
Progress In Electromagnetics Research B, Vol. 46, 139–158, 2013

ELECTROMAGNETIC WAVES RADIATION INTO THE
SPACE OVER A SPHERE BY A SLOT IN THE END-WALL
OF A SEMI-INFINITE RECTANGULAR WAVEGUIDE

Sergey L. Berdnik, Yuriy M. Penkin, Victor A. Katrich,
Mikhail V. Nesterenko*, and Victor I. Kijko

Department of Radiophysics, V. N. Karazin Kharkov National
University, 4, Svobody Sq., Kharkov 61022, Ukraine

Abstract—The problem of electromagnetic waves radiation into a
space outside a perfectly conducting sphere through a narrow slot, cut
in an end-wall of a semi-infinite rectangular waveguide, excited by a
fundamental wave of H10 type is solved using a rigorous self-consistent
formulation. The starting point for the analysis is the one-dimensional
integral equation for the equivalent magnetic current in the slot,
obtained by using the effective thickness of the slot. The asymptotic
solution of the equation was found by the generalized method of
induced magnetomotive forces (MMF). The physical adequacy of
the constructed mathematical model to the real physical process is
confirmed by experimental data. Influence of the sphere radius upon
energy characteristics of the slot radiator was investigated numerically.
It was shown that at any frequency of waveguide single-mode range, the
radiation coefficient of a spherical antenna can be made close to one by
choosing the slot length, the sphere radius and the waveguide height.
Conditions for correct application of infinite screen approximation for
spherical scatterers with sufficiently large radii are formulated.

1. INTRODUCTION

Non protruding slot antennas (NPSA) are widely used on mobile
objects since slot antennas make no substantial contribution in object’s
weight and size, and do not deteriorate its aerodynamic properties [1].
NPSA are used in very wide range of applications extending from
spacecrafts [2] to autonomous microdevices [3]. Surface of a mobile
objects or its constructive part is usually modeled by a spherical surface
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with a radius is comparable to the antenna’s operating wavelength.
Therefore, research of resonant slot spherical antennas has continued
during antenna the last several decades.

Characteristics of zonal and azimuthal narrow slots located on
spherical scatterers have been studied in [4–13]. Axisymmetric
excitation of slot antennas is assumed in most of the above references.
We will not do any comparative analysis of problem formulation
and solution methods, but only note that spherical antennas with
impedance surfaces are studied in [11, 13] along with perfectly
conducting spherical slot antennas. Plane wave diffraction by a hollow
conductive shell with an annular slot or a circular aperture, have been
studied in [14, 15]. Characteristics of spherical antennas with slotted
rectangular radiators have been investigated in [6, 16–18]. External
electrodynamic characteristics of slot antennas under the assumption of
a given cosine magnetic current distribution along a half-wave radiator
with a narrow slot has been examined in [6, 18]. Thus, far zone
radiation patterns in the equatorial plane for spherical antennas were
obtained in [6]. Intrinsic and mutual admittances of half-wave slot
radiators, oriented along parallels on a surface of a conducting sphere,
were studied in [18].

Characteristics of narrow rectangular slots, cut in an infinitely
thin spherical shell, were analyzed in [16, 17] by a method of moments.
A spherical antenna in which a slot couples free space outside of a
spherical scatterer and an inner antenna region in a form of hollow
spherical cavity was solved in the first paper [16], and an analogues
configuration with a spherical cavity containing a conducting sphere
of smaller radius concentrically nested in it [17]. In both cases a slot
element was excited by a hypothetical point voltage generator. In the
present paper we will consider a real design of a spherical antenna,
where a power to the rectangular slot located on the sphere is fed
through the inner section of a rectangular waveguide transmission line.
This electrodynamic problem is of direct practical interest and presents
a new approach to the analysis of spherical antennas.

In terms of waveguide electrodynamics, this problem can be
reformulated as an excitation problem of a slotted waveguide radiator
with a conducting spherical flange. As far as we know a solution to this
problem using a rigorous electrodynamic formulation does not exist.
Usually, flanges in slot antennas modes are considered as flat perfectly
conducting screens [1, 19]. Therefore, one of the aims of this study is
to determine the conditions for correct application of infinite screen
approximation for spherical scatterers in models of slotted waveguide
radiators.

