
Progress In Electromagnetics Research B, Vol. 47, 263–278, 2013

RELATIVISTIC TRANSFORMATION OF MAGNETIC
DIPOLE MOMENT

Alexander Kholmetskii1, *, Oleg Missevitch2,
and Tolga Yarman3, 4

1Belarus State University, 4 Nezavisimosti Avenue, Minsk 220030,
Belarus
2Institute for Nuclear Problems, Belarus State University, 11 Bo-
bruiskaya Street, Minsk 220030, Belarus
3Okan University, Akfirat, Istanbul, Turkey
4Savronik, Eskisehir, Turkey

Abstract—We consider three different definitions of magnetic dipole
moment for electrically neutral compact bunches of charged particles
and show that, in general, they are not equivalent to each other
with respect to their relativistic transformation. In particular, we
prove that the “configurational” definition of magnetic dipole moment
mc = 1

2

∫
V

(r× j)dV (in the common designations) and its definition

through generated electromagnetic field (“source” definition ms) or
experienced force (“force” definition mf ) lead to different relativistic
transformations of mc and ms (mf ). The results obtained shed light on
the available disagreements with respect to relativistic transformation
of a magnetic dipole moment, and they can be used in covariant
formulation of classical electrodynamics in material media.

1. INTRODUCTION

Nowadays, the problem of relativistic transformation of polariza-
tion/magnetization and related transformation of electric/magnetic
dipole moment for a compact bunch of charges represents the subject
of textbook consideration in macroscopic electrodynamics [1–3]. How-
ever, surprisingly enough, a consensus on this subject is not achieved
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to the moment. More specifically, all authors agree with the transfor-
mation of polarization P (in Gaussian units)

P = γP0 − (γ − 1)
v2

(P0 · v)v + γ
v ×M0

c2
(1)

and the related transformation of electric dipole moment p =
∫
V

PdV

p = p0 − (γ − 1)
γv2

(p0 · v)v +
v ×m0

c2
, (2)

where M is magnetization, m =
∫
V

MdV the magnetic dipole moment,

v the velocity of the bunch of charges in the frame of observation,
γ = (1− v2/c2)−1/2 the Lorentz factor, and V the volume of the bunch.
Hereinafter the subscript “0” denotes the given quantity defined in the
rest frame of dipole.

However, various books and papers disagree with respect to
transformation properties of magnetization and magnetic dipole
moment. In particular, Panofsky and Phillips [1] write the
transformation for magnetization in the form

M// = (M0)// , (3a)

M⊥ = γ ((M0)⊥ + v ×P0) , (3b)
which follows from the fact that the components of M and P
constitute the anti-symmetric polarization-magnetization tensor used
in the covariant formulation of classical electrodynamics in material
media [1, 2]. Hereinafter the subscript “//” stands for the component
collinear to v, while the subject “⊥” denotes the component to be
orthogonal to v. Equations (3a)–(3b) imply that the magnetic dipole
moment obeys the transformation (see, e.g., Ref. [4])

m = m0 − (γ − 1)
γv2

(m0 · v)v + p0 × v. (4)

However, Fisher [5] derives a quite different transformation rule
for magnetic dipole moment, proceeding from the formal definition of
magnetic dipole moment

m =
1
2

∫

V

(r× j) dV (5)

(j being the current density) and applying the Lorentz transformations
for space-time four-vector and for charge density-current density four-
vector:

m =
m0

γ
− (γ − 1)

2 (γ + 1) v2
v × (v ×m0) +

1
2

(p0 × v) . (6)
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The factor 1/2 in front of the last term in rhs of Equation (5) is also
present in the corresponding equation in the book by Jackson [3].

Here we notice that the contribution to the magnetic dipole
moment proportional to the cross product (p0 × v) has the non-
relativistic origin, and the disagreement of Equations (4) and (6) with
respect to this term has been recently clarified by Hnizdo [6]. He has
shown that in first order in (v/c), the transformation

m ≈ m0 + p0 × v (7)

must be correct, because only with its implementation the sum of
polarization (jp) and magnetization (jµ) current densities yields the
total current density for a moving dipole. Hnizdo also made an
important note that the definition of magnetization

M =
1
2

(r× j) (8)

and the definition of magnetic dipole moment (5) is correct, when
∇ · j = 0, and in Section 2 we will essentially use this requirement.
Finally, Hnizdo concludes that the transformation

m ≈ m0 +
1
2
p0 × v (9)

resulting from Fischer’s Equation (5) occurs inappropriately.
Hnizdo’s analysis is convincing enough; at the same time, it has

been made in first order in (v/c) only.
The goal of the present paper is to derive the exact relativistic

transformation for a magnetic dipole moment of a compact bunch
of charges. We emphasize that in this paper we do not consider
the magnetic dipole moment for point-like charges (in the classical
meaning), which is directly related to spin, where the covariant
formalism of its description is well developed (see, e.g., [2, 3, 7, 8]).
Below we imply that the bunch of charges is characterized by its
internal structure, so that the magnetization can be always introduced.
Thus, we deal with the magnetic dipole moments, which are defined
via the volume integration of magnetization.

