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ON THE EFFICIENCY AND GAIN OF ANTENNAS
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sity, P. O. Box 118, SE-221 00 Lund, Sweden

Abstract—The fundamental limits of the gain and efficiency of an
antenna are explored. These are very important quantities for, e.g.,
superdirective arrays. The antenna is in this paper confined in a sphere
and all of the currents are assumed to run in a material with a given
conductivity. It is shown that one can find the current distribution
in the sphere that optimizes the gain, given the frequency and the
radius of the sphere. The results indicate the distribution of antenna
elements in an antenna array in order to maximize gain, or efficiency.
The analysis is based on the expansion of the electromagnetic fields
in terms of vector spherical harmonics. Explicit expressions for the
limits of gain and efficiency, and the corresponding current densities,
are derived for different types of antennas.

1. INTRODUCTION

Small antennas suffer from physical limitations on bandwidth, gain and
efficiency. The limitations are caused by the reactive electromagnetic
fields in the vicinity of the antenna and the currents that create these
fields. It is important to realize that the reactive electromagnetic
fields and the ohmic losses are consequences of Maxwell’s equations
and hence inevitable. The strength of the reactive fields increases
with decreasing size and increasing directivity of the antenna. Small
antennas with high directivity are inefficient since they need relatively
strong currents in order to radiate even a low power. The strong
currents create large ohmic losses and large reactive fields in the
vicinity of the antenna. This is the reason why superdirective antennas
are very inefficient. The superdirective antennas are antennas with a
very large directivity relative to their size, see, e.g., [1]. If one only
cares about directivity at one frequency it is easy to see that one can
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create an antenna of a given size with an arbitrary large directivity.
The problem arises when this antenna is to be realized. Then the strong
currents that are required to create radiation make the superdirective
antennas very inefficient and with a gain that is much smaller than the
directivity.

This paper investigates fundamental limits of the ohmic losses
in an antenna and of the gain of an antenna. The method for the
investigation is based upon expansions of the electromagnetic fields
in terms of spherical vector waves. A similar method was used in
a classic paper by Chu [2] on the fundamental limits of the Q-value
of omni-directional antennas. The results by Chu were generalized to
non-axially symmetric antennas by Harrington [3]. There are a number
of other papers that focus on the fundamental limits of antennas and
a summary of the main results can be found in [1, 4]. There are also
a number of recent results on fundamental limits of antennas with
arbitrary shape, cf., [5, 6]. In [7] the spectral efficiency of a sphere is
treated by a method that is related to the method in this paper.

The objective of the paper is to give measures of the efficiency and
gain of antennas that can be used by antenna designers. It is possible to
estimate the power efficiency of a design if one can compare it with the
physical limit. If a certain power efficiency of an antenna is required the
physical limits give the bound for the size of the antenna. This bound
indicates the realistic size of the antenna. The results in the paper show
that one can improve the efficiency and gain of superdirective antennas
if one uses non-evenly distributed antenna elements with proper values
of the amplitude and phase of the currents of the antenna elements.
There are a number of practical problems that are not discussed in the
paper. Thus mutual coupling between elements, which is an important
issue, is not discussed, nor is the analysis of how to translate the current
densities into distributions of antenna elements in an antenna array.

The results in the paper can help an antenna designer in at least
two ways. First the limits of the efficiency and gain tell the designer
how close a design is from an optimal design. The other help is that
the current distributions that the optimal antennas have indicates
suitable places for currents and places that are unsuitable. Currents
in unsuitable positions do not contribute much to the radiation and
dissipate much power.

2. PREREQUISITES

The following problem is analyzed in the paper: Consider an antenna
that is circumferenced by a sphere of radius a. Outside the sphere there
is vacuum and the electromagnetic fields satisfy Maxwell’s equations.
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The current densities are confined in the sphere and run in a metal
with conductivity σ. The metal is considered to be a good conductor
and hence the value of the relative permittivity is irrelevant. What are
the physical limits for the efficiency and the gain of such an antenna?