The authors of this paper have proposed and justified [19] a
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numerical-analytical method, named as generalized method of MMF,
intended for diffraction problem at slotted elements. The problem
of electromagnetic fields excitation by a coupling hole between two
arbitrary electrodynamic volumes was preliminarily solved in a rigorous
self-consistent formulation. This problem was reduced to a two-
dimensional integral equation for equivalent surface magnetic currents
defined on the coupling aperture. A physically correct transition from
the resulting integral equation to a one-dimensional equation for the
current in the narrow slot was justified. A general method for solving
one-dimensional equations for slotted waveguide structures with a flat
conductive flange was presented. A development of this method for
solving the problem of electromagnetic wave radiation by a slotted
waveguide structure into the space above a perfectly conducting sphere
will be presented.

2. PROBLEM FORMULATION AND INTEGRAL
EQUATION SOLUTION

Let a fundamental wave H10 propagates in a hollow semi-infinite
rectangular waveguide with perfectly conducting walls (index V i) from
z = ∞ (Figure 1). The waveguide cross-section is {a×b}. A Cartesian
coordinate system {x, y, z}, related to the waveguide, is shown in
Figure 1(b). A narrow transverse slot is cut in the waveguide end-wall
symmetrically relative to the waveguide’s longitudinal axis (x0 = a/2).
The width of slot aperture Si is d and its length is 2Li ([d/(2Li)] ¿ 1,
[d/λ] ¿ 1, λ is free space wavelength). The slot radiates into the free
space outside a perfectly conducting sphere whose radius is R (index
V e). A spherical coordinate system, associated with the spherical
scatterer (flange) is shown in Figure 1(a). The geometric center of
the slotted element in the Cartesian coordinate system is defined by
coordinates (a/2, y0, 0), the center coordinates of external aperture Se

in the spherical coordinate system {r, θ, ϕ} are (R, π/2, 0). The length
of slot aperture, Se measured along the arc is 2Le. The tunnelling slot
cavity is an area (index V v), bounded between apertures Si and, Se

represents a complex shape resonator, whose boundaries could not be
described in either coordinate system (Figure 1(c)). This peculiarity
of the electrodynamic problem defines the principal difficulty for its
analytical analysis. Moreover, the cavity volume may depend upon
the sphere radius and waveguide cross-sectional dimensions, since these
geometrical parameters determine its resonant properties.

The system of equations for the spherical antenna under
consideration can be formulated by considering continuity conditions
for tangential components of the magnetic fields on the inner and outer
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(a) (b) (c)

Figure 1. The local coordinate systems used for analysis of the
spherical antenna.

slot apertures [19]
{

for Si : ~H i
τ (~esi) + ~H i

0τ = ~Hv
τ (~esi) + ~Hv

τ (~ese) ,

for Se : ~Hv
τ (~esi) + ~Hv

τ (~ese) = ~He
τ (~ese) ,

(1)

where ~esi, ~ese are the respective electric fields on the surfaces Si and
Se, ~H i

τ (~esi), ~He
τ (~ese), ~Hv

τ (~esi), ~Hv
τ (~ese) are tangential components of

magnetic fields (with respect to the slot aperture), excited by fields
~esi, ~ese, in the corresponding electrodynamic volumes, and ~H i

0τ is the
component of the extraneous magnetic field in the waveguide. The
Equation (1) allows us, in principle, to use representations of magnetic
fields in arbitrary local coordinate systems for each of the coupling
volumes.

A rigorous mathematical substantiation, concerning reduction of
simultaneous Equation (1) to a single equation

~H i
τ (~esi) + ~H i

0τ = ~He
τ (~ese), (2)

which does not contain fields, defined in the slot cavity V v can be
found in [20]. This substantiation was performed for a coupling
problem involving two arbitrary electrodynamic volumes through a
narrow rectangular slot under the condition that the volume V v is a
rectangular parallelepiped with dimensions 2Li × d× h. In [20] it was
also shown that under the condition (hd/λ2) ¿ 1 solutions for a slot,
cut in the wall of finite thickness h((h/λ) ¿ 1), and for a slot cut in an
infinitely thin wall are approximately equal, if the actual slot width d
is replaced by de. The explicit formulas for de can be found in [19, 20]:
de = d(1− h

πd ln d
h) at h

d ¿ 1, de = d( 8
πe−(πh

2d
+1)) at h

d ≥ 1. This
approach has been tested in the analysis of different slot problems,
including that made by the authors of this paper [19, 21].
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The concept of equivalent slot width was introduced in [20] for
narrow rectangular slots, cut in flat regions of shielding surfaces. It was
also concluded that, on the basis of physical principles, this concept can
be valid for curved narrow slots, cut in an arbitrary smooth surface,
if the radii of curvature of slot axial line and surface principal radii
of curvature are much larger than d and h. The same arguments are
relevant for the problem, considered here, when the slot cavity V v

is part of a rectangular parallelepiped in which one face is subjected
to small perturbations which become infinitely small for large sphere
radii. However, it should be understood that the exact formula for
equivalent slot width de, mentioned in [19, 20] is approximate and its
value may be corrected in the course of numerical calculations.