For simplicity we further assume that the proper electric dipole
moment p0 = 0, so that the cross product p0×v is vanishing. It allows
us to avoid a repetition of analysis by Hnizdo [6] with respect to the
term p0 × v (where we completely agree), and to focus our attention
to the terms of order (v/c)2 and higher. We stress that in this case the
Equations (4) and (6) continue to disagree with each other. Indeed, at
p0 = 0 Equation (4) takes the form

m = m0 − (γ − 1)
γv2

(m0 · v)v, (10)
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while Equation (6) reads:

m =
m0

γ
− (γ − 1)

2 (γ + 1) v2
v × (v ×m0) . (11)

We see that only in the case, where the vectors m0, v are collinear with
each other, both Equations (10) and (11) yield the equality m = m0/γ.
However, for any other orientation of m0, these equations give different
results.

In the present paper, we will show that the determination of
correct relativistic transformation for magnetic dipole moment requires
to carry out a careful analysis of parameters of compact bunches of
charges and the notion of magnetic dipole moment itself, as seen in
different inertial reference frames. This way we find the explanation
for disagreement of Equations (10), (11) and obtain the general
solution of the problem of transformation of magnetic dipole moment.
In our general approach, we verify the results obtained with the
simplest representative of magnetic dipole: a closed conducting loop of
rectangular shape, carrying a steady current (Section 2). In Section 3
we discuss the results obtained.

2. MAGNETIZATION AND MAGNETIC DIPOLE
MOMENT OF A MOVING DIPOLE

In what follows, for simplicity, we consider electrically neutral magnetic
dipoles with the vanishing proper electric dipole moment, i.e., p0 = 0.
In this case we can test both transformations (10), (11) with the
model of magnetic dipole mentioned above: the conducting circuit
of rectangular shape with the proper size of the segment l0, which
lies in the plane xy and carries a steady current I0 in its rest frame
(see Fig. 1). The proper magnetic dipole moment of this circuit m0 is
parallel to the axis z, and we assume that the entire circuit moves at
the constant velocity v along the axis x. In this case the vectors m0

and v are orthogonal to each other, and we respectively derive from
Equations (10) and (11):

m⊥ = m0, (10a)

m⊥ =
m0

γ
+

(γ − 1)
2 (γ + 1)

m0 =
m0

2
+

m0

γ (γ + 1)
. (11a)

Now let us directly calculate the magnetic dipole moment of the
circuit via Equation (5), which can be presented in the form convenient
for further analysis:

m =
1
2

∫

V1+V3

(r× j) dV +
1
2

∫

V2+V4

(r× j) dV . (12)
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Figure 1. Rectangular conducting loop lying in the xy-plane moves
at the constant velocity v along the x-axis of the laboratory frame K.
A proper length of each segment of the loop is equal to l0, the
proper area of cross section of conducting wire is S0. The proper
magnetic moment of the loop is equal to m0 and lies in the positive
z-direction. The direction of current in each segment is shown in
bold arrows. The lengths and cross-section areas of each segment of
moving circuit are also indicated. The total current in segments 1, 3
is equal to I1 = I3 = γI0; the total current in segments 2, 4 is equal to
I2 = I4 = I0/γ. The proper current in each segment of moving circuit
is equal to I0/γ, see Equation (35).

Here Vi stands for the volume of segment i, and the numeration of the
segments is indicated in Fig. 1.

Using special Lorentz transformation for space-time and charge
density-current density four-vectors [3], we derive for the segments 1
and 3:

j1,3 = γj0, (13a)
(r× j)1,3 = ẑγl0j0/2, (13b)

and also for the segments 2, 4:

j2,4 = j0, (14a)
(r× j)2,4 = ẑl0j0/2γ, (14b)

where j0 = I0/S0 in the current density in the rest frame of the circuit.
Inserting Equations (13b), (14b) into Equation (12), and taking also
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into account the relativistic transformation of volume (V = V0/γ), we
obtain:

m⊥ =
m0

2
+

m0

2γ2
, (15)

which disagrees with both transformations (10a) and (11a).
In order to understand the origin of the indicated conflict among

Equations (10a), (11a) and (15), we have to look closer at the definition
of magnetization and magnetic dipole moment. Our analysis of various
publications (e.g., Refs. [1–3, 9–13]) shows that, in fact, there are three
possible definitions of these quantities:

- definition based on Equations (8), (5), which involves the spatial
distribution (configuration) of currents in a considered medium. Thus
it can be named as “configurational” definition, and below we supply
the related vectors of magnetization and magnetic dipole moment by
the subscript “c”;

- definition based on determination of EM fields generated by a
magnetized medium (magnetic dipole) as the sources of these fields;
hereinafter we name it as “source” definition and supply the related
vectors of magnetization and magnetic dipole moment by the subscript
“s”;

- definition based on determination of forces acting on a
magnetized medium (magnetic dipole) in an external EM field;
hereinafter we name it as “force” definition and supply the related
vectors of magnetization and magnetic dipole moment by the subscript
“f”.