The volume of the sphere is V and the angular frequency is
ω = 2πf . The time convention ejωt is adopted in the paper. The
efficiency is defined as

ηeff =
Prad

Prad + Pohm
, (1)

where Prad is the radiated power and Pohm the power dissipated in the
antenna, due to ohmic losses. The Ohm’s law ~J = σ ~E holds and the
ohmic loss is

Pohm =
1
2

∫

V

1
σ(r)

∣∣∣ ~J(~r )
∣∣∣
2
dv. (2)

The far field amplitude ~F (θ, φ) of the antenna is related to the far field
by

~F (θ, φ) = lim
kr→∞

~E(~r )krejkr. (3)

The radiated power is

Prad =
1

2η0k2

∫ 2π

0

∫ π

0

∣∣∣~F (θ, φ)
∣∣∣
2
sin θdθdφ. (4)

The definition of the directivity, D, and gain, G, are

D =
2π

∣∣∣~F (θ, φ)
∣∣∣
2

max

k2η0Prad

G = Dηeff ,

(5)

where max denotes the maximum w.r.t. θ and φ. The wave number
k = ω

√
ε0µ0 and the wave impedance η0 =

√
µ0/ε0 refer to vacuum.

3. GENERAL ANTENNAS

In the region exterior to the sphere, the electric field is expanded in
spherical vector waves, ~uτκml(~r ), also referred to as partial waves.
These waves satisfy Maxwell’s equations and constitute a complete
set of vector valued functions on a spherical surface. The details of the
spherical vector waves are given in Appendix A. The expansion reads

~E(~r ) =
∞∑

l=1

l∑

m=0

∑

κ=e/o

2∑

τ=1

aτκml~uτκml(~r ). (6)
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The corresponding magnetic field is given by the induction law

~H(~r ) =
j

ωµ

∞∑

l=1

l∑

m=0

∑

κ=e/o

2∑

τ=1

aτκml∇× ~uτκml(~r )

=
jk

ωµ

∞∑

l=1

l∑

m=0

∑

κ=e/o

2∑

τ=1

aτκml~uτ ′κml(~r ), (7)

where τ ′ = 3− τ . Here τ = 1, 2 is the index for the two different wave
types (TE and TM), κ = e for waves that are even with respect to
the azimuthal angle φ and κ = o for the waves that are odd w.r.t. to
φ. l = 1, 2, . . . is the index for the polar angle and m = 0, . . . , l the
index for the azimuthal angle. For m = 0 only the partial waves with
κ = e are non-zero, cf. Eq. (A2). The expansion in Eq. (6) covers the
fields from all possible types of time harmonic sources inside Va.

3.1. Classification

The expansion coefficients aτκml in the expansion (6) can theoretically
be altered independently of each other. Hence, each partial wave
corresponds to an independent port of the antenna. The maximum
number of ports, or channels, an antenna can use is then equal to the
maximum number of partial waves the antenna can radiate.

In Appendix A it is shown that for small radius ka, antennas
that radiate partial waves with τ = 1 are inductive and antennas that
radiate partial waves τ = 2 are capacitive. For this reason antennas
that radiate waves with τ = 1 are referred to as magnetic antennas and
antennas that radiate waves with τ = 2 as electric antennas. Antennas
that radiate both τ = 1 and τ = 2 waves are referred to as combined
antennas.

The following classification of antennas is used in this paper:

Partial wave antenna An antenna that radiates only one partial
wave (τκml). The antenna has one port.

Magnetic multipole antenna of order l An antenna that radiates
partial waves with τ = 1 and index l. The maximum number of
ports is Nlport = 2l + 1.

Electric multipole antenna of order l An antenna that radiates
partial waves with τ = 2 and index l. The maximum number of
ports is Nlport = 2l + 1.

Magnetic antenna of order lmax An antenna that radiates partial
waves with τ = 1 and with l = 1, . . . , lmax. The maximum number
of ports is Nport = lmax(lmax + 2).
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Electric antenna of order lmax An antenna that radiates partial
waves with τ = 2 and with l = 1, . . . , lmax. The maximum number
of ports is Nport = lmax(lmax + 2).

Combined antenna of order lmax An antenna that radiates par-
tial waves with τ = 1, 2 and l = 1, . . . , lmax. The maximum
number of ports is Nport = 2lmax(lmax + 2).

