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Abstract—In this paper, an improved equivalence principle algorithm
is proposed to solve the radiation problems of large antenna arrays
with periodic structures. This method is a hybridization in which
the typical scheme of periodic Green’s function is combined with the
original equivalence principle algorithm. The repeated elements are
changed from the original antenna units into the surfaces enclosing
the original ones. The proposed approach is compared with periodic
method of moments which is based on the integral equation and the
periodic Green’s function. Numerical results validate the feasibility of
the improved method.

1. INTRODUCTION

The research on large arrays with periodic structure, such as FSS
(Frequency selective surface) [1, 2] and large antenna array [3, 4], has
received much attention in recent years. In practical applications,
such as the radiation problems of large antenna array, the results
of radiation pattern cannot be calculated directly by principle of
pattern multiplication. The interactions of the elements in the array
should be considered. In order to simulate the currents on the
element and the coupling among different elements accurately, full-
wave method is necessary. Common numerical methods to solve the
problems of antenna arrays include method of moments (MOM) [5–
7], finite element method (FEM) [8], and finite difference time domain
(FDTD) [9, 10]. MOM is based on integral equations. FEM and FDTD
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are based on differential-equation-solver. However, the computational
costs of the common numerical methods, such as the CPU time and
memory requirement, will be large if many elements are placed in the
array. Moreover, when the element consists of high permittivity and
fine structures, some parts of mesh are denser than the other parts.
Hence, the iterative solver will work in low efficiency for the multi-scale
feature.

To estimate the characteristics of the array efficiently, numerical
methods with periodic boundaries are involved [11–13]. Periodic
method of moments (PMM) based on periodic Green’s function [14–
21] is a typical technique to evaluate infinite array. When utilizing
the method to compute the radiation of a periodic array, repeated
evaluations of the Green’s function series are required to fill the
impedance matrix [14]. Nevertheless, it is time consuming for the slow
convergence rate of the series [15]. Several acceleration techniques
are proposed to improve the convergence rate of the periodic Green’s
function by using the spectral and spatial formulations in conjunction
with Poisson’s and Shank’s transformations[1, 18]. However, as the
number of unknowns increases, the number of times to calculate the
periodic Green’s function will still increase correspondingly.

If the scale of impedance matrix becomes smaller, which
means unknowns become fewer, the number of times to compute
the periodic Green’s function will decreases. This will lead the
reduction of computational time. Equivalence principle algorithm
(EPA) which bases on surface equivalence principle and domain
decomposition method (DDM) is introduced in [22–28]. In this
algorithm, virtual surfaces are utilized to enclose the sub-regions and
translate the unknowns on objects to the unknowns on equivalence
surfaces [18, 24, 28]. When complex structures, fine structures, or high
permittivity dielectrics are involved in this problem, the density of
unknowns on equivalence surfaces is much smaller than that on original
objects [22]. Thus, EPA can reduce the number of unknowns and save
computational costs. If the structures in elements are identical, the
equivalence principle operator only needs to be calculated and stored
once [25]. Besides, EPA can improve the conditioning of the impedance
matrix whose elements are calculated by integral equations, so the
number of iteration will be less than MOM [26].

By considering the characteristics of EPA and the advantages
of the periodic Green’s function, the periodic equivalence principle
algorithm (PEPA) is proposed. In this method, the periodic Green’s
function is introduced into the original EPA. The proposed approach
can reduce the number of unknowns through EPA. Therefore, the
computational efficiency will be improved. Furthermore, when media
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is involved, the problem of volume can be transformed into the problem
of surface since the analysis task of EPA is to calculate the electrical
and magnetic currents on the virtual surface. Moreover, in PEPA
the problem inside the surface is unrelated to the periodicity since
the periodicity is considered when computing the coupling of different
surfaces. Therefore, the object inside can be changed in the range of
the surface. The recalculation of the periodic Green’s function will
be avoided. More arrays with different sorts of element but same
periodicity can be investigated efficiently.

In this paper, PEPA is utilized to solve the problems of large
antenna array. The periodic Green’s function is introduced when
considering the coupling among different surfaces which enclose the
antenna elements. The far field is evaluated by the electrical and
magnetic currents on the surfaces. Numerical results reveal the
feasibility of the proposed method.

