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Abstract—The launching of high-frequency electromagnetic waves
into fusion plasmas is an effective method for plasma heating and non-
inductive current drive. In addition, the reflection of electromagnetic
waves on the plasma cutoffs is utilized in electron density diagnostic
measurements. The scope of this article is to comment on the standard
approximations made in the simulation of electron-cyclotron wave
propagation and absorption in tokamak plasmas, in connection to
the established modeling tools and the underlying physics, as well
as to illustrate the limits of their validity, especially regarding the
applicability to ITER-related studies and beyond. The identification
of possible gaps in the current state-of-the-art and the implication of
new requirements for theory and modeling are also discussed.

1. INTRODUCTION

In tokamak fusion experiments, high-frequency electromagnetic waves
are used in order to increase the plasma temperature, generate non-
inductive current and conduct electron density measurements [1, 2].
Such waves are generated by high-power, millimeter wave sources,
and their frequency is close to the electron-cyclotron (EC) frequency
or one of its harmonics, so that they are resonantly absorbed by
the plasma electrons [3]. Depending on the angle of propagation at
resonance, the absorbed wave power is divided to the electron motions
perpendicular and parallel to the magnetic field. The former part
results to plasma heating, whereas the latter one excites electron
current in the plasma. Electron-cyclotron current drive (ECCD) is
used for suppressing magnetohydrodynamic (MHD) instabilities like
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neoclassical tearing modes (NTMs) [4], whereas it is also important
for tokamak steady-state operation. Since the cyclotron frequency
is proportional to the magnetic field, which is non-uniform in fusion
devices [5], the resonance condition is realized in a narrow spatial region
and good localization of the energy deposition requires the injection of
the wave power in the form of focused beams.

With respect to the theory and modeling, the problem of electron-
cyclotron heating may be divided into two different parts: The problem
of the wave propagation and absorption (effect of the plasma on the
wave) and the problem of the evolution of the electron distribution
function (wave effect on the plasma) [6]. One usually treats each part
of the problem separately, while a coupling of the two parts constitutes
the core of a self-consistent treatment (see, e.g., [7, 8]). For our interest,
the problem of wave propagation and absorption is straightly connected
to the solution of Maxwell’s equations. In problems involving realistic
wave and plasma geometry, a numerical treatment is unavoidable due
to the complicated form of the associated equations.

When the wavelength is small compared to the medium
inhomogeneity, which is frequently the situation in fusion experiments,
a simplification is achieved by using asymptotic methods [9]. The most
applied of these methods is geometric optics (ray tracing) [10, 11],
where the solution is simplified to canonical equations with the
dispersion function playing the role of the Hamiltonian. Ray tracing
provides a direct physical picture in terms of wave rays, however the
results become questionable in the case of focused beams since typical
wave effects are neglected in this approach. Asymptotic methods
which incorporate wave effects to geometric optics are quasi-optical
beam tracing [12, 13], which includes an intermediate-order term in
the dispersion relation for the description of the beam spanning across
propagation, and paraxial beam tracing [14], which retains the ray
tracing description along the propagation while across it solves for the
beam profile taking into account diffraction.

In cases where the aforementioned short-wavelength limit breaks
down, the treatment of relevant issues should be pursued in the frame
of a full-wave solution. The main reason is that, in terms of modeling,
wave effects are connected to the appearance of additional wave modes,
coming from Maxwell’s equations, due to the rapid spatial change of the
wavenumber. This behavior, along with mode purity and polarization,
cannot be described in terms of conventional geometric optics. A
numerical method potential to provide a full-wave solution is the
Finite-Difference Time-Domain (FDTD) method [15], where Maxwell’s
equations are transformed into a set of finite-difference equations on a
grid such that the Faraday and Ampere laws are always valid. Despite
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the advantages of FDTD, there has been little application in fusion
plasmas up to now due to the high computational demands [16, 17].

Apart from the wave description, the modeling of the plasma
medium introduces further approximations. Most solvers assume
linear cold plasma dispersion for the real part of the wavenumber
(describing the wave propagation) near and far from resonance, and
the imaginary part, which describes cyclotron damping, is computed
from the complex dispersion relation only in the resonance area [6].
Furthermore, the assumption of weak absorption is adopted, where
the imaginary wavenumber is considered an order of magnitude smaller
that the real part [10]. The above are motivated by the fact that, for
parameters relevant to modern devices, the wave intensity is very small
and, apart from the narrow resonance region, the wave-plasma coupling
is very weak. However, the direction of propagation, the localization of
the deposition and the amount of absorbed power can differ a lot from
the ones implied by the linear cold plasma model when the electron
temperature is very high, e.g., relevant to DEMO. In such cases, the
plasma response should include high temperature effects and, in some
cases, also nonlinear wave-particle interaction (as, e.g., in [18]).

Other effects that involve both the wave and plasma ought to
be accounted for, as, e.g., the role of the magnetic field configuration
on ECRH/ECCD through the modification of the plasma response
characteristics. In some cases, it may be important to address
the actual tokamak equilibrium, also in the presence of MHD
instabilities which result to the appearance of magnetic islands. Since
ECRH/ECCD is used for the control/suppression of such phenomena,
it may be also crucial to estimate the effect of the presence of islands
on the power absorption and current drive [19, 20]. A second issue
is related to the description of the transformation of the initially
assumed Gaussian wave beam to a more complicated wave object due
to localization, asymmetry and inhomogeneity in the absorption. For
this issue, it would be advantageous to describe modifications of the
beam profile in terms of the generation of interacting higher-order
Gaussian modes.

There are several codes implementing the methods just described
(indicatively we mention [21–23]), and the results are in partial
agreement with a number of dedicated experiments [2, 24]. In this
paper, we address the validity of the commonly-made simplifications
and analyze the possible alternatives for future reactor modeling.
The most important issues, on which we primarily focus, are: (i)
The reliability of asymptotic methods as the short-wavelength-limit
parameter approaches unity, (ii) the limits of validity of the weakly-
inhomogeneous medium description, (iii) the applicability of the cold
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plasma model for high-temperature reactors, (iv) the consistency of the
constantly-Gaussian beam assumption, and (v) the inaccuracy induced
from the use of approximate equilibria in wave codes.