4. OPTIMIZATION OF EFFICIENCY

Consider first a partial wave antenna of magnetic type, τ = 1, i.e., an
antenna that radiates the partial wave ~u1κml. Due to the orthogonality
of the vector spherical harmonics and the expansion of the Green
dyadic, Eq. (A4), and Eqs. (A7) and (A8), the current density in the
sphere has to be proportional to the vector wave function ~A1κml(θ, φ),

~J(r, θ, φ) = σ(r)f(r) ~A1κml(θ, φ). (8)

The optimization problem is to find f(r) such that the efficiency is
maximized. The ohmic losses are

Pohm =
1
2

∫ a

0
σ(r)|f(r)|2r2dr (9)

due to the orthonormality of the vector wave functions, cf Appendix A.
From Eq. (A8) and the asymptotic expressions for the Hankel

functions, Eq. (A6) it follows that the current density in Eq. (8) gives
rise to the far field amplitude

~F (θ, φ) = −kωµ0

∫ a

0
σ(r)jl(kr)f(r)r2drjl+1 ~A1κml(θ, φ). (10)

The corresponding radiated power is

Prad =
1

2k2η0
k2ω2µ2

0

∣∣∣∣
∫ a

0
σ(r)jl(kr)f(r)r2dr

]2

=
1
2
kωµ0

∣∣∣∣
∫ a

0
σ(r)jl(kr)f(r)r2dr

∣∣∣∣
2

. (11)

The efficiency is given by

ηeff =

(
1 +

1
kωµ0

∫ a
0 σ(r)|f(r)|2r2dr∣∣∫ a

0 σ(r)jl(kr)f(r)r2dr
∣∣2

)−1

. (12)

In Appendix B it is seen that the efficiency is maximum when f(r) =
jl(kr) and hence the maximum efficiency for a magnetic partial wave
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antenna of order l is

ηeff =

(
1 +

k

η0

∫ ka
0 σ(x/k)(jl(x))2x2dx

)−1

. (13)

When the electric type partial wave antenna is considered the
current density is

~J(~r ) = jσ(r)∇×
(
f(r) ~A1κml(~r )

)
. (14)

The corresponding far field amplitude reads

~F (θ, φ)

=−kωµ0j
l+1

∫

V

σ(r)~v2κml(~r ′)·(∇′×f(r′) ~A1κml(θ′,φ′))dv′ ~A2κml(θ,φ).(15)

The resulting efficiency is

ηeff

=


1+

k−2η−1
0

∫
V

σ(r)
∣∣∣∇×f(r) ~A1κml(θ, φ)

∣∣∣
2
dv

∣∣∣∣
∫
V

σ(r)(∇×jl(kr) ~A1κml(θ, φ))·(∇×f(r) ~A1κml(θ, φ))dv

∣∣∣∣
2




−1

. (16)

The same technique that was used for the magnetic antennas is used
also for the electric antennas. One can then show that f(r) has to be
a real function. By assuming that f(r) = jl(kr) + αh(r) and finding
the minimum of this function, it is seen that α = 0. Hence the most
efficient antenna of electric type has the efficiency

ηeff =


1+

kη−1
0∫ ka

0 σ(x/k)
((

j′l(x)+ 1
xjl(x)

)2+l(l+1)
(
1
xjl(x)

)2
)

x2dx



−1

. (17)

By introducing the dimensionless quantities

B1l =
η0

k

∫ ka

0
σ(x/k)(jl(x))2x2dx

B2l =
η0

k

∫ ka

0
σ(x/k)

((
j′l(x)+

1
x

jl(x)
)2

+l(l+1)
(

1
x

jl(x)
)2

)
x2dx,

(18)

the efficiency reads

ητeff =
Bτl

Bτl + 1
, (19)
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where τ = 1 for the magnetic antenna and τ = 2 for the electric
antenna. Notice that f(r) is independent of σ(r) but that the current
density is proportional to σ(r), cf., Eqs. (8) and (14). In the case
of constant conductivity, σ(r) = σ, the integrals can be solved
analytically

B1l =
η0σa

2

(
(kaj′l(ka))2+kajl(ka)j′l(ka)+((ka)2−l(l+1))(jl(ka))2

)

B2l =η0σajl(ka)
(
jl(ka) + kaj′l(ka)

)
+ B1l.

