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Abstract—The iterative Fourier technique (IFT) is a high efficiency
method that was proposed in recent past for the synthesis of large
planar thinned arrays with isotropic radiating elements. However,
the selection mechanism of IFT cannot always include the most
useful elements in the “turned ON” families, which make the method
trap in some local minima. Therefore, in this paper, inspired by
invasive weed optimization (IWO) algorithm, a developed version
of the iterative Fourier technique (IFT), IWO-IFT, is proposed for
thinning large planar arrays. In this new method, the initial weeds
are produced by IFT, and are further perturbed by IWO through
repeatedly reproduction, dispersion, and exclusion over search space to
find better weeds. Numerical results for synthesizing different circular
thinned arrays demonstrated the superiority of IWO-IFT over the IFT
method.

1. INTRODUCTION

Thinning an array means turning off some elements in a uniformly
spaced or periodic array to create a desired amplitude density across
the aperture. An element connected to the feed network is “turned
ON”, and an element connected to a matched or dummy load is “turned
OFF” [1]. There are two advantageous of thinned arrays as compared
with periodic filled arrays. Firstly, the number of radiating elements is
considerably reduced and hence cut down the array’s cost and weight.
Even so, the aperture size is almost maintained, which allows people to
get nearly the same resolution of a filled array of equal size. Secondly,
thinned arrays present the advantage of easiness of realization, as
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different elements usually lie on a regular grid, operate with equal
amplitude, and are directly connected to the amplifiers [2]. Owing to
the above reasons, thinned arrays designation has become a hot topic
in array synthesis area.

Since most of classical optimization methods (including down-hill
simplex, Powell’s method, and conjugate gradient) are not well suited
for thinning arrays, because they can only optimize a few continuous
variables and they often get stuck in local minima [3]. Therefore,
mainly global optimization approaches, such as genetic algorithm
(GA) [1, 4], particle swarm optimization (PSO) [5], ant colony
optimization (ACO) [6], differential evolution (DE) algorithm [7–9],
and some other optimization tools [2, 3], were used and shown to be
effective for the synthesis of thinned arrays.

In recent years, a high efficiency method, called iterative Fourier
technique, has been developed by Keizer. The IFT derives the
element excitations from the array factor using successive forward
and backward Fourier transforms. The thinning of the array is
accomplished by the selecting mechanism of IFT, which involves of
forcing the specified number of the element excitations having largest
amplitudes equal to a unitary value and the other ones to zero in every
iteration cycle. Synthesis results using IFT demonstrated that the
thinned linear arrays have lower SLLs than that obtained by GA and
PSO [10], and the thinned planar arrays have lower SLLs than that
obtained by the statistical density taper approach [11].

According to Equation (1) of [11], the element excitations for
thinned arrays is either 1 (turned ON) or 0 (turned OFF), so the array
factor is solely decided by the different spatial phases, and these phases
are caused by the various spatial positions of turned ON elements.
However, because of the randomness of initial element excitations, the
selection mechanism of IFT cannot always include the most proper
elements in the “turned ON” families. In other words, it is possible that
some elements with low excited amplitudes are turned OFF, although
they may play an important part in array factor for their spatial phases.
Therefore, the method may converge to local solutions.

Owing to the above reason, in this paper, a joint algorithm, IWO-
IFT, is proposed to find the array with global minima. In the proposed
method, a recently developed algorithm, invasive weed optimization
(IWO) [13], is used to perturb the ranking of the amplitudes of the
best element excitations for the thinned array produced by IFT in
order to find better solutions. Synthesis results for thinning circular
arrays with a wide range of diameters validated the superiority of the
IWO-IFT.
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2. DESCRIPTION OF THE IWO-IFT METHOD

For a planar array with isotropic elements arranged in a square grid at
a distance d along M columns and N rows, the array factor AF can
be written as [11]

AF (u, v) =
M−1∑

m=0

N−1∑

n=0

Amnejkd(mu+nv) (1)

where Amn (m = 1, 2, . . . , M , n = 1, 2, . . . , N) is the element
excitation located in (m, n); Amn is 1 if the element is turned ON
and 0 if it is turned OFF; k is the wave number; d is the element
spacing; u = sin(θ) cos(φ) and v = sin(θ) sin(φ) are the direction
cosines; θ, φ are elevation and azimuth angles respectively. It could
be seen from (1) that all the element excitations constitute a M ×N
vector. For convenience, the vector is labeled as {Amn}. Equation (1)
indicates that the element excitations {Amn} relate the array factor
AF through a finite double fourier series.