The structure of the paper is as follows: In Section 2, the
conventional theory of high-frequency wave propagation in plasmas
is summarized, and in Section 3, the limits of validity of methods
emanating from geometric optics are discussed. Then, in Section 4,
the consistency of adopting the cold plasma model in the description
of wave propagation in high-temperature plasmas is analyzed, and in
Section 5, the accuracy of the assumption that a high-frequency beam
remains Gaussian during propagation is studied. In Section 6, the
dependence of the wave propagation on the plasma equilibrium details
is examined, and the last section summarizes the discussion on the
cases where conventional tools fail to provide a reliable solution.

2. THEORY OF PLASMA WAVE PROPAGATION

The basis for any treatment on electromagnetic wave propagation in
magnetized plasmas relies on Maxwell’s equations or the vector wave
equation (a separate one for each field), which provide a more direct
description of the propagation [3, 6]. In their general form, these read

∇2Ē − 1
c2

∂2Ē

∂t2
=
∇ρ

ε0
+ µ0

∂j̄

∂t

∇2B̄ − 1
c2

∂2B̄

∂t2
= µ0∇× j̄

(1)

where Ē(r̄, t), B̄(r̄, t) are respectively the electric and magnetic field,
and ρ(r̄, t), j̄(r̄, t) are the volume densities of the charge and current
sources in the plasma, whereas ε0, µ0 and c are the electric permittivity,
magnetic permeability and speed of light in vacuum.

The presence of ρ, j̄ in (1) raises the need for a model of the
plasma response. In general, since the plasma is actually a collection
of charges and currents in vacuum, the description of the source terms
is according to microscopic plasma dynamics:

ρ(r̄, t) = lim
∆V→0

1
∆V

∑

j

qj(r̄j , t)δ(r̄ − r̄j)

j̄(r̄, t) = lim
∆V→0

1
∆V

∑

j

qj(r̄j , t)v̄j(t)δ(r̄ − r̄j)
(2)

with r̄j , v̄j the position and velocity of the electric charge qj and ∆V a
small volume around r̄. The general case is that the solution depends
nonlinearly on the source terms. The special case ρ = j̄ = 0 yields
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propagation in vacuum, where the wave transmits on a straight line
path with a planar phase front and the fields are transverse to the
direction of propagation and harmonic in time and space

Ē(r̄, t) = Ā exp
[
i
(
k̄ · r̄ − ωt

)]
(3)

In (3), Ā is the wave amplitude and ϕ = k̄ · r̄ − ωt the phase.
Another notable case for applications is the weak-field limit, where
the plasma dynamics linearly depends on the electric field. In this
case, the source terms are given by ρ = ∇(ε̃ · Ē) and j̄ = σ̃ · Ē, where
ε̃(r̄, k̄) = ε̃(r̄, k̄) + iω−1σ̃(r̄, k̄) is the effective complex dielectric tensor
describing the plasma medium permittivity and conductivity.

The complexity in tokamak geometry makes a full-wave solution
hard to obtain. For the typical parameters met in the experiment,
a simplified treatment can be followed in terms of frequency-
domain asymptotic methods for constant-frequency wave in linear and
stationary plasma. This theory is based on the fact that if the plasma
parameters that affect propagation (density, temperature and magnetic
field) vary much slower in space than the wave phase, the plane-wave
ansatz can be generalized to provide an approximate local solution of
the wave equation. This is quantified by the condition κ = λ−1L À 1,
where L = min(〈|∇ξ|/ξ〉−1) (ξ = n, T, B) is the smallest inverse mean
plasma gradient and λ the wavelength. In this framework, the wave
equation for the electric field reduces to the Helmholtz equation [3, 10]

∇×∇× Ē − ω2

c2
ε̃ · Ē = 0 (4)

and the expression for the spatial part of Ē stems from the one in (3),
with a generalized phase ϕ(r̄, t) = κs(r̄)− ωt based on k̄ = κ∇s

Ē(r̄) = Ā(r̄) exp[iκs(r̄)] (5)

The gain from applying asymptotic methods is the reduction of
the wave equation to a more tractable set of canonical equations. This
is formulated with the expansion of the electric field amplitude in an
asymptotic series over the parameter κ, followed by the insertion of the
series in (4), the classification of the terms of different order in separate
equations and the solution of these equations [9]. The weak spatial
variation imposes the additional rule that the effect of absorption on
the dispersion is of lower order, reflected in ε̃ = ε̃H +iκ−1ε̃A, where ε̃H ,
ε̃A are the Hermitian and anti-Hermitian part of ε̃. Depending on the
specific ansatzes for the eikonal s and the amplitude series, there are
three different asymptotic methods applied to fusion problems: Ray
tracing, emanating from geometric optics, quasi-optical ray tracing
and paraxial beam tracing, products of the complex eikonal theory.
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The pioneer asymptotic method is geometric optics, or ray
tracing [9–11]. Within this technique, the propagation is described
by the trajectories of one or more non-interacting wave rays which
are continuously refracted by a weakly-inhomogeneous medium, in
the same way as the trajectory of a particle is deflected by a scalar
potential. The electric field ansatz is a generalization of the standard
plane wave, and for each ray one can determine the backbone of the
wave field by calculating the variation of the phase and the amplitude
along its path. The relevant equations are obtained as described above,
by exploiting the asymptotic series expansion of the amplitude

Ā =
∑

j

κ−jĀj (6)

inserting (5), (6) in (4) and separating terms of different order in κ.
The zero-order equation yields the dispersion relation

[
c2

ω2

(−k2Ī + k̄ ? k̄
)

+ ε̃H

]
· Ā0 ≡ Λ̃ · Ā0 = 0 (7)

The solvability condition det(Λ̃) ≡ H(r̄, k̄) = 0 is a Hamilton-Jacobi
equation with respect to s over a parameter τ along the ray. This
results to Hamiltonian equations which trace the evolution of the ray
trajectory and the local value of the wavenumber in the plasma

dr̄

dτ
=

∂H

∂k̄
dk̄

dτ
= −∂H

∂r̄

(8)

The first-order equation gives the amplitude evolution along the ray

d|Ā0|2
dτ

= − (∇ · v̄g + 2αL) |Ā0|2 (9)

where v̄g = ∂H/∂k̄ is the group velocity, αL = ē∗ · ε̃A · ē the absorption
coefficient and ē the polarization vector (Ā0 = A0ē). (9) implies
that the wave energy propagates in the direction of the group velocity
and that the absorption is proportional to the projection of the anti-
Hermitian part of the dielectric tensor onto the polarization vector.