2. PERIODIC GREEN’S FUNCTION

In this section, the periodic Green’s function and periodic method of
moments (PMM) are introduced briefly. The technique is mature,
and applied widely in electromagnetic analyses of periodic structures.
Consider a doubly periodic structure shown in Fig. 1. The elements
in the infinite array are arranged in horizontal rows parallel to the
x axis with spacing Dx, and the distance between the rows are Dy.
The Green’s function of the array can be written as a spatial series
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Figure 1. Geometry of an infinite array with doubly periodicity.
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following [1, 21]:

GP (r, r′) =
1
4π

∞∑
m=−∞

∞∑
n=−∞

eikRmn

Rmn
ejφmn (1)

where,

Rmn =
√

(xx′ − xmn)2 + (y − y′ − ymn)2 + z2 (2)
φmn = k(xm sin θ cosϕ + yn sin θ sinϕ) (3)

r{= x, y, z} represents the field point and r′{= x′, y′, z′} denotes the
source points. xm = mdx and yn = ndy are the coordinates of the
elements in the structure. θ and ϕ are the angle of incident wave. k is
the wave number in free space.

Periodic method of moments (PMM) is an actual application
of periodic Green’s function. In PMM, the periodic Green’s
function is used to substitute the Green’s function in free space
in method of moments (MOM) and enforce the periodic boundary
conditions [14, 19]. Therefore, the electrical field integral equation
(EFIE) in PMM can be represented as:

Esca + Einc = 0 (4)

where,

Esca = iηk

∫ (
JGp +

1
k2
∇′ · J∇Gp

)
dτ ′ (5)

∇Gp =
1
4π

∞∑
m=−∞

∞∑
n=−∞

(ikRmn − 1)
Rmn

R3
mn

eikRmneiφmn (6)

η is the wave impedance in free space. Gp is the periodic Green’s
function. J is the currents in the periodic unit cell. Equation (6)
is the gradient of the periodic Green’s function [16]. The equations
are tested in Galerkin’s scheme. It is known that the series shown in
(1) converge slowly. Mature methods are proposed to speed up the
convergence. Methods based on Poisson summation are other effective
ways to accelerate the convergence [1, 14, 16] by changing the spatial
periodic Green’s function into spectral form. The spectral form of the
periodic Green’s function can be written in Equation (7).

Gp(r, r′) =
∞∑

m=−∞

∞∑
n=−∞

e−jkm,n
x (x−x′)e−jkm,n

y (y−y′)e−jkm,n
z (z−z′)

2jkm,n
z DxDy

(7)
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where,
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The gradient of the periodic Green’s function in spectral domain can
be expressed as following [16]:

∇′Gp(r, r′)

=
∞∑

m=−∞

∞∑
n=−∞

e−jkm,n
x (x−x′)e−jkm,n

y (y−y′)e−jkm,n
z (z−z′)

2jkm,n
z DxDy

·(jkm,n
x ex + jkm,n

y ey + jkm,n
z ez) (11)

Further, the terms of periodic Green’s function can be reduced with
enough accuracy by Ewald method mentioned in [1, 21].

3. EQUIVALENCE PRINCIPLE ALGORITHM

In EPA, objects are divided into several parts and each one is
enclosed by a virtual surface called equivalence surface. The method
includes two main procedures [22]: the scattering of objects via an

Jinc

M inc J

J sca

Msca

Step 1 Step 3

Step 2

Scatter

Figure 2. The procedure depicted by S operator. Step 1: outside-in
propagation. Step 2: solving currents on the scatter. Step 3: inside-out
propagation.
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equivalence surface and the interaction among the different equivalence
surfaces, are described by the equivalence operator (S operator) and
the translation operator (T operator) respectively.

The procedure depicted by S operator includes three steps [24, 25]:
outside-in propagation, solving currents on object, and inside-out
propagation as shown Fig. 2. It is assumed that one scatter is enclosed
by a virtual surface (the dashed).

The detailed description of S operator can be written as
Equation (12). The unknowns on the object inside the surface can
be transformed to the unknowns on the surface by S operator. This
procedure can be described in Equation (13). Jinc and Minc are the
equivalence incident currents induced by the original source outside
according to the equivalence principle. In the step one, the field
generated by Jinc and Minc only exists inside and it can be considered
as the incident field of the scatter. In the step two, after the excitation
of the scatter is obtained, the currents J on the scatter can be
calculated easily by MOM. In the step three, the equivalence scattering
currents Jsca and Msca can be evaluated by J through the equivalence
principle.