Thus, using a rigorous definition, the problem for the slotted
spherical antenna will be solved using the Equation (2). To ensure
mathematical correctness of the problem solution, we rewrite this
equation in a system of generalized coordinates (ξ1, ξ2, ξ3) and require
that it will be satisfied in some imaginary cross-section S, virtually
located in the vicinity of aperture Se in the slot plane V v. Without
loss of generality we can assume that the unit vector of coordinate ξ1,
i.e., ~ξ 0

1 , coincides with the longitudinal axis of the cross-section, and
the unit vector ~ξ 0

2 is directed along its transverse axis. Multiplying
both sides of Equation (2) by a prescribed scalar function ψ(ξ1), and
integrating the result over the cross-section S, we get∫

S

~H i
τ (~es)ψ (ξ1) ds +

∫

S

~H i
0τψ (ξ1) ds =

∫

S

~He
τ (~es)ψ (ξ1) ds. (3)

Since the slot cavity is assumed to be narrow, the field, constant
in the direction of ~ξ0

2 , in the cross section S can be written as
~es = I0f(ξ′1)~ξ

0
2 [19]. Here (ξ′1, ξ

′
2, ξ

′
3) are the source coordinates, f(ξ′1)

is an unknown scalar function and I0 is its complex amplitude.
Let the magnetic fields in coupled volumes V e and V i be presented

in two different coordinate systems. To approximate a virtual cross-
section S in each volume we consider two coordinate surfaces, Se and
Si, respectively. Then, performing a formal summation operation we
introduce presentations for perturbed surfaces Se = S + ∆se and
Si = S + ∆si, and rewrite Equation (3) as

I0

∫

S+∆se

~He
τ

(
f(ξ′1)~ξ

0
2

)
ψ (ξ1) ds− I0

∫

S+∆si

~H i
τ

(
f(ξ′1)~ξ

0
2

)
ψ (ξ1) ds

=
∫

S+∆si

~H i
0τψ (ξ1) ds, (4)



144 Berdnik et al.

where ∆se(i) denotes symbols of small perturbations. Equation (4)
is approximate and becomes exact only if ∆se(i) → 0. The physical
meaning of the Equation (4) for small perturbations ∆se(i) can be
easier to understand by comparing it with the classical problem of
thin wire vibrator excitation, where electric current in a vibrator
is assumed to be concentrated near its longitudinal axis, and the
boundary conditions for the electromagnetic field must hold on its
generating line [1, 22]. Similarly, in (4), the surface S can be regarded
as a cross-section, where secondary magnetic current, equivalent to the
field ~es is concentrated and boundary conditions for the fields are to
be satisfied at Si and Se.

Since the Equation (4) is approximate, the correct relationship
between the field amplitude ~ese at the aperture Se, which determines
the total power, radiated by the slot, and the field amplitude ~esi at
aperture Si, determining the slot matching with the waveguide will be
inevitably violated. Therefore, the value of I0 may be selected only so
that either one or the other power be close to its true value. However, in
this case, the balance between the input and the radiated power may be
violated. By analogy with the method of induced electromotive force
in theory of dipole antennas [22], we conclude that ψ(ξ1) = f(ξ1). The
fulfillment of this condition allows us to find the amplitude I0, ensuring
balance of powers, but both powers can be determined only with some
error.

Application of local coordinate systems in (4) requires that
the magnetic fields ~He

τ (f(ξ1)~ξ0
2), ~H i

τ (f(ξ1)~ξ0
2) be presented in these

coordinates too, and thereby disturb the surface S on which the
secondary sources of these excitation fields are concentrated as it
was assumed above. Then the magnetic fields will be determined by
integral-differential operators where integration should be carried out
over Se = S + ∆se and Si = S + ∆si instead of S as required in
Equation (3). If f(ξ1) is a functional dependence of the exact solution
of the Equation (2) at cross-section S, it will at the same time present
an approximate solution of Equation (4) with a sufficiently small error.
As is known from the general antenna theory, small errors in the
determination of the current distribution does not lead to significant
errors in the calculation of the integral values such as the excited
electromagnetic fields. Therefore, if inequality |∆se(i)| ¿ λ2 holds, and
equity of basis f(ξ1) and weight ψ(ξ1) functions is assumed, application
of Equation (4) instead of (3) will not violate the correctness of the
electrodynamic problem solution.