(20)

The explicit expressions for the corresponding electric field, the far
field amplitude, the radiated and the dissipated powers are given in
Eqs. (C9) and(C10) in Appendix C.

It has been shown that the current density that maximizes the
efficiency for a partial wave antenna of order (τκml) is given by

~J(~r ) = σ(r)aτκml~vτκml(~r ), (21)

where aτκml is the amplitude and where the vector wave functions
~vτκml(~r ) are given in Appendix A.

Finally, consider a combined multipole antenna where all
multipoles are independent of each other. The efficiency of this antenna
is optimized when the efficiency of each multipole is optimized. Thus
the radial dependence of the current density of each multipole of index l
is given by fl ∼ jl(kr) in Eqs. (8) and (14). As higher order multipoles
are added to an antenna, the efficiency decreases. From Eqs. (13)
and (17) and Figure 1 it is seen that the efficiency is 0.5 when Bτl = 1.
If ka is below this value it cost much power to add currents that radiate
multipole fields of index l, or higher. On the other hand, if ka is above
the value then the efficiency is only slightly degraded by the addition of
currents that radiate multipole fields of index l. The curves in Figure 1
are valuable for an antenna designer that, e.g., intends to design an
antenna with a certain number of ports.

5. GAIN

The optimal directivity of a multipole antenna of order l is Dopt =
Nport/2 = (2l + 1)/2, cf., [3, 8]. The corresponding optimal gain is

Gτl = Doptητeff =
2l + 1

2
Bτl

Bτl + 1
. (22)

Notice that Gl → Nport/2 = (2l + 1)/2 as ka → ∞ and Gτl is very
close to Nport/2 once ka passes the value where Bτl = 1.

The optimal gain of an electric or magnetic antenna of order lmax

is somewhat harder to find. However, it turns out that the antenna
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with the optimal gain has a gain that is the sum of the optimal gains
of the multipole antennas. Thus

Gτ =
lmax∑

l=1

Gτl =
lmax∑

l=1

2l + 1
2

Bτl

Bτl + 1
. (23)

The proof is given in Appendix C, cf., Eq. (C8). Also here G → Nport/2
as ka →∞, cf., Figure 2. The efficiency of the order lmax antenna is

ητ =
Gτ

lmax(lmax + 2)
. (24)

The optimal gain of a combined antenna of order lmax is simply
G = G1 + G2.

6. EXAMPLES

The efficiency as a function of the size ka is shown in Figure 1. The
maximum efficiency is close to one down to some value and then it
drops very fast. The smallest efficient antenna is an electric dipole
antenna. It has an efficiency close to one when the radius of the sphere
that circumscribes the antenna is larger than approximately 10−4λ.
Figure 2 shows the optimal gain as a function of the radius a when
the frequency is σ = 107 S/m. Also here the electric antennas are
better than the magnetic antennas. In Figure 3 the optimal gain for
an antenna of order lmax = 5 is given as a function of ka for different
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Figure 1. Efficiency for magnetic (solid line) and electric (dashed line)
partial wave antenna with l = 1 (left curve), l = 2 (middle) and l = 3
(right) when σ = 107 S/m and f = 1 GHz. Notice that the electric
partial wave antenna of order l has almost the same efficiency as the
magnetic partial wave antenna of order l − 1.



Progress In Electromagnetics Research, Vol. 136, 2013 487

0
-2

0

2

4

6

8

10

12

a/m

g
ai

n

l=1

l=2

l=3

l=4

0.01 0.02 0.03 0.04 0.05 0.06

Figure 2. Optimal gain, in linear units, for an electric (dashed line)
or magnetic (solid line) antenna of order lmax = 1, 2, . . . , 4, when
σ = 1 · 107 S/m. The frequency is f = 1GHz. Asymptotically
the gain approaches the maximum directivity Dopt = Nport/2 =
lmax(lmax + 2)/2.
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Figure 3. Optimal gain for an electric antenna of order lmax = 5,
when σ = 1 ·107 S/m as a function of ka. The frequency is f = 10 GHz
(dash-dot line), f = 1 GHz (dashed line) and f = 100MHz (solid line).
Notice that the maximum gain does not scale with frequency if the
conductivity is kept constant.

frequencies. This is to show that for a given conductivity the maximum
gain does not scale with frequency. The reason is that the efficiency
is frequency dependent for a given ka, as can be seen from Eqs. (18)
and (19).