S =
[

ne ×K
−ne × L

]
[Lobj ]

−1 [−ηL ηK] (12)
[

Jsca

1
ηM

sca

]
= S ·

[
Jinc

1
ηM

inc

]
(13)

K =
1
4π

∫
∇G×Xdτ

L =
ik

4π

∫ [
¯̄I +

1
k2
∇(∇ ·X)

]
Gdτ

(14)

where K and L are the integral operators. G and η represent Green’s
function and wave impedance in free space. ne denotes the outer
normal vector of the surface.

EQS i EQS j

Tijith Scatter jth
Scatter

Figure 3. The interaction between the EQS i and EQS j.
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The procedure of the interaction between the ith equivalence
surface (EQS i) and the jth one (EQS j) shown in Fig. 3 can
be described by translation operator or T operator as defined as
following [23]:

[
Ji

1
ηMi

]
=

[
ni ×K ni × L
−ni × L ni ×K

] [
Jj

1
ηMj

]
= Tij

[
Jj

1
ηMj

]
(15)

Finally, the EPA equations of the problem with N equivalence surfaces
can be written as following:




I −S11T12 . . . −S11T1N

−S22T21 I . . . −S22T2N
...

...
. . .

...
−SNNTN1 −SNNTN2 . . . I







Cs
1

Cs
2
...

Cs
N


 =




V inc
1

V inc
2
...

V inc
N


 (16)

where I is identity operator. Sii represents the S operator of ith
surface. Cs

i is the coefficients of the equivalence scattering currents on
the ith surface and V inc

i is the excitation of the surface. If the elements
in the array are identical, the S operator needs to be calculated and
stored only once.

Cs
i =

[
Jsca

i
1
ηM

sca
i

]
(17)

V inc
i = Sii

[
Jinc

i
1
ηM

inc
i

]
(18)

4. PERIODIC EQUIVALENCE PRINCIPLE
ALGORITHM

When utilizing the periodic method of moments (PMM) to solve
the problem of infinite array, currents on only one unit cell will be
considered. But when the cell has large number of unknowns, for
example, fine structures, complicated structures, or high permittivity,
PMM will be time-consuming since the number of times to evaluate
the periodic Green’s function series increases.

In order to solve the problem in this case, periodic equivalence
principle algorithm (PEPA) which is a scheme combining the periodic
Green’s function with EPA is considered. This combination has
several advantages. First, filling impedance matrix with periodic
Green’s function is the most time-consuming procedure in PMM. The
number of unknowns can be reduced by EPA through transferring the
unknowns on the object to the ones on the surface. The unknown
density of surface is smaller than that on object. Hence, the number
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Figure 4. The equivalence surface array in PEPA. Dx and Dy are the
distance between the two surfaces along x axis and y axis respectively.

of times for evaluating the periodic Green’s function will decrease.
Second, because the periodic Green’s function is used on the virtual
surface rather than the object, the periodicity will be not considered
anymore when evaluating the currents on the object which involves the
problem of volume-surface. The problem will be simplified. Third, the
problem inside the surface is unrelated to the periodicity. Therefore,
the object can be changed in the range of the surface and more arrays
with different kinds of element but same periodicity can be investigated
efficiently.

Like PMM, each periodic cell unit in PEPA should be identical.
However, the unit cell is no longer the object but the equivalence
surface enclosing the object. One infinite array is shown in Fig. 4 and
each element is enclosed by a surface. As explained before, in EPA,
the equivalence scattering currents Jsca and Msca on one surface are
determined by the currents of the inside scatter and the equivalence
scattering currents on the other surfaces. When the array expands to
the infinite one, the Equation (16) should be rewritten as following:




I −S11T12 . . . −S11T1N . . .
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...
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...
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... . . .







Cs
1

Cs
2
...

Cs
N
...