The assertions, listed above, may serve as a justification for
the application of generalized method of induced MMF, proposed
and tested for solving slotted-waveguide problems [19], in analysis of
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spherical antennas. As a starting point, we will use the Equation (4),
and write it in the chosen local coordinate system (Figure 1) as

I0

Le/R∫

−Le/R

θ0+ de
2R∫

θ0− de
2R

~He
τ

(
f

(
ϕ′

)
~θ0

)
ψ (ϕ)dθdϕ

−I0

x0+Li∫

x0−Li

y0+de/2∫

y0−de/2

~H i
τ

(
f

(
x′

)
~y0

)
ψ (x)dydx =

x0+Li∫

x0−Li

y0+de/2∫

y0−de/2

~H i
0τψ (x) dydx. (5)

Here we use the parameter de instead of d and take into account
that ~es = ~θ0 I0

de
δ(r′ − R)f (ϕ′) in the spherical coordinate system and

~es = ~y0
I0
de

δ(z′)f (x′) in the rectangular coordinate system since the field
~es is constant in the transverse direction of the slot and the parameters
θ0 = π/2 and x0 = a/2 are fixed in the problem definition.

In accordance with generalized method of induced MMF we use, as
the basic functions, the functional dependence, obtained in analytical
solution of Equation (3) by the asymptotic averaging method for
the key problem of electromagnetic wave radiation through a slot
in the end wall of a semi-infinite rectangular waveguide into the
half-space over a perfectly conducting plane [21]. Then, f(ϕ) =
1
de

[cos(kRϕ) cos π
aL− cos kL cos πRϕ

a ] in the spherical coordinate
system and f(x) = 1

de
[cos k(x− a

2 ) cos π
aL− cos kL cos π

a (x− a
2 )] in the

rectangular coordinate system. Here k = ω
√

εµ = 2π/λ is wave
number, (ε, µ) are the permittivity and permeability of free space, ω is
the angular frequency and time t dependence of electromagnetic fields
was selected as eiωt.

The complex current amplitude I0 can be found from Equation (5)
as

I0 = Fm
0

/(
Y e + Y i

)
(6)

where the MMF is defined by the formula

Fm
0 =

a/2+Li∫

a/2−Li

y0+de/2∫

y0−de/2

H i
0xf (x) dydx, (7)
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and slot admittances in the corresponding electrodynamic volumes by

Y e =

Le/R∫

−Le/R

π
2
+ de

2R∫

π
2
− de

2R

He
ϕ

(
f

(
ϕ′

)
~θ0

)
f (ϕ) dθdϕ,

Y i = −
a/2+Li∫

a/2−Li

y0+de/2∫

y0−de/2

H i
x

(
f

(
x′

)
~y0

)
f (x) dydx.

(8)

To find the explicit form of integrals in (7) and (8) we replace the
electric field in the slot by the equivalent one-dimensional magnetic
currents ~Jm

se(si) = −[~n,~ese(si)] where ~n is the unit vector to the
surface normal directed inside the area where the field is defined.
Such an approach is often used to solve slot problems. It is well
known that such substitution under conditional metallization of slot
apertures allows us to use the Green’s functions for volumes with
integral boundary surfaces. Then we take into account the well-
known formulas ~He(i)(~r) = (graddiv + k2)

−→∏m

e(i)(~r) and
−→∏m

e(i)(~r) =
1

4πiωµ

∫
Se(i)

Ĝe(i)(~r, ~r′) ~Jm
se(si)(~r

′)dr′, where
−→∏m

e(i)(~r) are magnetic Hertz

vectors, ~He(i)(~r) are magnetic field vectors, ~Jm
se(si)(~r

′) are magnetic

currents, Ĝe(i)(~r, ~r′) are tensor Green’s functions of magnetic type for
respective volumes, and ~r and ~r′ are position vectors of observation
and source points, respectively.

We will find the slot admittance Y e for the external slot by
application of the Green’s tensor components, constructed for space
outside a perfectly conducting sphere [13]. At first we define the
components of the magnetic Hertz vector

Πm
eθ(r, θ, ϕ) =

4π R

iωde

∞∑

n=0

n∑

m=1

mQn(r) FSm(ϕ)
n(n + 1)Cnm

×
[
dPm

n (cos θ)
dθ

Fm
n +

Pm
n (cos θ)
sin θ

Φm
n

]
,

Πm
eϕ(r, θ, ϕ) =

2π R

iωde

∞∑

n=0

n∑

m=0

εmQn(r) FCm(ϕ)
n(n + 1)Cnm

×
[
m2 Pm

n (cos θ)
sin θ

Fm
n +

dPm
n (cos θ)

dθ
Φm

n

]
,

(9)
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where

Qn(r) =
h

(2)
n (kr)