The ray tracing approach provides a valuable tool to solve the
wave equation for high-frequency electromagnetic waves. However,
there is an important limitation that crucial wave phenomena, like
interference and diffraction, are not included in the description. Within
the formulation of geometric optics, any interaction between the rays is
considered to be weaker than dispersion and appears only in the higher-
order equations, which are difficult to treat. In cases where such effects
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cannot be neglected, the application of ray tracing brings up physical
inconsistencies near foci or caustics. This has led to the development
of more advanced asymptotic methods that refine geometric optics,
taking into account wave effects, in order to deal with the beam width
variation due to the diffractive broadening of the beam cross-section.

Quasi-optical ray tracing, based on the complex eikonal theory, is
historically the first method to handle the aforementioned issue [12, 13].
The innovation with respect to standard geometric optics is in the
replacement of s with a more general, complex eikonal function ψ =
s + iφ, where the imaginary wavevector is perpendicular to the group
velocity. The ansatz of (5) then becomes

Ē(r̄) = Ā(r̄) exp[−κφ(r̄)] exp[iκs(r̄)] (10)

where the first exponential describes the distribution of the electric
field on the plane transverse to the propagation. In this context, an
intermediate length scale between λ and L comes into play, the beam
width W . Due to the Fresnel condition W 2 ≥ λL [12], the imaginary
wavenumber scales as W−1 and is of order κ−1/2 with respect to the
real part. Following the standard geometric optics formalism but using
the field ansatz in (10), the solutions for the ray trajectories turn out
complex-valued because the Hamiltonian is itself complex. This may
be overcome via a Taylor expansion of the complex dispersion function
according to the inequality =(k̄) ¿ <(k̄).

The emergent Hamiltonian consists only of real-valued terms, the
zero-order one of geometric optics and one of intermediate-order that
describes wave effects (the imaginary term =(k̄) · v̄g equals to zero)

H(k̄) = H
[<(k̄)

]− 1
2

∑

α,β

=(kα)=(kβ)
∂2H

[<(k̄)
]

∂<(kα)∂<(kβ)
(11)

where the Greek-letter summation indices refer to the Cartesian
coordinate system. Using this Hamiltonian it is straight forward to
obtain the quasi-optical ray equations [13], one for the ray position
and two for the real and imaginary part of the wavenumber. These
update the previously derived description of the propagation including
additional ray bending with respect to the one calculated from ray
tracing, in terms of the effect of neighboring rays which is modeled
by the terms of half-order. In this framework, wave diffraction is
interpreted as the effect of an energy flux transverse to the geometric-
optics rays, driven by the interactions between the rays.

The last approach to mention is paraxial beam tracing [14], where
the electric field ansatz is the same as in (10), however the amplitude
series is different: The whole amplitude term is first expanded into
Gaussian-Hermite modes, with result Ā exp(−κφ) =

∑
mn Ǣmn, each
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one of which is then asymptotically expanded with the inclusion of
additional terms of intermediate order:

Ǣmn=ΦmnĀ0−iκ−1/2
∑

j

∂Φmn

∂ξj
Āj

1−κ−1


1

2

∑

j,l

∂2Φmn

∂ξj∂ξl
Ājl

2 −iΦmnĀ3


(12)

A dimensionless coordinate system (τ, ξ1, ξ2) is associated with the
beam (see Fig. 1), where ξ1, ξ2 are local coordinates on the plane where
the beam profile spans. The curve ξ1 = ξ2 = 0 is a geometric-optics
ray that describes the beam axis, whereas the functions Φmn(ξ1, ξ2) =
Hm(ξ1)Hn(ξ2) exp[−(ξ2

1 + ξ2
2)/2] describe the beam profile.

The determination of the wave-front and the beam cross-section
requires the calculation of the complex eikonal ψ. Since narrow beams
are used, the electric field is negligent at distances from the beam axis
larger than 3W . This allows to simplify by a Taylor expansion in space
around the axial ray. Since =(k̄) · v̄g = 0, the expansion is written as

ψ = ψ(r̄0) +
1
2

∂2ψ

∂rα∂rβ
(rα − r0α)(rβ − r0β) (13)

The coefficients ψαβ = ∂2ψ/∂rα∂rβ are determined by an ordinary
differential equation emerging from the terms of order κ−1/2 [14]

dψαβ

dτ
=− ∂2H

∂rα∂rβ
−

∑
γ

(
∂2H

∂rβ∂kγ
ψαγ− ∂2H

∂rα∂kγ
ψβγ

)
−

∑

γ,δ

∂2H

∂kγ∂kδ
ψαγψβδ (14)

(a) (b)

Figure 1. Illustration of the local wave ray and beam representation.
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The real part of ψαβ is related to the wave-front curvature by sαβ ∝
R−1

c and the imaginary part scales with the beam width as φαβ ∝ W−2.
In a proper coordinate system where s, φ become diagonal, their
nontrivial elements provide these beam parameters in the directions
transverse to propagation. The amplitude transport is again given
by (9), however absorption is calculated on the central ray but refers
to the whole beam. For this reason, the amplitude solution is build up
from Ā0 excluding the Gouy shift with respect to the beam axis [25]

Θmn=
∫ τ

0
dτ

∑

α,β

∂2H

∂kα∂kβ

[(
m+

1
2

)
∂ξ1

∂rα

∂ξ1

∂rβ
+

(
n+

1
2

)
∂ξ2

∂rα

∂ξ2

∂rβ

]
(15)

Given a model for the plasma, the medium response can be
determined and the propagation problem is in principle then solved. In
the linear regime, where the response is suitably expressed in terms of a
generalized dielectric medium, it is feasible to connect the permittivity
and conductivity tensors to the plasma dynamics by a term-to-term
comparison of the coefficients of Ē in the relation j̄ = σ̃ · Ē, after
j̄ has been calculated from the linearization of the plasma model. A
complete model for the plasma should trace the charged particles under
the effect of all electromagnetic fields, which is practically impossible.
The most realistic from the simplified models is kinetic theory, based
on Vlasov’s equation for the particle distribution function f(r̄, p̄, t) [26]

∂f

∂t
+ v̄ · ∂f

∂r̄
+ q

(
Ē + v̄ × B̄

) · ∂f

∂p̄
= 0 (16)

Solutions relevant to dynamic equilibrium do not depend on time
(∂f/∂t = 0) and, for homogeneous equilibria, also on space (∇f = 0).