To illustrate the process of the IFT method, Figure 1 gives an
arbitrary normalized far field pattern with its sampling points in
sidelobe region labeled as “circular ring”. The upper dot line in the
figure represents the required SLL, and its value is obtained by trial
and error [10]. The bottom dot line represents the specified SLL with
its value several dBs below the required SLL.

According to Figure 1, in every iteration cycle of the IFT method,
AF is obtained by applying 2D-IFFT to {Amn}. If there are any
sampling points whose SLLs surpass the required SLL in the sidelobe

Figure 1. An arbitrary normalized far field pattern to illustrate the
IFT.
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region of AF , replace their values by the specified SLL. Then, perform
2D-FFT to the modified AF in order to yield the renewed {Amn},
and truncate {Amn} to couple with the array aperture. Finally, sort
the amplitudes of {Amn} in descending order and perform the selection
mechanism to get the thinned array. However, the selection mechanism
for IFT may not ensure getting the global solutions, as that is related
above.

Inspired from the behavior of colonization of invasive weeds in
nature that try to find a suitable place for growth and reproduction, the
invasive weed optimization was first proposed by Mehrabian and Lucas
for solving continuous optimization problems [12], has found several
applications in antenna design [13–17] as well as array’s far field pattern
synthesis [18–23]. All the attempts have shown the robustness, high
efficiency of the IWO. One of the most notable characteristic of IWO
is to find a new seed through a series of normally distributed random
numbers with their mean equal to the initial seed and the variance
equal to a varying standard deviation. The feature provides a simple
way to perturb the ranking of the amplitudes of element excitations
obtained by IFT in order to get the arrays with lower SLLs. Therefore,
in the IWO-IFT method, the initial population is produced by IFT.
To depict the weed in the population, we suppose the best element
excitations in an arbitrary trial of IFT can be depicted as {Abest

mn }.
These element excitations correspond to the array with minimum SLL
within the trial, and can be obtained in step 6) of the IFT in [11]. Then,
the weed of IWO-IFT can be written as the normalized amplitudes of
{Abest

mn }
{Smn} = |{Abest

mn }|/max(|{Abest
mn }|) (2)

where the vector member Smn represents the normalized amplitude
of the element excitation located in (m,n). According to [11], the
element distribution of thinned array is solely decided by {Smn}, and
whether a radiating element is turned ON or turned OFF is decided
by the ranking of Smn and the array’s fill factor. Therefore, in the
next part of the IWO-IFT, each weed in the population is perturbed
by IWO in order to change the ranking of Smn, and in the last part of
the method, the selection mechanism of IFT is applied to the renewed
{Smn}. As a result, some formerly “turned OFF” elements can be
“turned ON” and vice versa so that better element distribution may
be obtained. Moreover, if some vector members are negative in {Smn}
when performing IWO-IFT, force their values to zero. Figure 2 gives
the flow chart of the IWO-IFT method, where T represents the number
of turned ON elements, Pmax the maximum number of weeds in the
population, itermax the maximum number of iterations. The fitness
value in the method is actually the SLL of the thinned array. fitworst
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End

Figure 2. The flow chart showing the IWO-IFT algorithm.

represents the colony’s worst fitness, which corresponds to the weed
having maximum SLL in a population. Similarly, fitbest represents the
best fitness that corresponds to the weed with minimum SLL. When
fitbest is equal to fitworst, or the number of iterations exceeds itermax,
the method would be terminated and the best element distribution is
kept.

The number of seeds produced by each weed in the population
depends on the individual’s fitness value or the ranking of the weed,
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and is linearly increased from the minimum number of seeds, smin, to
its maximum value, smax, then it can be written as

Nseed ={
round{[(smax−smin)·fit+smin ·fitbest−smax·fitworst ]/(fitbest−fitworst)}
s.t. fitbest 6= fitworst

(3)

where fit represents the fitness value of current weed, and round means
to round the value in the bracket to its nearest integer. Equation (3)
indicates that the weed having better fitness value is more adapted to
the colony and thereby produces more seeds.

The varying standard deviation in IWO-IFT can be written as [21]

σiter =





(itermax − iter)3

(itermax)pow
(σinitial − σfinal) + σfinal

s.t. iter = 0, 1, . . . , itermax

(4)

where iter is the current number of iterations, and σinitial and σfinal

represent the initial and final standard deviations, respectively. The
initial value of iter is 0, so when the method arrives at itermax, the
actual number of iterations is itermax + 1, not itermax.