(n + 1)h(2)
n (kR)− kR h

(2)
n+1(kR)

, Fm
n =

π
2
+ de

2R∫

π
2
− de

2R

Pm
n

(
cos θ′

)
dθ′,

Φm
n =

π
2
+ de

2R∫

π
2
− de

2R

dPm
n (cos θ′)

dθ′
sin θ′ dθ′,

FCm(ϕ) =

L
R∫

−L
R

f
(
ϕ′

)
cos

(
m(ϕ− ϕ′)

)
dϕ′,

FSm(ϕ) =

L
R∫

−L
R

f
(
ϕ′

)
sin

(
m(ϕ− ϕ′)

)
dϕ′, Cnm =

2π (n+m) !
(2n+1) (n−m)!

,

εm = { 1, m = 0,
2, m 6= 0,

Pm
n (cos θ) are associated Legendre functions of

the first kind, h
(2)
n (kr) =

√
π

2kr Jn+1/2(kr) − i
√

π
2krNn+1/2(kr) =√

π
2krH

(2)
n+1/2(kr) is the spherical Hankel function of the second kind,

Jn+1/2(kr) is Bessel and Nn+1/2(kr) is Neumann functions of half-
integer index.

Then we utilize the expression for Hϕ(r, θ, ϕ) in the form

Hϕ(r, θ, ϕ) =
2πR

iωde

∞∑

n=0

n∑

m=0

Qn(r)FCm(ϕ)
n(n + 1)Cnm

{
εmk2 dPm

n (cos θ)
dθ

Φm
n

−2m2

[
1
r2

n(n + 1)− k2

]
Pm

n (cos θ)
sin θ

Fm
n

}

and obtain the slot external admittance in the form

Y e =
8R

iωd2
e

∞∑

n=1

1
n(n+1)

× 1

(n+1)−kRh
(2)
n+1(kR)/h

(2)
n (kR)

×
{
k2R2C̃2

0

(
A0

n

)2

−2
n∑

m=1

C̃2
m

[
m2

(
n(n+1)− k2R2

)
(Bm

n )2−k2R2 (Am
n )2

]}
. (10)
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Here

Am
n =

π
2
+ de

2R∫

π
2
− de

2R

dP̄m
n (cos θ)

dθ
sin θ dθ

≈ P̄m
n

[
cos

(
π

2
+

de

2R

)]
− P̄m

n

[
cos

(
π

2
− de

2R

)]
,

Bm
n =

π
2
+ de

2R∫

π
2
− de

2R

P̄m
n (cos θ) dθ,

C̃m =
cos(πL/a)
m2 − (kR)2

[
m sin

mL

R
cos kL−kR cos

mL

R
sin kL

]

− cos kL

m2−(πR/a)2

[
m sin

mL

R
cos

πL

a
−πR

a
cos

mL

R
sin

πL

a

]
= C̃I

m−C̃II
m .

It is significant that lim
m→kR

C̃I
m = ( L

2R + sin(2kL)
4kR ) cos πL

a , lim
m→πR/a

C̃II
m =

( L
2R + sin(2πL/a)

4πR/a ) cos kL, and normalized associated Legendre functions

are P̄m
n (cos θ) =

√
π/CnmPm

n (cos θ).
Inside the semi-infinite waveguide we will use expression for

the component of the Green’s function Ĝi(~r, ~r′) [19], perform the
necessary conversion, and get the explicit expression for the internal
slot admittance in the form

Y i = − 8π

iωab

∞∑

m=1

∞∑

n=0

εn(k2 − k2
x)

kz
(cos kyy0)

2

(
sin(kyde/2)

kyde/2

)2

×
[
Φ(kL) cos

πL

a
− Φ

(
πL

a

)
cos kL

]2

, (11)

where

Φ(kL) =
2

k2 − k2
x

(k sin kL cos kxL− kx cos kL sin kxL) ;

Φ
(

πL

a

)
=

sin(2πL/a) + 2πL/a

(2π/a)
;

kx =
mπ

a
; ky =

nπ

b
; kz =

√
k2

x + k2
y − k2;

m = 1, 3, 5 . . . ; n = 0, 1, 2 . . .