In Figure 4 the far field patterns are shown for three electric
antennas. All three antennas are transmitting at the frequency 2 GHz.
The conductivity is 2 · 107 S/m and the radius of the antennas are,
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Figure 4. The current distributions in the plane x = 0 of electric
antennas with maximum gain that radiate in the positive z-direction
and their corresponding far field patterns. The conductivity is 2 ·
107 S/m and the frequency is 2 GHz for all three antennas. The radius
are from left to right, 1 cm, 10 cm and 50 cm. The far field is polarized
in the ~̂y direction and thus the current distribution at x = 0 is also
directed in the ~̂y direction.

from left to right, 1 cm, 10 cm and 50 cm. The figures on the top
depict the current density ~J(~r, t) at a fixed time t in a cross section
at x =0 of the antenna. The antennas are designed for maximum
gain with its maximum radiation in the positive z-direction and with
polarization in the direction ~̂y. This means that in the plane x = 0 the
current density is directed in the y-direction. The current densities
follow from the theory. There are some things to be learned from
the distribution of the current. The first thing is that if one varies
the time t the pattern is seen to move as a wave in the positive z-
direction. The antenna resembles a traveling wave antenna, which is
reasonable since a traveling wave antenna makes sure that the waves
generated at different positions in the antenna are in phase in the
forward direction. The next thing to notice is that as the radius of
the antenna increases the currents are squeezed towards the surface of
the antenna. In particular the currents of the higher order multipoles
are very strong and are concentrated close to the surface. In fact the
current distribution resembles the current distribution of a parabolic,
or spherical, reflector antenna.



Progress In Electromagnetics Research, Vol. 136, 2013 489

7. CONCLUDING REMARKS

The currents that give the most optimal antennas in this paper were
chosen without physical restrictions. This is necessary in order to
obtain the optimal current densities. Needless to say, it is very hard
to realize the optimal designs since the currents that can be created
inside a spherical volume suffer from inductive and capacitive couplings
that are hard to tamper with, e.g., the skin effect. Nevertheless, the
physical limits of antennas give the antenna designer indications on the
achievable efficiency, gain and bandwidth for an antenna of a certain
size and frequency. The limits also serve as measures of the quality of
a design. If the values of efficiency, gain and bandwidth are far from
the physical limits, it might be worthwhile to modify the design of an
antenna. This paper gives no rules of thumb on what can be considered
as far from the physical limits, that is left to the designers to explore. It
is quite straightforward to write a computer program that illustrates
the current densities in Eq. (C9) in two-dimensional graphs. From
such graphs a designer can get ideas on how to construct an antenna
with high gain. It is seen that an antenna that is large compared to the
wavelength should have its currents close to the surface of the sphere in
order to maximize the gain whereas an antenna that is small compared
to the wavelength should have its currents distributed over the entire
volume. The amplitude and phase of these currents can be obtained
from a graph of the optimal current density.

APPENDIX A. VECTOR WAVES AND GREEN DYADIC

The definition of spherical vector waves can be found in different
textbooks, e.g., [3, 9]. In this paper they are defined using vector
spherical harmonics, cf., [10]

~A1κml(θ, φ) =
1√

l(l + 1)
∇× (~r Yκml(θ, φ))

~A2κml(θ, φ) =
1√

l(l + 1)
r∇Yκml(θ, φ)

~A3κml(θ, φ) = r̂Yml(θ, φ).

(A1)

The following definition of the spherical harmonics is used:

Yκml(θ, φ) =
√

εm

2π

√
2l + 1

2
(l −m)!
(l + m)!