In the frame described above, different assumptions may yield
a different implementation of the dielectric tensor. It is beyond the
scope of this article to go into the details of the calculations, here
only the main steps are sketched: (a) Linearize Vlasov’s equation
assuming homogeneous static equilibrium plus a small-amplitude
perturbation, (b) solve for the distribution function by integrating
along the unperturbed orbits in velocity space, (c) calculate the current
density as the first-order moment of the distribution. The result is:

ε̃

ε0
= Ĩ +

ω2
p

ω

∞∑

l=−∞

∫ d3p 1
γp

df0

dp

ω−k||v||− lωc
γ




l2

b2
J2

l p2
⊥ i l

bJlJ
′
lp

2
⊥

l
bJ

2
l p||p⊥

−i l
bJlJ

′
lp

2
⊥ (J ′l )

2p2
⊥ −iJlJ

′
lp||p⊥

l
bJ

2
l p||p⊥ iJlJ

′
lp||p⊥ J2

l p2
||




(17)
In the above, ω2

p = ε0ne/me is the plasma frequency, f0 the equilibrium
distribution function, Jl(b) the Bessel function of order l and argument
b = k⊥p⊥(meωc)−1, and ωc = qeB0/me the cyclotron frequency.
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In order to derive an exact expression for the kinetic (hot)
plasma dielectric tensor, one has to insert Maxwell’s distribution as f0

in (17) and perform the integrations. In the fully-relativistic case, the
evaluation requires numerical effort from a point on, so for achieving
analytic expressions one should resort to approximations. For plasma
temperatures within the weakly-relativistic limit, a Taylor expansion
employed in the Lorentz factor makes feasible the analytic evaluation
of the velocity-space integrals. The non-relativistic approximation
amounts to setting γ = 1 and using the classical version of Maxwell’s
distribution, which allows for the integration over p|| to be carried out
analytically. The validity of this approach requires that the resonant
electrons remain sub-relativistic. Far from resonances and cutoffs, one
may adopt the fluid (cold) plasma description by setting p̄ = 0 in (17).

For determining the frequency spectrum of allowed propagation,
it is sufficient to analyze the dispersion relation rather than fully solve
the wave equation. The linear modes of interest for fusion are the
linearly-polarized O-mode and the elliptically-polarized X-mode [3, 5].
Cold-plasma dispersion suggests that the O-mode does not depend on
the magnetic field, thus the wave appears only the cutoff at the plasma
frequency. In tokamaks, the density and temperature increase from the
edge to the center and the magnetic field rises along the propagation.
This places the cutoffs for the O-mode close to the plasma center [2].
Moreover, within the kinetic model, the hot-plasma dispersion relation
describes damping consistently through the imaginary part of the
wavenumber, which is equal to the absorption coefficient.

3. LIMIT OF VALIDITY OF ASYMPTOTIC METHODS

The state-of-the-art in the theoretical tools for the simulation of EC
wave propagation in fusion devices, which is based on asymptotic
methods in a large degree, is sophisticated and generally considered
reliable for ITER modeling as well as for preliminary DEMO studies.
The established ray/beam tracing codes have been benchmarked
successfully in ensuring the validity of the physics models and their
implementation in the numerical codes, as well as in providing a deeper
understanding in cases where disagreement was found [2].

In standard geometric optics, only the two lowest-order equations
from the whole hierarchy are retained: Zero-order describes the
wave dispersion, which is independent of the amplitude, whereas
first-order provides the amplitude evolution involving only the zero-
order term, assuming κ−jĀj ¿ Ā0 in (6). However, investigating
the higher-order terms is important since diffraction appears only in
higher-order. Moreover, solutions based on geometric optics become
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questionable beyond the limit κ ≈ 1, where the asymptotic series fails
to converge because all higher-order terms become sizeable for the
amplitude calculation. The importance of the higher-order terms in
the asymptotic expansion has been studied in the past from the scope
of the robustness of the zero-order description in geometric optics [9].

The analysis of the contribution of the higher-order terms starts
with the derivation of the whole hierarchy of equations described above.
With reference to [10], our purpose requires that we include also the
second-order terms in the expression of the current density. This reads

j̄ = iω
[
−

(
ε̃H − ε0Ĩ

)
· Ā + κ−1K̃1(Ā) + κ−2K̃2(Ā)

]
(18)

where the terms K̃1(Ā), K̃2(Ā) are given by

K̃1(Ā) = iε̃A · Ā− 1
2

[
∂

∂r̄

(
∂ε̃H

∂k̄

)]
· Ā +

∂ε̃H

∂k̄
· ∂Ā

∂r̄

K̃2(Ā) =
1
2

[
∂

∂r̄

(
∂ε̃A

∂k̄

)]
· Ā− ∂ε̃A

∂k̄
· ∂Ā

∂r̄

(19)

The sequence of actions for obtaining the intermediate equations of
geometric optics yields the following relation in order n:

iΛ̃ · Ān=−∆0
n

[
∇· (k̄×Ān−1

)
+ k̄×(∇×Ān−1

)− K̃1

(
Ān−1

)−∆1
nK̃2

(
Ān−1

)]

(20)
In the above, ∆m

l = 1− δm
l is the complement of the Kronecker delta.

Clearly for n = 0 and 1 one obtains the intermediate equations in zero
and first order, from which (7) and (9) are derived (for more details see,
e.g., [10, 11]). The amplitude terms of higher-order may be calculated
iteratively using (20), as it is already in the form Λ̃ · Ān = Ω̃(Ān−1),
or by derivation and solution of a separate transport equation for each
Ān, in analogy to (9). This exact computation is beyond the scope of
this article and will be treated in a future work.