=




V inc
1
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2
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N
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
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(19)

Obviously, for arbitrary i or j, Cs
i = Cs

j , V inc
i = V inc

j (it is assumed
that the amplitudes and the phases of the excitations are identical) and
Sii = Sjj for the periodicity of the array. Therefore, the Equation (19)
can be simplified as following:

[I − (S11T12 + . . . + S11T1N + . . .)] [Cs
1 ] =

[
V inc

1

]
(20)
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Further,

[I − S11(T12 + . . . + T1N + . . .)] [Cs
1 ] =

[
V inc

1

]
(21)

Then, the sum of the translation operators can be replaced by a
periodic translation operator (TP operator) as following:

TP =
[

ne ×KP ne × LP

−ne × LP ne ×KP

]
(22)

where,

KP =
1
4π

∫
∇GP ×Xdτ

LP =
ik

4π

∫
[ ¯̄I +

1
k2
∇(∇ ·X)]GP dτ

(23)

The subscript P denotes periodicity. KP and LP are the integral
operators with the periodic Green’s function. ne is the outer normal
vector of the equivalence surface. GP represents the periodic Green’s
function discussed in the section two.

5. NUMERICAL RESULTS

In this section, four examples are utilized to investigate the accuracy
and efficiency of PEPA. The currents are calculated by iterative solver
GMRES. All results of programs are computed by the machine with
CPU of AMD Atholon II ×4 and memory of 8GB.

First, in order to demonstrate the correctness of PEPA, RCS of one
PEC ball array is investigated. The model is shown in Fig. 5(a). The
scale of the array is 51×51. Dx and Dy which are the spacing between
two balls along x axis and y axis both equal 1λ0. λ0 is the wavelength
in free space. The radius of each ball is 0.3 m. The incident plane
wave propagates along the direction paralleling z axis. The frequency
is 300 MHz. Each ball is enclosed by a virtual spherical surface. The
radius of the surface is 0.4m. The unknowns of PEC ball is 342 and
the unknowns of the surface is 729. RWG basis function is used to
simulated the currents on the balls and surfaces. The RCS values of
MOM in FEKO, PMM and PEPA are compared in Figs. 5(b) and (c).
RCS from FEKO is the precise result of calculating a finite array with
51×51. The forms of periodic Green’s function of PMM and PEAP are
identical. The accuracy of PMM is acceptable in the range of 0∼45◦,
135◦∼215◦ and 315◦∼360◦. Errors appear at range around 90◦ since
PMM is an asymptotical method which considers that the currents on
each element are same. Differences between currents at the edge of
the array and those in the center are neglected. The method can be
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Figure 5. (a) The model of 51 × 51 ball array. Dx = Dy = 1λ0.
(b) RCS of 51 × 51 ball array (HH). (c) RCS of 51 × 51 ball array
(V V ).

Table 1. The comparison of computational efficiency between PMM
and PEPA.

PMM PEPA
CPU time 9 hours and 17 minutes 2 hours and 47 minutes

competent to mission on the radiating estimation of arrays. On the
other hand, PMM and PEPA have a good agreement. Therefore, the
transformation from PMM to PEPA is feasible.

Second, the radiation pattern of one large antenna array is
discussed. The comparison of PMM and PEA about the computational
efficiency is revealed. Fig. 6(a) shows a microstrip antenna array with
the scale of 101×101. Each antenna works at 4GHz. The thickness of
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Figure 6. (a) Model of 101 × 101 microstrip antenna array. (b) E-
plane pattern (Phi = 0◦). (c) H-plane pattern (Phi = 0◦). (d) The
comparison of iterations between PMM and PEPA.

the substrate is about 0.027λ0. εr is 2.2 and µr is 1.0. The unknowns
is 3020 for each element which is enclosed by a virtual surface with the
scale of 0.80λ0 × 0.80λ0 × 0.44λ0. λ0 is the wavelength in free space.
The unknowns on the virtual surface is 612× 2 (equivalence electrical
currents and equivalence magnetic currents). Obviously, the unknown
reduction in PEPA is about 59%. The volume-surface integral equation
(VSIE) [29] is utilized solve the currents on the elements. The basis-
functions in this problem include RWG basis and SWG basis. The
distance between two antennas is 0.9λ0 long x axis (Dx) and 0.9λ0

long y axis (Dy). For simplifying the problem, the excitations are
identical in amplitude and phase. The radiation simulation of the
antenna array is shown in Figs. 6(b) (c) and the efficiency comparison
is revealed in Table 1. Obviously, the efficiency of PEPA is higher than
PMM in this problem. The phenomenon can be explained as following:
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Figure 7. (a) The model of the antenna element. (b) Upper layer
of the element. (c) Middle layer of the element. (d) Back board.
(e) Radiation pattern of E plane. (f) Radiation pattern of H plane.