Taking into account the field structure in a rectangular waveguide
for the excitation mode H10, the necessary field component may be
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determined as H i
0x(x) = −2H0iγ

π
a sin πx

a . Here H0 is the complex
amplitude and γ =

√
k2 − (π/a)2 is the propagation constant. Using

formula (7), we can write in explicit form the expression for the MMF

Fm
0 = −2H0iγ

π

a

[
2
k sin kL cos π

aL− (
π
a

)
cos kL sin π

aL

k2 − (π/a)2
cos

π

a
L

−sin 2π
a L + 2π

a L

(2π/a)
cos kL

]
. (12)

Thus, the magnetic currents on the slot apertures in the local
coordinates will be defined taking into account the selected above
functional dependencies for the current distributions f(ϕ) and f(x)

~Jm
se(si) =





~Jm
si = F m

0

de(Y e+Y i)

[
cos k

(
x− a

2

)
cos π

aL

− cos kL cos π
a

(
x− a

2

)]
~x0 at Si,

~Jm
se = F m

0

de(Y e+Y i)

[
cos(kRϕ) cos π

aL

− cos kL cos πRϕ
a

]
~ϕ0 at Se.

(13)

These expressions allow us to define such energy characteristics of
spherical slot antenna, as the reflection coefficient in the waveguide

|S11|2 =
∣∣∣∣1−

4γF 2(kL)
abωµ(Y i + Y e)

∣∣∣∣
2

, where F (kL)=−Fm
0

/(
2H0iγ

π

a

)
,(14)

and the radiation efficiency

|SΣ|2 =
PΣ

P10
=
|I0|2

2
ReY e. (15)

Here PΣ is the average power, radiated through the slot aperture,
i.e., Umov-Pointing flux through the slot, P10 is the input power
of waveguide wave H10, ReY e is the real part of the external slot
admittance (10).

The selection of the effective slot thickness he was made by using
the energy balance equation |S11|2 + |SΣ|2 = 1. Numerical calculations
have shown that the optimum value of he, used to calculate the
equivalent slot width de and ensuring the value of the power balance
better than 0.993, roughly corresponds to the value he ≈ V v/Si. Here
V v is the volume of the slot cavity, Si is the area of the inner slot
aperture. Of course, when the sphere radius is increased, the value of
he tends to h and power balance becomes equal to unity.
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3. NUMERICAL RESULTS

On the basis of our mathematical model for spherical slot antenna, we
carried out the numerical analysis to find ranges of possible changes
in energy characteristics, caused by varying the basic parameters of
the problem. Analysis of expression (10) shows that for free space,
outside a sphere ((εµ)−1/2 = c[m/s] is the speed of light,

√
µ/ε =

120π [Ohm] and k = ω/c [1/m]), the external slot admittance Y e

is a function of dimensionless parameters (kR) and (d/R). These
generalized parameters will be used for calculation and analysis of
both slot external admittance and energy characteristics of spherical
antennas. The parameter (kR) in problems of spherical scatterer
analysis is known as diffraction radius.

To ensure correct modeling, we have tested the convergence of
the infinite series in (10) for different values of parameters (kR) and
(d/R), and determined the maximum value of the summation index
to ensure adequate accuracy of Y e calculations. Figure 2 shows the
computational result for real Re(Y e) and imaginary Im(Y e) parts of the
slot admittance, normalized, respectively, by the values of Re(Y e

scr) and
Im(Y e

scr) for a slot in an infinite perfectly conducting screen, depending
on number of series terms N , taken into account in (10), for the
slot dimension 2Li = 0.45λ, ratio d/2Li = 0.05 and diffraction radii,
increasing in the interval kR ∈ [1; 20]. As expected, the convergence
of the series significantly worsens with increasing kR values. If during
calculations the results for real part of admittance Re(Y e) are quickly
stabilized, the Im(Y e) should be calculated by the principle of relative
intrinsic convergence of the series. That is, it is necessary to limit the
number of series terms N by fixing the contribution of successive terms
at a predefined level, for example, less than 1%.

The curves in Figure 2 are plotted only for values of N for which
the specified accuracy is achieved. The plot shows that accuracy of up
to 1% can be achieved if N = 40 for kR = 1, N = 75 for kR = 2 and so
forth. The difference between external slot admittances Y e, calculated
by the formula (10) and by the formula for perfectly conducting
screen [19], does not exceed the errors of their numerical determination.
The calculation results have also revealed that variations in the slot
length within 2Li ∈ [0.4λ; 0.6λ] and width within d/2Li ∈ [0.025; 0.1]
practically do not change the estimates for selection of N . The
character of Re(Y e) and Im(Y e) behavior with increase in the number
of series terms taken into account in (10) depends on the slot length.