Since the zero-order result does not depend on the amplitude, as κ
approaches 1 its validity is not affected by any higher-order corrections
but only from the gradual inability to distinguish consistently between
the different orders, which however occurs for values of κ closer to 1.
This is referred to as the “zero-order accuracy” of geometric optics and
allows the methods to be robust in computing the propagation path
in cases where κ takes values not much higher than 1. This property
has been first pointed out in [9], and its validity has been illustrated
in fusion applications involving such “grey-area” parameters [27, 28].
In these cases, the accuracy of the amplitude calculation may be also
redeemed if a number of higher-order terms are included in the result.
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A quantification of the limits where asymptotic methods are valid
is established according to the tolerance for the series accuracy and
its comparison to the exact value of κ, which is determined by the
wave frequency and the spatial profiles of the plasma parameters.
Reminding that κ−1 is the ratio between two amplitude terms of
adjacent order, by keeping nr terms the achieved accuracy with respect
to zero-order is κ−nr . If the minimum for the order of accuracy is n1

and the maximum is n2, the condition for quasivalidity is respectively
10−n2≤κ−nqv≤10−n1 , or solved after the required number of terms

int
(

n1

log κ

)
≤ nqv ≤ int

(
n2

log κ

)
(21)

Evidently, (21) provides the minimum number of terms to be kept for
geometric optics to be valid without controversy, as well as the region
of parameters where the results should be examined more thoroughly.

For all cases where κ > 10n2 the validity of asymptotic tools is
preserved within zero-order, since min(nqv) = 0, with accuracy of
order n2. On the contrary, κ'1 leads to breakdown because a very
large number of terms is required to achieve any order of accuracy.
There can be different choices for a consistent definition of the accuracy
limits. Indicatively, one may define n1, n2 in terms of the degree of
convergence of the amplitude series, or on the basis of the error with
respect to a full-wave solution. More specialized definitions may be
based on the requirements of the specific experiment to be simulated.
For example, in problems where accurate power deposition is required,
a minimum error in the distance from the target and a good estimation
of the absorbed power need to be achieved, which translate (through
dimensional analysis) in allowed errors for the electric amplitude.

We analyze characteristic cases of interest for ITER ECRH.
Regarding the parameters involved, ω/2π = 170GHz (relevant to the
fundamental-harmonic O-mode), and the plasma profiles:

B0(r) = B0(0)
rmaj

rmaj + r

ne(r) = ne(0)− [ne(0)− ne(rmin)]
(

r

rmin

)2 (22)

with rmaj = 6.2m, rmin = 1.9 m the major and minor plasma
radius, B0(0) = 5.3T the magnetic field at the plasma centre and
ne(0) = 1014 cm−3, ne(rmin) = 1013 cm−3 the density at the plasma
centre and edge. The temperature has a profile similar to the one
of the density with Te(0) = 10 keV, Te(rmin) = 1 keV. For this set
of parameters, the smallest of the inverse mean plasma gradients is
L = 〈|∇ne/ne|〉−1 = 0.35 m, which results to a value κ = 181.4.
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The first case amounts to NTM control in ITER, where a driven
current deposition not further than 1 cm from the centre of the
magnetic island is desirable [4]. Since the spatial gradients introduced
by the island topology are of the same order as the ones of the standard
ITER equilibrium [26], one can adopt the value of κ previously
calculated. This yields κ−1 = 0.005, which is sufficient as a convergence
rate and smaller that the minimum allowed error, and therefore
asymptotic methods are applicable here with no problem. The second
case concerns the effect of density fluctuations of different orders of
magnitude encountered along propagation. In ITER, the spatial range
of such fluctuations is expected to vary within [1, 20] cm [28]. With a
calculation like above, one finds the range of values of κ in the vicinity
of the fluctuation to be [5.6, 99.2]. It is clear that, in this problem,
asymptotic methods are quasivalid in the sense described above.

In connection to what has been presented so far, a discussion
should be made on the weakly-inhomogeneous plasma description
adopted by asymptotic methods. In applications, the response to
EC waves is described within the infinite and homogeneous plasma
theory [3, 6]. The weak variation for high-frequency waves allows to
use that formula for the linear plasma tensor as a function of the spatial
profiles, i.e., a transition from ε̃(r̄, B0, ne, Te) to ε̃[B0(r̄), ne(r̄), Te(r̄)].
This description remains valid as long as 〈f−1

0 |∇f0|〉 ¿ 1, which
allows for the spatial derivatives of f in (16) to be ignored. If one
puts Maxwell’s distribution as f0, the result 〈f−1

0 |∇f0|〉 = 〈n−1
e |∇ne|〉

appears. Hence, the criterion for f0 is similar to the short-wavelength
limit, and so it could break down in the presence of steep plasma
gradients or intrinsic flux surface geometry. In such problems,
there may be further effects due to the plasma inhomogeneity and
boundedness, the neglect of which may not be possible to justify. In
order to remain within the plasma medium description, a novel theory
for the dielectric tensor is then required which will include the terms
involving ∇f in (16) (an implementation in this direction has been
presented in [29]).

4. APPLICABILITY OF THE COLD PLASMA
DESCRIPTION AT HIGH TEMPERATURES

Advanced asymptotic codes describe the propagation of high-frequency
waves in the tokamak under different approximations for the plasma
dielectric response [21–23]. Even though the plasma description plays
a major role in the treatment, frequently it is very simplified. The
primary simplification is the adoption of a linear plasma response. In
general, this is a reasonable approximation since the waves used in
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fusion applications have amplitudes much smaller than the limit for
the appearance of nonlinear effects [1, 2]. However, this could break
down in some cases of high-power ECRH (e.g., 20 MW in ITER) or in
diagnostics utilizing narrow focused beams, due to the fact that the
beam energy density may become very high [18]. There, the plasma
response may be computed with models based on nonlinear kinetics,
like particle tracing [8] or distribution function mapping [18, 30]. In
this paper, we focus on the limitations of the models within the linear
tensor description and do not refer to those cases extensively.

In almost all the asymptotic codes available for EC waves, the cold
plasma dispersion function is utilized as the Hamiltonian for computing
the propagation, and the cyclotron damping is calculated from the
imaginary solution of the hot plasma dispersion relation, which defines
the wave absorption coefficient. Hot plasma effects on the propagation
due to the thermal particle motions, in most cases, are not considered.
This is the essence of the weak absorption limit mentioned above, below
which the imaginary wavenumber is much smaller than the refraction
index, even within the resonance region, an ordering that allows the
decoupling of the dispersion and absorption processes. Furthermore,
the plasma is much often considered weakly-relativistic (e.g., in ITER
the average temperature will be around 10 keV, equivalent to γ=1.01
or 〈v〉=0.1c), and the absorption coefficient is calculated much easier
from the weakly-relativistic version of (17).

