and p ∈ Bq. Therefore, the first dimension of ZLR becomes
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2 × N ′
q and the second one is reduced to N ′

tot =
∑

p∈Bq

∑
w∈Cp

kw. If

N ′
tot ¿ Ntot, the size of ZLR is much smaller than that generated by

the O-FFI approach.
The relationship between N ′

tot and Na is application dependent.
For higher efficiency, a mixed approach to generate ZLR is designed
here by combining together S-AS and S-FFI matrix approaches. The
mixed strategy is{

S-AS matrix approach, if Na ≤ N ′
tot;

S-FFI matrix approach, else.

It is worthy pointing out that the MLFMA aggregation and
disaggregation matrices can also be skeletonized. The skeletons at
LT+1-th level can be used to generate ZLR in the skeletonization
procedure. Since our experience shows that the FFI is much cheaper
than NFI in MLFMA for multiscale applications, we focus on the
MLFMA-NFI here. The aggregation and disaggregation matrices are
obtained from the original unknowns at the LT -th level as in the
traditional MLFMA.

5. NUMERICAL RESULTS

The following numerical experiments are carried out on an IBM sever
configured by X5650 CPU and 64 GB memory. In all computations,
6 threads are forked to conduct OpenMP parallelization as one
CPU has 6 cores. RWG functions are chosen as basis and testing
functions to discretize CFIE with a combination coefficient of 0.5. The
GMRES iteration process accelerated by an ILU-typed preconditioner
is terminated when the L2-norm of the residual vector is reduced to
10−3. ε is set to 10−3 in the skeleton selection procedure.

In this section, notations are defined as follows:

• T
(L)
NFI and M

(L)
NFI are the CPU time to filling and the memory

requirement of all original NFI block matrices (Z(L)
o,s (s ∈ Bo)) at

the L-th level;
• Tproj and Mproj are the CPU time to filling and the memory

requirement of projection matrices R/L at all ID levels;
• Tsamp and Msamp are the CPU time to filling and the memory

requirement of sampling matrices S at all ID levels;

• T ID
NFI= T

(LID)
NFI +Tproj +Tsamp and M ID

NFI = M
(LID)
NFI +Mproj +Msamp;

• TMVM and Titr are the CPU time for Z(LT)
NFI · I in one MVM, the

CPU time for iteration and the total solution;
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0.6λ

0.4λ

1.2λ

Figure 2. The two-cylinder target.

• Ttot and Mtot are the CPU time and memory for the total solution;

• δMVM = ‖fref−fID‖
‖fref‖ , where fID is the MVM result obtained by

the ID approximation, fref is the exact MVM result without
approximation, and ‖·‖ is the Euclidean norm.

5.1. The Two-cylinder Target

A two-cylinder target, as shown in Figure 2, is used to validate the
accuracy and efficiency of the proposed hierarchical ID-MLFMA.

The two cylinders are identical in dimensions. The mesh of the
target is highly non-uniform where the two cylinders are, respectively,
discretized with an average mesh size of 0.05λ and 0.005λ. The total
number of unknowns is 114,060. In the computations, the finest
MLFMA group size is set to be 0.3λ. Consequently, the finest MLFMA
level is the 2-nd level. Z(2)

NFI, the MLFMA-NFI matrix, costs 62.0 GB
memory and 19,832 s. The memory required by MLFMA-FFI is about
135MB. TMVM in MLFMA is 22.4 s, while MLFMA-FFI in one MVM
costs 0.5 s. Because Z(2)

NFI consumes all the memory available and
no preconditioner can be constructed, the iteration in the MLFMA
computation fails to converge to 10−3.

Table 1 shows statistics in the non-hierarchical ID-MLFMA
computation. The finest ID level is the 6-th level. Z(6)

NFI consumes
453MB memory, while S(i) matrices at all ID levels require over 8.5GB
memory in total. The ID skeletonization approximation reduces the
memory requirement by a factor of 6.0.

The proposed hierarchical scheme can improve the efficiency of ID-
MLFMA, especially when the mixed strategy is employed to generate
ZLR matrices in the skeletonization procedure. Table 2 presents the
statistics when different strategies of generating ZLR in the hierarchical
ID-MLFMA. As indicated in this table, when S-AS strategy is used, a
smaller number of skeletons are required in comparison with the non-
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hierarchical computation. The memory requirement of S(i) matrices is
thus cut down to 6.2 GB. The CPU time for one MVM is decreased
from 2.8 s to 1.0 s. The ID skeletonization is accelerated as well, whose

Table 1. Computational statistics for the two-cylinder target in the
non-hierarchical ID-MLFMA computation where the artificial sphere
strategy is used to generate ZLR (Ttot does not include the cost of the
preconditioner).

Skeleton #

6-th level 89918

5-th level 53186

4-th level 56726

3-th level 3011

Memory (MB)

M
(6)
NFI 453

Mproj 150

Msamp 8582

Mtot 9320

Time (s)

Tproj 620

Tsamp 2479

TMVM 2.8

Titr 2931

Ttot 6031

δMVM (×10−3) 0.6

Table 2. Computational statistics for the two-cylinder target when
different strategies used to generate ZLR matrices in the hierarchical
ID-MLFMA (Ttot does not include the cost of the preconditioner).