3. NUMERICAL EXAMPLES

To illustrate the effectiveness of the proposed method, the IWO-IFT
is applied to a wide range of circular arrays with diameters ranging
from 25λ to 133.33λ in order to get the array with low SLL, where
λ represents the wavelength. Among all the numerical examples, the
array element positions are arranged along a square grid 0.5λ apart and
the coupling effect between the elements is neglected. The number of
sampling points for forward and inverse 2D-FFTs is K × K. In this
paper, the initial value of K is 1024 for all the arrays. However, a low
value of K could make some points of array factor having high SLLs lost
and thus is not enough to depict the full picture of the far field pattern.
Therefore, after the best element distribution is obtained at the end of
the IWO-IFT, K is further increased to 2048, and 2-D IFFT is applied
to the obtained element distribution in order to produce the far field
pattern with high resolution. The SLL under this high resolution is
deemed as the array’s actual SLL. Table 1 gives the assignment values
for the involved parameters in IWO-IFT, where N0 represents the size
of initial population.

For a circular thinned array with diameter of 25λ, there are 1928
element positions with 772 elements turned ON due to a 40% fill factor.
The optimum thinned array using IWO-IFT has SLL −27.13 dB, about
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(a)

(b)

Figure 3. Computed far field pattern of the 25λ circular thinned
array with a 40% fill factor. (a) Principal u-cut. (b) PSL distribution
of whole visible space of the far field.

Table 1. The involved parameter values in IWO-IFT.

Symbol N0 itermax Pmax smax smin σinitial σfinal

Value 50 20 250 5 1 0.3 10−3

0.7 dB below the report in [11]. Figure 3(a) shows the principal u-cut
of the array’s far field pattern going through the main beam peak.
Figure 3(b) the histogram depicts the peak level distributions of all
765 sidelobes (include mainlobe) of the array pattern located in visible
space, and the visible space satisfies the relation

u2 + v2 ≤ 1 (5)
For the same thinned array, the convergence curves in Figure 4
respectively depict the best, the worst and the mean fitness value in
the colony that changed with the number of iterations. They indicate
that at the beginning of the iteration, the individual differences in the
colony are evident. The best, the worst and the mean fitness value
at iteration #0 is −26.47 dB, −19.99 dB, and −23.16 dB respectively.
However, the differences between the three fitness values are narrowed
with the increment of iterations, and the three fitness values converged
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Figure 4. The convergence curves of different fitness values in the
colony for synthesis of the 25λ circular thinned array that has a 40%
fill factor.

to the same point, −27.14 dB at the iteration #16. Then, the method
is terminated, and the individual with best fitness value at iteration
#16 is deemed as the optimum element distribution. One may have
a question that why the best fitness value is slightly lower than the
value given in Figure 3(a) (−27.13 dB). The reason is that the size of
sampling points is small (K is 1024) in the course of the IWO-IFT,
which makes some points having high SLLs lost. Therefore, at the end
of the IWO-IFT, the actual SLL of the same thinned array is rechecked
by doubling the size of sampling points of 2D-IFFT to produce the far
field pattern with high resolution.

For a circular array with diameter of 50λ and that is 30% filled,
Figure 5 depicts its element distribution across the aperture obtained
by IWO-IFT, where the turned ON elements are labeled as “crosses”.
The SLL of the far field pattern produced by this element distribution
is −31.03 dB, which is about 0.5 dB lower than the published report
by IFT [11]. Furthermore, Figure 6 depicts the thinning result for
the array having 100λ diameter and a 40% fill factor. The principle
u-cut of the array’s far field pattern as shown in Figure 6(a), has SLL
−35.3 dB. The value is about 2.6 dB lower than the published report by
IFT [11]. Figure 6(b) depicts the peak SLL distributions of the array’s
far field pattern located in visible space. Figure 7 the convergence
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Figure 5. Location of the 2337 turned ON elements for the 50λ
circular array having a 30% fill factor.

(a)

(b)

Figure 6. Computed far field pattern of the 100λ circular thinned
array with 40% fill factor. (a) Principal u-cut. (b) PSL distribution of
whole visible space of the far field.

curves of the best, worst, and mean fitness values indicate that the
population evolution is terminated at iteration #20, where there are
little differences between the three fitness values. The distribution of
the 12514 turned ON elements for this thinned array is depicted in
Figure 8.
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Figure 7. The convergence curves of different fitness values in the
colony for synthesis of the 100λ circular thinned array that has a 40%
fill factor.

Table 2. The comparative results using IWO-IFT and IFT for the
synthesis of different circular arrays.