However, in many circumstances it is possible that the computed
ray/beam propagation differs significantly if hot plasma effects are
taken into account in the dispersion over all the plasma region. These
cases are beyond the weak absorption limit, in the sense that the
real and imaginary part of the wavenumber become comparable. We
should note here that this does not occur due to any breakdown of
the weak-inhomogeneity limit, but because the values of the plasma
temperature yield a much larger anti-Hermitian part of the dielectric
tensor. There are relevant results in the literature [31], and the
importance of such effects in modern reactors like ITER and DEMO
still has to be determined. For this task, an asymptotic code should be
developed/upgraded following the path set by [10] for the derivation
of the hot-plasma Hamiltonian (this is under current development).

Apart from the aforementioned, there may be further effects due to
the underestimation of the importance of the relativistic factor. The
source for such discrepancy is that the classical model for cyclotron
damping, or its weakly-relativistic extension, differ significantly from
the relativistic one: In the nonrelativistic model, resonance occurs
when one electric field component co-rotates with electrons, whereas
relativistic absorption is due to the Lorentz force by the transverse
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component of the wave magnetic field. In this sense, the absorption of
the O-mode is a purely relativistic effect, something very important for
the assessment of ITER/DEMO ECRH efficiency because the current
technological limits in wave sources force the use of the mode O1. In
ITER, under 10 keV core temperature, the plasma could be marginally
considered as weakly-relativistic, but in DEMO studies the expected
core temperature of 50–60 keV makes the relativistic absorption process
a crucial issue for the accuracy of ECCD computation. This is mainly
the reason why the adoption of the fully-relativistic plasma description
is continuously gaining ground in wave codes [32, 33].

A last issue to mention is connected to the actual implementation
of the dielectric tensor in computational practice. In (17) an infinite
sum of terms, relevant to the cyclotron harmonics of all orders, is
to be evaluated. The general trend when computing the response to
frequencies close to the n-th harmonic is to keep only terms up to that
order and ignore terms of higher order as much smaller. With respect
to the plasma parameters involved, this approximation is expected to
hold in smaller devices, but problems may arise in ITER and beyond.
The effect of parasitic absorption from higher harmonics has been
identified as a cause of reduction of the ECCD efficiency in DEMO [34].
A deeper research requires the determination of the resonance region
for different harmonics using the EC resonance condition

ω − k||v|| −
nωc

γ
≈ 0 (23)

or the calculation of the absorption coefficient as a function of the
harmonics. In the first manner, the radial position of the resonance
and the width of the resonance region is approximated from (23)
under different assumptions for k||, v|| and γ, and the possibility of
overlapping of regions relevant to adjacent harmonics is checked for.

In this paper, the second method is followed: The radial profile of
the absorption coefficient is compared for the modes O1 and O2, and
the numerical results that illustrate the effect of parasitic absorption
are plotted. An indicative case of perpendicular propagation is studied,
where the plasma parameters are related to the current DEMO design:
rmaj = 9.6m, rmin = 2.4m, B0(0) = 7.45 T, ne(0) = 1.6 · 1014 cm−3,
ne(rmin) = 4 · 1013 cm−3, Te(0) = 52 keV, Te(rmin) = 5 keV, and the
profiles of B0, ne and Te are again given by (22). In Fig. 2, we present
the radial profile (a) of the absorption coefficient and (b) of the electric
field amplitude, as computed from (17) and (9) respectively, for the two
lowest O-mode harmonics. Evidently, the absorption coefficient for O2
attains larger values from the one for O1 all the way from the launching
point to the plasma centre, which implies that the undesired damping
of O2 initiates well before the prescheduled one of O1, deteriorating
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Figure 2. Visualization of the effect of parasitic absorption by higher
harmonics in DEMO in terms of the radial profiles of the linear
absorption coefficient and the electric field amplitude.

the goal of targeted deposition.

5. CONSISTENCY OF THE GAUSSIAN BEAM MODEL

In ECRH experiments, beams with Gaussian electric field profile are
preferred because of the low Ohmic losses in the transmission line, the
ease in the coupling to waveguide modes and the simplicity of modeling
in theoretical studies [2]. However, beams with a non-Gaussian profile
can be generated by the launching system, an undesired effect owed
to a misalignment/deformation of the steering mirror due to extreme
power load. Also, inside the plasma, a modification of the initial
Gaussian beam shape might occur due to inhomogeneous/asymmetric
absorption, caused by non-local redistribution of the wave energy by
resonant particles along the magnetic field line, or to strong wave
interference. In such cases, the assumption that the beam is and/or
remains Gaussian may introduce an error in the description, and the
modeling of the arbitrarity of the beam shape may be impositioned.

The propagation and absorption of non-Gaussian beams has
been formulated in terms of the paraxial beam tracing asymptotic
technique [25], as an extension to the original formulation presented
in [14] for arbitrary beams that are not astigmatic. Within paraxial
beam tracing, the non-Gaussian wave beam is suitably expressed as
a superposition of Gaussian-Hermite modes, as given in (12). The
specific sequence for the analysis is as follows: First, one assigns proper
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initial conditions to all the beam-tracing variables, then solves for the
reference ray, the wave-front curvature and the beam width, and finally
treats the amplitude transport equation for each one of the modes. The
assignment of initial conditions for the variables involved in the beam
tracing equations is by no means difficult, since all these variables are
calculated on the reference ray and thus are common for all the non-
Gaussian modes. For the same reason, the beam tracing equations are
the same for all modes. On the other hand, the amplitude transport is
in general not the same for all modes, because the absorption coefficient
depends on the wave-vector which is different for each mode.