Pm
l (cos θ)

(
cosmφ
sinmφ

)
, (A2)
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where εm = 2− δm0 and κ, m, l take the values

κ =
(

e
o

)
, m = 0, 1, 2, . . . , l, l = 0, 1, . . . (A3)

In the current application the index l will never take the value 0,
since there are no monopole antennas. The vector spherical harmonics
constitute an orthogonal set of vector functions on the unit sphere∫

Ω

~Aτn(θ, φ) · ~Aτ ′n′(θ, φ)dΩ = δττ ′δnn′ , (A4)

where the integration is over the unit sphere and where n = κml. The
outgoing divergence-free spherical vector waves are defined by





~u1n(~r ) =hl(kr) ~A1n(θ, φ)

~u2n(~r ) =
1
k
∇×

(
hl(kr) ~A1n(θ, φ)

)
= h′l(kr) ~A2n(θ, φ)

+
1
kr

hl(kr)
(

~A2n(θ, φ)+
√

l(l+1) ~A3n(θ,φ)
)

,

(A5)

where hl(kr) = h
(2)
l (kr) is the spherical Hankel function of the second

kind. The asymptotic behavior in the far zone of the spherical Hankel
functions is

h
(2)
l (kr) → jl+1 e−jkr

kr
when |k|r →∞. (A6)

The regular wave function ~vτn(~r ) are obtained by replacing the
spherical Hankel functions hl(kr) with the corresponding spherical
Bessel functions jl(kr).

The Green dyadic is given by

~G(~r, ~r ′) = −j
∑

n

~vn(~r<)~un(~r>). (A7)

where ~vn(~r ) is the regular wave function. Here ~r< is ~r if r < r′ and
~r ′ if r′ < r and vice versa for ~r>. In a homogenous space with current
density ~J the electric field is given by

~E(~r ) = −jωµ0k

∫

V

~G · ~Jdv. (A8)

The complex power radiated by an antenna is proportional to the
radiation impedance of the antenna. An antenna enclosed in a region
r < a and with an electric field ~E(~r ) = ~u1(~r ) for r > a has the
magnetic field ~H = jη−1

0 ~u2(~r ). By using the expressions for the wave
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functions it is seen that radiated complex power through a sphere of
radius a is
1
2

∫ (
~E× ~H∗

)
·~̂rdS =

1
2k2η0

+j
(l+1)((2l−1)!!)2

2k2η0(ka)2l+1
+jO

(
(ka)−2l−3

))
. (A9)

Hence the imaginary part of the radiation impedance is positive for
small ka and the antenna is inductive. For an antenna with electric field
~E(~r ) = ~u2(~r ) the complex radiated power is the complex conjugate of
the right hand side of Eq. (A9) and the radiation impedance is then
capacitive for small ka.

APPENDIX B. A PROOF

It is here proven that f(r) = jl(kr) in Eq. (12). The efficiency is given
by

ηeff =

(
1 +

1
kωµ0

∫ a
0 σ(r)|f(r)|2r2dr∣∣∫ a

0 σ(r)jl(kr)f(r)r2dr
∣∣2

)−1

. (B1)

The aim is to find a complex value function f(r) such that the quotient∫ a
0 σ(r)|f(r)|2r2dr∣∣∫ a

0 σ(r)jl(kr)f(r)r2dr
∣∣2 (B2)

is minimized. First write f(r) = g(r)ejφ(r), where g(r) and φ(r) are a
real valued functions that are allowed to be discontinuous, such that
jl(kr)g(r) is positive for all r and try to find g(r) and φ(r) such that∫ a

0 σ(r)|g(r)|2r2dr∣∣∫ a
0 σ(r)jl(kr)g(r)ejφ(r)r2dr

∣∣2 (B3)

is minimized. It is seen that∣∣∣∣
∫ a

0
σ(r)jl(kr)g(r)ejφ(r)r2dr

∣∣∣∣
2

≤
(∫ a

0
σ(r)jl(kr)g(r)r2dr

)2

. (B4)

Thus f(r) can be chosen to be a real function. Write f(r, α) =
jl(kr) + αb(r) where b(r) is a an arbitrary real valued function and
α is a parameter, and form

F (α) =

∫ a
0 σ(r)|f(r, α)|2r2dr∣∣∫ a

0 σ(r)jl(kr)f(r, α)r2dr
∣∣2 . (B5)