The validity of the numerical simulation was confirmed by
comparing the calculated and experimental data. A photograph of
a prototype model which was made for experimental studies is shown



Progress In Electromagnetics Research B, Vol. 46, 2013 151

in Figure 3. The model’s geometrical parameters and waveguide wall
thickness h for a standard rectangular waveguide are given in Figure 4
captions. The effective internal slot cavity thickness and effective slot
width are he = 0.1mm and de = 1.414mm, respectively.

The modulus of the reflection coefficient in the waveguide |S11|
and radiation coefficient of the antenna |SΣ|2 are presented in Figure 4
for experimental and calculated data by circles and by solid lines,
respectively. The plots show that the curves are in good agreement
with each other. The maximum antenna efficiency, very close to
one, is observed at λ ≈ 37.5 mm, for 2Li ≈ 0.48λ and kR ≈ 8.38.
This maximum is ensured by optimal matching between the spherical
antenna and waveguide. The discrepancy between the wavelength
of the calculated and experimental points of maximum radiation of
the antenna can be explained by the difficulty of combining the
slot longitudinal axis with the axis of the waveguide cross-section
in the design of the prototype model. Notice that sufficiently large
broadband operation is achieved for this antenna prototype. Thus,
the ratio of antenna’s operation band width at half-power level ∆λ ∈
[29.0; 42.5]mm to the working wavelength λ ≈ 37.5mm is 36%.

The observed effect of the resonant slot length reduction,
determined by the maximum achieved power level, radiated by the
antenna, as compared with λ/2, is associated with the influence of
the spherical scatterer and the size of the slot cavity. As opposed
to the case of an infinite screen, influence of the real slot width upon
radiation properties for a spherical antenna can not be studied directly,
if the waveguide cross-sectional dimensions are fixed. Indeed, sphere
radius variation results in alteration of the internal slot cavity size. It
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admittance of slot radiator versus the numbers of series terms for
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Figure 3. The prototype model of the spherical antenna.
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Figure 4. The energy characteristics of the antenna prototype with
the parameters R = 50 mm, 2Li = 18 mm, d = 1.5mm, a = 23 mm,
b = 10 mm and h = 1mm.

is therefore of interest to study energy characteristics of a spherical
antenna by varying the radius of the sphere in order to determine the
antenna electrical parameters, ensuring maximal radiation at a given
frequency from wavelength of waveguide single-mode regime.

Figure 5 shows the calculated energy characteristics of a spherical
antenna for a waveguide with standard cross-section {23 × 10}mm2.
Both the slot length and sphere radius were varied in the calculation.
The ratio d/2Li = 0.05 was chosen as in the above analysis of
the external slot admittance. Numerical simulations have revealed
the following properties. First of all, that by variation of slot
length a maximal radiation level at any given frequency in the range
of waveguide single-mode regime, except for a region close to the
waveguide critical frequency, can be achieved. For small sphere radii,
for example if πR/(2Le) = 3, the slot resonant length is close to



Progress In Electromagnetics Research B, Vol. 46, 2013 153

the value 2Le ≈ 0.5λ, and the shortening effect begins to manifest
itself if radius R is further increased. Maximum reduction of the
slot resonant length is observed for the infinite screen and correspond
to the slot length 2Le ≈ 0.48λ. The bandwidth of the antenna
radiation coefficient at the half-power level is maximal for the infinite
screen and significantly reduces with decreasing sphere radius and the
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Figure 5. The energy characteristics of the spherical antenna with a
waveguide of standard cross-section {23× 10}mm2.



154 Berdnik et al.

25 30 35 40 45

2L
e
= 14 mm

/2L
e
= 3

25 30 35 40 45

25 30 35 40 45 25 30 35 40 45

25 30 35 40 45 25 30 35 40 45

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

S
1

1
|

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

io
n

 c
oe

ff
ic

ie
n

t|
S

1
1
|

R
ef

le
ct

io
n 

co
ef

fi
ci

en
t|

S
1

1
|

R
ef

le
ct

io
n 

co
ef

fi
ci

en
t|

S|
Σ
|2

0.0

Wavelength, mm Wavelength, mm

Wavelength, mm Wavelength, mm

Wavelength, mm Wavelength, mm

πR

R
ad

ia
ti

o
n 

co
ef

fi
ci

en
t

b = 10 mm

b = 7.5 mm

b = 5 mm

2L
e
= 14 mm

/2L
e
= 3πR

2L
e
= 16 mm

/2L
e
= 3πR

2L
e
= 16 mm

/2L
e
= 3πR

2L
e
= 18 mm

/2L
e
= 3πR

2L
e
= 18 mm

/2L
e
= 3πR

b = 10 mm

b = 7.5 mm

b = 5 mm

b = 10 mm

b = 7.5 mm

b = 5 mm

b = 10 mm

b = 7.5 mm

b = 5 mm

b = 10 mm

b = 7.5 mm

b = 5 mm

b = 10 mm

b = 7.5 mm

b = 5 mm

S|
Σ
|2

R
ad

ia
ti

on
 c

oe
ff

ic
ie

n
t

S|
Σ
|2

R
ad

ia
ti

on
 c

oe
ff

ic
ie

n
t

Figure 6. Energy characteristics of the spherical antenna with the
low-profile waveguide {23× b}mm2.