The plasma volume where the power absorption takes place is
partially determined by the transversal extent of the Gaussian beam.
This quantity is measured by the beam width parameter, which is
defined as the distance from the field maximum where a decrease of a
factor of 1/e occurs. In the case of non-Gaussian beams, this definition
may estimate wrongly the beam spot size since the field could fall below
the 1/e limit at more than one locations along its profile. In such cases,
it is necessary to generalize the width parameter already defined for the
Gaussian beam, based on the moments of the amplitude distribution
|Ā0|2(ξ1, ξ2) of the electric field in the transverse plane (ξ1, ξ2), defined
as 〈ξm

1 ξn
2 〉 =

∫∞
−∞ dξ1dξ2ξ

m
1 ξn

2 |Ā0|2/
∫∞
−∞ dξ1dξ2|Ā0|2. In this frame, the

generalized width is a 2-D symmetric matrix [25]

W̃ 2 = 2
[ 〈ξ2

1〉 − 〈ξ1〉2 〈ξ1ξ2〉 − 〈ξ1〉〈ξ2〉
〈ξ1ξ2〉 − 〈ξ1〉〈ξ2〉 〈ξ2

2〉 − 〈ξ2〉2
]

(24)

where the subtracted terms describe any de-centering of the beam and
the non-diagonal terms any coupling of the transverse directions. A
special coordinate system can be found where W̃ becomes diagonal and
its elements provide the generalized width per transverse direction.

We compute the generalized width, in comparison to the simplified
1/e definition, for the case of perpendicular cold-plasma propagation of
a non-Gaussian EC beam in simplified ITER plasma geometry, where
an analytic solution of the beam tracing equation is possible [14]. A
few details on the computation are given (for a complete presentation
see [25]): The plasma is confined within the region [−rmin, rmin] along
r and extends infinitely in the other two cylindrical directions z, φ, the
magnetic field is along the z-axis and all plasma variables are functions
only of r. The beam is launched from the low-field side at r0 = rmin in
the negative radial direction (kr0 < 0, kz0 = kφ0 = 0), and its electric
field is the superposition of 6 Gaussian-Hermite modes, (m,n) = (0, 0),
(1, 0), (0, 1), (1, 1), (2, 0), (0, 2), that have the same initial polarization.
The mode (0, 0), which describes the Gaussian part of the beam, has
a circular initial profile with 1/e-width WG0 = 5 cm and symmetric
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initial focusing with curvature radius RcG0 = −1.93m. The part of the
wave power distributed over the non-Gaussian modes takes the values
enG = 0.05 and 0.2, which correspond to a non-Gaussian content of
5% and 20% in the beam (as observed in the experiment).

In Fig. 3, the numerical results from the computation described
above are visualized. In the subfigure on the left, the evolution of
the 1/e-width along propagation is plotted. The case under study
corresponds to a beam injection with proper focusing such that it
reaches a minimum width at a specific target point (e.g., magnetic
island centre). Here the minimum width occurs near the plasma centre,
which was expected according to the initial value of RcG. In the
subfigure on the right, the ratio of the generalized estimation for the
non-Gaussian beam spot size WNG over the 1/e-width WG is shown
for the two values of enG. The difference between the two estimates
appears smaller around the beam waist, probably due to the overall
shrinking of the beam. A thorough scan within results from realistic
cases (enG = 0.02−0.25) indicates that the ratio of the estimates varies
within [0.9, 1.6] overall and within [0.9, 1.1] in the waist region.

The effect of the broadening of non-Gaussian beams with respect
to their Gaussian approximates may play a role in the accuracy of the
estimation of power damping. The power density dP/dV is inverse-
proportional to the plasma volume ∆Vabs where the deposition occurs,
which is defined as the intersection of the beam spot with the resonance
region and may be approximated as a cylinder of base radius WNG

(see Fig. 1). Therefore, ∆Vabs ∝ W 2
NG and the ratio of the different

r/r min

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

-1 -0.5  0  0.5  1

W
G

/W
G

0

r/r min

 0.85

 0.9

 0.95

1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

-1 -0.5  0  0.5  1

W
n

G
/W

G

enG=0.2

(a) (b)

enG=0.05

Figure 3. Non-Gaussian propagation in ITER-like geometry: Radial
profile of the 1/e-width and comparison with its generalized definition.



Progress In Electromagnetics Research B, Vol. 47, 2013 55

estimations for ∆Vabs is proportional to the square of WNG/WG.
According to the above results, WNG/WG may vary in [0.8, 1.2] at the
waist region, so an estimation of ∆Vabs based on accepting an arbitrary
beam as Gaussian may be inapproximate up to 20%, which makes
possible an error in the power absorption and current drive calculation
as well as to all connected estimations (e.g., NTM stabilization rate).

6. THE PROBLEM OF INACCURACY INTRODUCED
BY NON-REALISTIC EQUILIBRIUM MODELS

The influence of the proper modeling of the plasma equilibrium
configuration on the accuracy of ECRH/ECCD simulations should not
be underestimated, since in some cases the effect of the quantities
involved may be sizeable. The plasma parameters that play a role in
EC wave propagation are the magnetic field (through the cyclotron
frequency), the density (through the plasma frequency) and the
temperature (through the thermal velocity). The reference values for
these variables are normally achieved in the experiment and not subject
to important changes, at least in the time-scale relevant to propagation.
The stationarity of the plasma, as far as EC waves are concerned, is
well-posed since the collisional and MHD phenomena evolve in a much
slower time scale [5]. What is amenable to interact with the plasma
dynamics, and therefore mostly approximate in wave modelling, is the
radial profile and the geometry characteristics of these parameters.

The magnetic field determines the radial position of the EC
resonance, and therefore geometric aspects like the Shafranov shift,
elongation and triangularity should be considered when accurate
prediction of the resonance zone is required. The electron density sets
the wave cutoffs and causes the bending of the wave rays, whereas
the temperature (together with the propagation angle) determines
the width of the resonance region, so aspects like peaking or local
fluctuations should be again taken into account consistently [28]. In
addition, we should mention that all these parameters are present in
the determination of the value of the cyclotron absorption coefficient,
which is a crucial factor for the wave-plasma energy exchange. All these
suggest that the capability of taking into account the actual tokamak
equilibrium, in terms of a suitable method of coupling wave codes to
equilibrium calculation routines, would be advantageous.