S-AS S-FFI Mixed

Skeleton #

6-th level 89918 89918 89918

5-th level 48186 34700 35192

4-th level 42739 24627 25150

3-th level 2933 2219 2265

Memory (MB)

Mproj 12 13 12

Msamp 6231 2511 2607

Mtot 6831 3112 3207

Time (s)

Tproj 459 2530 1201

Tsamp 1346 3 220

TMVM 1.0 0.6 0.6

Titr 1260 713 721

Ttot 3065 3246 2142

δMVM (×10−3) 0.6 0.6 0.6
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cost, obtained by Tproj + Tsamp, is reduced from 3099 s to 1805 s.
The S-FFI strategy can improve the efficiency by furtherly

reducing the number of skeletons. For example, the memory
requirement of S(i) matrices is cut down to 2.5GB from 6.2 GB in the
S-AS case. The time for each MVM is reduced from 1.0 s to 0.6 s. But,
the time to conduct the ID skeletonization, Tproj + Tsamp, is increased
to 2533 s from 1805 s in the S-AS case because of the high cost of
filling FFI matrices. Fortunately, the mixed strategy can overcome
this problem by the smart alteration between the S-AS and the S-
FFI strategies. As shown in Table 2, the mixed strategy successfully
reduces the CPU time of the ID skeletonization procedure from 2533 s
to 1421 s. The cost of this mixed strategy is the negligible increase of
the number of skeletons in comparison with the S-FFI case. It should
be noted that, in the S-FFI case, we obtain all S matrices from its
corresponding FFI matrices. So, little time is used to fill S matrices.

Iterations in all ID-MLFMA computations converge in 60 steps
with the ILU-typed preconditioner. Since we focus on the proposed
hierarchical scheme for ID skeletonization, the time to construct the
preconditioner isn’t included in Ttot. As shown in Tables 1 and 2,
δMVM in all cases are less than 10−3.

5.2. The F117 Aircraft Model

Numerical experiments are carried out on the F117 aircraft model to
show the capability of the hierarchical ID-MLFMA on the target with
a complex shape. The model is discretized by 106,965 unknowns.
The longest, shortest and average edge lengthes are about 0.05λ,
0.0003λ and 0.016λ. We compare the proposed hierarchical ID-
MLFMA with the traditional MLFMA and the non-hierarchical ID-

Table 3. Computational statistics for F117 aircraft model when
traditional MLFMA and ID-MLFMA are employed (Ttot does not
include the cost of the preconditioner).

MLFMA
ID-MLFMA

Non-hier Hier

M
(3)
NFI/M ID

NFI (MB) 30593 5182 3565

Mtot 30815 5404 3787

T
(3)
NFI/T ID

NFI (s) 2305 1535 759

TMVM (s) 2.3 1.2 0.6

Titr (s) 233 125 61

Ttot (s) 2538 1660 820

δMVM (×10−3) - 0.9 0.9
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(a) (b)

Figure 3. Current distribution of F117 model under the incident of
(60◦, 0◦). (a) Full view. (b) Detailed view.

MLFMA. The finest MLFMA and ID level is respectively the 3-rd and
8-th level. In the hierarchical ID-MLFMA computation, the mixed
strategy of generating low-rank matrices to conduct ID skeletonization
is employed.

Table 3 lists statistics on computational resources. Z(3)
NFI, the

NFI matrix in MLFMA, costs about 31.0GB memory and 2,305 s.
The memory required by MLFMA-FFI is about 222 MB. TMVM in
MLFMA is 2.3 s, while MLFMA-FFI in one MVM costs 0.6 s. An
ILU-typed preconditioner is applied to make the iterations converge in
less then 60 steps as the unpreconditioned iterations in both MLFMA
and ID-MLFMA computations do not converge in 500 steps. The
non-hierarchical ID-MLFMA approximates Z(3)

NFI by 5.1 GB memory.
The proposed hierarchical scheme furtherly improves efficiency of ID-
MLFMA. Particularly, the hierarchical ID-MLFMA approximates the
Z(3)

NFI matrix by 3.5GB. The cost of the ID skeletonization procedure
is decreased from 1535 s to 759 s. Additionally, TMVM is also cut down
by a factor of 2.0. Figure 3 presents the computed current under the
incident of (60◦, 0◦). The Euclidean norm of the difference between
the current obtained by MLFMA and those by ID-MLFMA is less than
3.0× 10−3.

6. CONCLUSIONS

Based on the proposed hierarchical schemes on conducting ID
skeletonization and implementing matrix vector multiplication, a new
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interpolative decomposition multilevel fast multipole algorithm (ID-
MLFMA) is proposed to handle multiscale, dynamic electromagnetic
problems. The mixed strategy to reduce the size of low-rank matrices
is developed to improve efficiency of ID skeletonization. Numerical
experiments reveal that the proposed hierarchical scheme in connection
with the mixed strategy of generating low-rank matrices improves
the efficiency of ID-MLFMA. Computations on the F117 aircraft
model demonstrate the capability of the hierarchical ID-MLFMA on
multiscale problems.
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