SLL (dB) Directivity (dB) 3 dB Beamwidth ( u) Diameter 
T  f (%) 

IWO-IFT IFT IFT-IWO IFT IWO-IFT IFT 

578 30.0 −25.93 −25.5 [11] 31.79 31.8 [11] 0.0692 0.0648 [1]

772 40.0 −27.13 −26.4 [11] 32.92 33.0 [11] 0.058 0.0549 [11]25 

964 50.0 −27.77 −27.2 [24] 33.99 33.96 [24] 0.0509 0.0496 [24]

1031 30.0 −27.87 −27.1 [11] 34.21 34.2 [11] 0.0455 0.0445 [11]
33.33 

1374 40.0 −29.17 −28.5 [11] 35.52 35.4 [11] 0.0427 0.0403 [11]

2337 30.0 −31.03 −30.5 [11] 37.72 37.8 [11] 0.0322 0.0307 [11]
50 

3116 40.0 −32.14 −31.8 [11] 39.02 38.9 [11] 0.0269 0.0261 [11]

4146 30.0 −33.05 −32.6 [11] 40.21 40.2 [11] 0.0224 0.0227 [11]
66.67 

5528 40.0 −33.72 −33.6 [11] 41.45 41.4 [11] 0.0197 0.0197 [11]

9386 30.0 −35.54 −35.4 [11] 43.68 43.6 [11] 0.0145 0.0144 [11]
100 

12514 40.0 −35.30 −32.7 [11] 44.95 45.0 [11] 0.0128 0.0129 [11]

133.33 15021 27.0 −37.22 −36.0 [24] 45.71 45.72 [24] 0.0112 0.0115 [24]

 

(λ)

∆
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Figure 8. Location of the 12514 turned ON elements for the 100λ
circular array having a 40% fill factor.

Table 3. The computational cost for the synthesis of different circular
arrays using IFT and IWO-IFT.

Diameter

(λ)
T

f

(%)

IFT IWO-IFT

Computational

cost (hours)

SLL

(dB)

Computational

cost (hours)

SLL

(dB)

25

578 30.0 2.98 −25.51 2.25 −25.93

772 40.0 2.33 −26.64 2.28 −27.13

964 50.0 2.00 −27.41 2.24 −27.77

33.33
1031 30.0 2.54 −27.25 2.62 −27.87

1374 40.0 2.27 −28.80 2.72 −29.17

50
2337 30.0 2.61 −30.31 2.73 −31.03

3116 40.0 2.55 −31.58 2.45 −32.14

66.67
4146 30.0 2.61 −32.62 2.64 −33.05

5528 40.0 3.05 −33.20 2.54 −33.72

100
9386 30.0 3.78 −35.42 2.71 −35.54

12514 40.0 3.85 −32.83 3.09 −35.30

133.33 15021 27.0 4.92 −36.16 3.07 −37.22
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Table 2 gives the comparative results using IWO-IFT and IFT
for the synthesis of circular arrays with different diameters, where f
represents the fill factor. It demonstrated that for all the considered
illustrations, the thinned arrays obtained by IWO-IFT have lower SLLs
than that obtained by IFT, and this phenomenon become more evident
for the arrays with diameter of 100λ and 133.33λ. All the results in
this paper were obtained by a PC equipped with an Intel Pentium Dual
core E5200 Processor and 2 GB RAM. The runtime for all the thinned
arrays ranges from 2 hours to 3 hours.

One may say that more trials of IFT may facilitate producing
the array with lower SLLs, because the results in [11] is obtained
by performing IFT only 50 trials. However, the improvement can
be neglected. For example, we suppose the number of trials for
each selected array is 500, Table 3 gives the SLL results and the
computational cost for synthesizing similar arrays as is depicted in
Table 2. It could be seen from Table 3 that the quality of solutions
is almost not improved comparing with the results in [11], and the
computational burden is similar to IWO-IFT. In fact, when performing
the IFT for each selected array in Table 2 2000 trials regardless of
the considerable computational cost, the solutions quality is also not
improved. Some results in Table 3 are not better than that in [11],
because different RSLLs have been adopted, and we do not know the
values of RSLL for most thinned arrays in [11].

4. CONCLUSION

A joint algorithm, IWO-IFT, is proposed for the synthesis of large
planar thinned arrays. In the proposed method, the initial weeds are
produced by IFT. Then, the weeds are perturbed by IWO in order to
find better weeds through changing the ranking of the amplitudes of
the element excitations. Simulation results validated the superiority of
the proposed method to IFT in terms of getting the arrays with lower
SLLs. Furthermore, by a small modification, the method can also be
applied to synthesize linear thinned arrays.
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