Since f(r, α) = j(r) + αb(r) it follows that F (α) is a fraction of two
polynomials of order two. The derivative is simple enough such that
one can solve the equation F ′(α) = 0 and see that α = 0. Thus the
efficiency is maximized when f(r) = jl(kr).
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APPENDIX C. OPTIMAL GAIN OF AN ELECTRIC OR
MAGNETIC ANTENNA OF ORDER Lmax

For a given far field amplitude the most efficient current distribution
for each partial wave is the same as for a multipole antenna of order l.
Thus the current densities read

~J(~r ) = σ(r)
2∑

τ=1

∑
n

γτnj−l+τ~vτn(~r ), (C1)

where n is the multi-index n = κml. γτn are the so far unknown
amplitudes of the currents, and the factor j−l−τ has been introduced
for convenience. The corresponding far field amplitude, the radiated
power, and the dissipated power read

~F (θ, φ) =
2∑

τ=1

∑
n

γτnBτl
~Aτn(θ, φ)

Prad =
1

2η0k2

2∑

τ=1

∑
n

(γτnBτl)
2

Pohm =
1

2η0k2

2∑

τ=1

∑
n

γ2
τnBτl.

(C2)

The gain is given by

G =
2π|~F (θ, φ)|2max

k2η0(Prad + Pohm)
. (C3)

That results in the following expression

G =
4π

∣∣∣∑2
τ=1

∑
n γτnBτl

~Aτn(θ, φ)
∣∣∣
2

max∑2
τ=1

∑
n γ2

τn

(
B2

τl + Bτl

) , (C4)

where max is with respect to θ and φ and where Bτl is given by
Eq. (18). At this stage one can use the same technique as in [3, 8]
to find the maximum gain. Let the direction of maximum gain be ~̂z,
i.e., θ = 0. The maximum gain is independent of which polarization is
chosen on the electric far field and one may let the polarization be in
the ~̂x direction. Then

G =
4π

(∑2
τ=1

∑
n γτnBτl

∣∣∣~̂x · ~Aτn(0, φ)
∣∣∣
)2

max∑2
τ=1

∑
n γ2

τn

(
B2

τl + Bτl

) , (C5)
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where |~̂x · ~Aτn(0, φ)| are seen to be independent of φ and given by
∣∣∣~̂x · ~A1n(0, φ)

∣∣∣ = δm1δκo

√
2l + 1

8π
∣∣∣~̂x · ~A2n(0, φ)

∣∣∣ = δm1δκe

√
2l + 1

8π
.

(C6)

That means that only m = 1 terms are non-zero in the sum.
The extreme value of G is when ∂G

∂γτl
= 0 for all l. That leads to

the relations

γτl =

√
2l + 1

3
B11 + 1
Bτl + 1

γ11 =

√
2l + 1

3
B21 + 1
Bτl + 1

γ21, (C7)

where γ11 and γ21 are arbitrary constants, and the gain

G =
2∑

τ=1

lmax∑

l=1

2l + 1
2

Bτl

Bτl + 1
. (C8)

If only electric or magnetic antennas are used, the sum in τ is omitted.
The same optimal value is obtained for a polarization in the ~̂y direction.
Hence any combination of ~̂x and ~̂y polarization, including elliptical
polarization, give the same optimal value.

The optimal current density is

~J(r,θ,φ)=σ(r)
2∑

τ=1

lmax∑

l=1

j−l+τγτl(~v1o1l(r,θ,φ)δτ1+~v2e1l(r, θ,φ)δτ2) . (C9)

The regular vector waves ~vτκml(~r ) are given in Appendix A. These
current densities result in a far field that is maximum in the direction
θ = 0 and with the electric field polarized in the x-direction. The
corresponding far field amplitude and the electric field are given by

~F (θ,φ)=
2∑

τ=1

lmax∑

l=1

γτl

(
~A1o1l(r,θ,φ)δτ1+ ~A2e1l(r,θ,φ)δτ2

)

~E(r,θ,φ)=
2∑

τ=1

lmax∑

l=1

j−l+τ+2γτl(~u1o1l(r,θ,φ)δτ1+~u2e1l(r,θ,φ)δτ2) .

(C10)

The expressions in Eqs. (C9) and (C10) are valid for the general
conductivity case σ(r).
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