operating wavelength. In the vicinity of spherical antenna resonance
the application of ideal screen approximation has become valid for
kR ≥ 10. This condition imposes much less constraints upon kR
values as compared to that obtained above in the analysis of slot
external admittance. However, far from resonance, the calculation of
wavelength dependences for the energy characteristics of the spherical
antenna cannot be done in the ideal screen approximation even for
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Figure 7. Energy characteristics of the spherical antenna with the
low-profile waveguide {23× b}mm2 for 2Le = a = 23 mm.

sufficiently large diffraction radii, for example kR ≈ 33. Additional
calculations have shown that a satisfactory accuracy for practical
modeling of spherical antennas with slot admittance using the infinite
screen approximation may be achieved for kR ≥ 50. In the frame
of adopted constraints upon slot narrowness all above trends remain
unchanged for other d/2Li if only shortening of slot resonant length is
varied.

We have also calculated energy characteristics for a spherical
antenna design with a low-profile waveguide. Figure 6 shows the
calculated dependences of energy characteristics for a spherical antenna
using a low-profile waveguide with heights b = 5 mm, b = 7.5mm and
b = 10 mm. For these plots the diffraction radius is πR/(2Le) =
3 and other parameters coincide with that in the previous series
of calculations. The plots show that reduction of the rectangular
waveguide height decreases slightly the resonant wavelength of the
spherical antenna, and a slot length correction is required to ensure
maximum radiation. The same wavelength dependences are valid for
different sphere radii. However, all relations, inherent to spherical
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antennas with waveguides of standard cross-section, are applicable to
antennas with low-profile waveguides.

Slot radiators, which have lengths equal or close to a rectangular
waveguide width, i.e., if 2Le ≈ a, are very interesting from the point
of view of antenna manufacturability. The wavelength dependences
of spherical antennas energy characteristics for 2Le = a are shown
in Figure 7. This antenna design is characterized by a fairly narrow
operating band, shifted to the critical frequency of the rectangular
waveguide. The plots show that the wavelength dependences are
similar for all values of sphere radii and waveguide heights. Since
the resonant length of spherical antenna is decreased if kR is increased
and b is accordingly decreased, level of the maximum radiation could
be somewhat increased by shortening of the slot.

4. CONCLUSION

The problem of electromagnetic wave radiation into the space above a
perfectly conducting sphere through a narrow slot, cut in the end-wall
of a semi-infinite rectangular waveguide was solved by the generalized
method of induced MMF. The waveguide section was excited by a
wave of H10 type. The concept of the equivalent slot width de, was
used to eliminate the need for fields to be defined in the internal
slot cavity. The magnetic current in the slot was determined by a
single integral equation, rather than the traditional system of two
equations for both apertures of the slot cavity. This paper presents
a study of mathematical correctness of the approximate solution. The
obvious advantage of the proposed approach is the application of
local coordinate systems for coupling electrodynamic volumes. Thus
the fields in the space outside the spherical scatterer and inside the
waveguide section can be calculated using the appropriate Green’s
functions.

Physical validity of constructed mathematical models for a
spherical antenna has been confirmed by experimental data, obtained
for the prototype model. The influence of the sphere radius on energy
parameters of the slot radiator was studied numerically. It was shown
that by a proper selection of slot length the maximum level of radiation
at any given frequency in the range of single-mode waveguide regime
can be achieved. Naturally, such frequency tuning can be realized for
a spherical antenna of any radius. It was revealed that calculation of
energy characteristics for spherical antennas in the vicinity of resonance
can be done using of the infinite screen approximation which becomes
correct already for kR ≥ 10. However, far from resonance, the
characteristics of spherical antennas can be calculated with sufficient
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accuracy for practical purposes in the approximation of ideal screen
only for kR ≥ 50. A possibility of low-profile waveguide application in
the design of spherical antenna is justified. Results, presented in this
paper, can be directly used in the development and design of slotted
spherical antennas.
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