firstly, unknowns in PEPA is fewer than PMM, which means the scale
of impedance matrix with the periodic Green’s function is smaller than
that in PMM. So, the number of times to evaluate the series becomes
less. Secondly, the convergence rate of PEPA illustrated in (d) is faster
than PMM since EPA can improve the conditioning of the impedance
matrix.

Third, as mentioned before, the periodicity of the array is
independent to the problem inside the virtual surface in PEPA, since
the periodic Green’s function is used only on the surface. Therefore,
only S operator without the periodic Green’s function series will need
to be calculated again if another antenna array with same periodicity
needs to be investigated. T operator can be reserved. In this example,
the element in example two is changed into another one. The design of
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Table 2. Value of all parameters of the feed structure.

Lslot W1slot W2slot W1 W2 W3 Lback

35.1mm 4.1mm 8.1mm 2.0mm 0.68mm 0.34mm 50.9mm

Table 3. The comparison of computational efficiency between PMM
and PEPA.

PMM PEPA
CPU time 21hours and 23 minutes 1 hours and 46 minutes

the element [30] is shown in Figs. 7(a) (b) (c) (d) and the parameters
are shown in Table 2. The antenna is working at 4 GHz. The total
number of the element is 4511. The surfaces are identical to the ones in
example two including the size, positions and meshes. The radiation
patterns are shown in (e) and (f). The computational efficiency is
compared in Table 3. Based on the data of T operator in example two,
the elapsed time of PEPA in this problem is much shorter than PMM
in which the whole periodic Green’s function series are recalculated.
It is concluded that PEPA is competent to the estimation of radiation
on antenna arrays with same periodicity but different elements.

Finally, an antenna array in one-dimension is investigated. In
example two and three, arrays with large separation between elements
have been considered. However, in many practical application,
a separation distance of less than half wavelength is needed for
suppressing the gating lobe. In this example, one 1D scanning array
with 15 quasi-Yagi antennas is discussed. The model is shown in
Fig. 8(a). The antenna works at 15 GHz. The lengths of director,
driver and reflector are 0.17λ0, 0.43λ0 and 0.75λ0 respectively. The
director is put 0.16λ0 above the driver and the reflector is put 0.31λ0

below the driver. The thickness of the substrate is about 0.032λ0. εr

is 2.2 and µr is 1.0. The unknowns is 2590. Each element is enclosed
by a virtual surface with the scale of 0.20λ0 × 0.90λ0 × 0.95λ0. λ0 is
the wavelength in free space. The unknowns of the equivalence surface
is 732 × 2. The separation distance between two elements is 0.48λ0

along x axis (Dx). The amplitude of each excitation is identical and
the phase difference of neighboring cell is 100◦. The phase can be set
in Equation (1). The accuracy of PMM and PEPA are compared with
MOM in this application. The radiation simulation shown in Fig. 8(b)
reveals that the accuracy of PMM is acceptable compared with MOM
from FEKO in the range near the main lobe. The main lobe appears
at 40◦ for the phase difference. However, errors appear near 90◦ for
the reason of neglecting the difference of currents among the elements.
The PMM and PEPA are in good agreement.
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Figure 8. (a) The model of the scanning array. (b) The radiation
pattern of H-plane.

6. CONCLUSION

In this paper, one improved EPA, in which the periodic Green’s
function is combined with the original EPA, is proposed to estimate
the radiation of antenna arrays with large scale. The periodic Green’s
function is applied in the procedure of computing the interactions
among different equivalence surfaces. The number of times to evaluate
the periodic Green’s function series is reduced due to the characteristic
of EPA. Furthermore, the conditioning of the impedance matrix is also
improved after EPA involved. The accuracy and high efficiency of
PEPA is discussed. The numerical results demonstrate the feasibility
of the proposed approach in the field of estimating the antenna array
with large scale.
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