As an example, we briefly refer to the case of EC propagation in
the presence of magnetic islands (one may find extensive studies on this
topic in [19, 20]). The issue of relevance here is that, in most studies of
ECCD-based NTM stabilization, the analysis of the propagation and
deposition has been performed in terms of the unperturbed magnetic
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topology, taking into account only the flux surface of interest while
ignoring any effects from the islands. The basis for this assumption
is that the amplitude of the magnetic perturbation is 3 orders smaller
than the background field. However, the island geometry introduces
differences in the plasma profiles compared to the axisymmetric case,
namely a flattening of the pressure profile and a different structure of
the flux surfaces, which may play a role in the wave deposition.

The EC propagation and absorption in a plasma configuration
that includes magnetic islands has been computed using a ray
tracing code, developed on the guidelines presented in 2, and
compared to the same computation in the axisymmetric equilibrium.
The non-axisymmetric magnetic configuration has been formulated
by introducing a pendulum-like perturbation in the axisymmetric
magnetic field, relevant to a tearing mode of order (m,n):

B = B0

[
1 +

m

n

w2

r2
s

sin (mθ − nφ)
]

(25)

In the above, w is the island width, rs the radial position of the island
centre and θ, φ the poloidal and toroidal angle coordinates. After
ray tracing, for the computation of the wave power absorption in the
presence of the island, the calculation of the plasma volume between
two adjacent flux surfaces is required. Following [19], the total volume
Vs contained inside one flux surface is given by:

Vs = − 1
n

∫ 2π

0

∫ ξ2

ξ1

∫ r2

r1

(rmaj + r cos θ) drdξdθ (26)

where ξ = mθ−nφ is the angle coordinate perpendicular to the helical
line through the O-point, and r1, r2, ξ1, ξ2 are the integration limits.
Based on (26) and the ray-tracing data, the absorbed power per unit
volume can be evaluated as dP/dVs = (dP/dτ)/(dVs/dτ).

In Fig. 4, we present results for the case of the mode (2, 1) in
ITER. The wave power (P0 = 10 MW) is injected from the outermost
flux surface with initial wavenumber calculated from the cold-plasma
dispersion relation and poloidal angle such that the ray targets the
O-point. The island width is w = 20 cm and the toroidal angle takes
the values φl = 5◦, 10.0◦, 15.0◦. On Fig. 4(a), the island topology and
the ray propagation are shown. A first difference from the unperturbed
case is a deviation of the ray path due to the refraction by the flattened
density profile. In the part of the ray path before the O-point the
deviation is in general very small, however if the launching angles are
such that the ray intersection with the island is long, it might become
comparable to the maximum allowed misalignment (1–2 cm). Fig. 4(b)
implies that the power deposition in the presence of the island appears
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Figure 4. Illustration of the effect of magnetic island geometry on
ECRH via ray tracing using a non-axisymmetric equilibrium model.

more enhanced with respect to the axisymmetric case. This is because
the energy is absorbed and redistributed by the plasma particles in
flux surface volumes much smaller than the ones derived when an
axisymmetric topology is assumed. It is evident that, in case the
effects just described are underestimated, the resulting computation
provides a much different picture for the deposition, jeopardizing any
effort based on this estimation.

7. CONCLUSION

High-frequency electromagnetic waves are used for plasma heating,
current drive and measurements in fusion experiments. The state-of-
the-art in the simulation of EC wave propagation and related effects has
reached a mature state and is considered reliable for ITER modeling.
There are many advanced ray-tracing codes, as well as distinguished
beam-tracing codes, which describe tokamak wave propagation under
different approximations for the plasma equilibrium and response.
However, the inherent limitations of the asymptotic methods and the
approximations in the description of the plasma, adopted by most
numerical tools, limit the integrity of the simulations when more
complicated effects are to be described. For such problems, more
sophisticated tools should be developed in order to benchmark the
validity of the simpler models, which are valuable for experiment design
and control applications, and to obtain deeper physics insight.

In this work, we analyzed many of these cases where the available
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modeling tools run close to or beyond the limits of their validity:
(i) Plasmas appearing strong inhomogeneity in the form of localized
fluctuations, steep gradients or intrinsic flux-surface geometry, for
which the short-wavelength-limit is reached, (ii) high-temperature
plasmas, where the cold plasma dispersion and weakly-relativistic
absorption models cease to be applicable, (iii) arbitrary wave beams
with sizeable non-Gaussian content, for which the consistency of the
constantly-Gaussian beam assumption is lost, and (iv) special cases
where a more accurate computation of the actual plasma equilibrium,
or even a reconstruction from experimental data, is required.

The limitations in the currently available modeling tools, due to
the adopted simplifications for the wave and plasma geometry, the
plasma dynamics and the relative importance of the different processes,
pose limits in the level of detail of the simulations as well as in
the ability to compute more complicated effects which are expected
to appear in ITER and DEMO, like, e.g., O-X-B mode conversion,
nonlinear cyclotron absorption and several classes of parametric
instabilities. The alternative methods to tackle such problems,
which are more sophisticated, are also by far more demanding in
computational resources [35]. A typical example to mention is full-
wave solvers, the computational burden of which forces researchers
to choose between simplifications in the geometry and/or the physics
description in order to achieve realistic computer resource burden in
simulations.

An additional factor that contributes to the overall uncertainty
regarding the evaluation of the available models for wave propagation
and plasma response dynamics is that their adequacy cannot be
consistently determined, because a detailed comparison with the
experiment has not been accomplished yet. In principle, this could be
achieved by measuring the electron temperature response to transient
ECRH power. However, there is a lack of an established method
for measuring the electron temperature without introducing a major
disturbance in the probed system. In exact, the ECRH power
introduces a diffusive broadening of the temperature perturbations
which often acts on a shorter time scale than the time resolution of
the measurement. Especially if the EC power input is narrow and well
localized, as, e.g., required for MHD instability suppression, the non-
zero heat diffusivity makes the perturbed temperature profile broader
so that it is difficult to recover the initial deposition profile.

According to the facts emerging from this work, the most
prominent tool for modeling EC propagation to invest to its
development should be based on extending one of the available beam
tracing techniques to envisage the fully-relativistic hot plasma response
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model for the computation of both the dispersion and the absorption
process. At the moment, this is the most promising solution for future
reactor modeling and combines simplicity, robustness and accuracy
in a fairly high degree. However, an effort should be initiated for
the improvement of the whole EC modeling arsenal through deeper
theoretical studies and comparisons with the results of sophisticated
tools, as well as of the experiment.
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