The presented classification, as we are aware, was never mentioned
in the scientific literature before, because usually it is tacitly implied
that all of these definitions yield the identical result with respect to
calculated magnetization and magnetic dipole moment.

However, we stress that the latter statement is correct only in the
rest frame of magnetized medium (magnetic dipole), so that we can
omit the introduced subscripts c, s and f for the proper magnetization
and magnetic dipole moment, i.e., mc0 = ms0 = mf0 ≡ m0. However,
for a moving medium (magnetic dipole), the definitions listed above,
in general, yield different values for magnetization (magnetic dipole
moment) with their different relativistic transformations†.

The validity of this assertion has already been seen in the
comparison of Equations (10) and (11) (and their particular
† Similar definitions can be introduced with respect to polarization and electric dipole
moment, too. However, for the case of a moving electric dipole, in contrast to the motion
of magnetic dipole, all of these definitions occur equivalent to each other. We omit
here the corresponding proof of this statement, and only mention that this circumstance
explains the common consensus with respect to relativistic transformations of polarization
(Equation (1)) and electric dipole moment (Equation (2)).
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forms (10a), (11a) presented above), which obviously differ from
each other. According to our classification, Equation (10) stems
from the “field” definition of magnetic dipole moment (since the
related magnetization is used in covariant formulation of classical
electrodynamics in material media, entering into the source term of
Maxwell equations [1]), whereas Equation (11) has been derived in
Ref. [5] via the Lorentz transformation of the quantities entering
into Equation (5) (i.e., with the use of “configurational” definition
of magnetic dipole moment).

In these conditions it is important to clarify the transformation
rule for the magnetic dipole moment mf in its “force” definition. For
this purpose we further calculate the force acting on the circuit of
Fig. 1 in an external static magnetic field B, which lies in the positive
z-direction and depends on x and y coordinates. In our analysis we use
the expression for the force, acting on a moving dipole, in the form [14]

F = ∇ (p ·E) +∇ (mf ·B)− 1
c2

d

dt
(mf ×E) +

d

dt
(p×B) , (16)

where we take into account that in these equations the “force”
definition of magnetic dipole moment is used.

For the circuit in Fig. 1 and time-independent magnetic field, we
obtain from Equation (16)

F = ∇ (mf ·B) + prel × (v · ∇)B, (17)

where
prel =

v ×m0

c2
(18)

is the electric dipole moment of the moving circuit, which emerges due
to its relativistic polarization.

One can see that for the problem in question Equations (17), (18)
give two force components:

(Fm)x =
(

mf − v2

c2
m0

)
∂B

∂x
, (19a)

(Fm)y = mf
∂B

∂y
. (19b)

Our next problem is to express the forces (19a)–(19b) via the
magnetic dipole moment of circuit m0 measured in its rest frame.

For this purpose we calculate the forces Fx and Fy via the Lorentz
force law for a laboratory observer. Hence we derive:

Fx = I4l4B (x0 + l, y0, 0)− I2l2B (x0, y0, 0) , (20)
Fy = I3l3B (x0, y0 + l0, 0)− I1l1B (x0, y0, 0) , (21)
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where Ii is the current in the segment i, li is the length of the segment
i, and here we denoted the coordinates of the left bottom corner of the
circuit as {x0, y0, 0}.

The values of current Ii can be found from Equations (13a), (14a),
complemented by the transformation of area of cross-section of each
segment of circuit: S1 = S3 = S0, S2 = S4 = S0/γ. Hence we get

I1 = I3 = γI0, (22a)
I2 = I4 = I0/γ. (22b)

Taking also into account that l1 = l3 = l0/γ, l2 = l4 = l0, we obtain
from Equations (20) and (21):

Fx =
m0

γ2

∂B

∂x
, (23)

Fy = m0
∂B

∂y
. (24)

Comparing now Equations (19a)–(19b) with corresponding
Equations (23), (24) and taking into account that for the problem
of Fig. 1, m0⊥v, we derive the relationship

(mf )⊥ = m0. (25)

Addressing again to Fig. 1 and considering the case, where the
velocity v is collinear with m0, we derive in a similar way

(mf )// =
m0

γ
. (26)

Comparing Equations (25), (26) with Equation (10), we reveal
that for the circuit in Fig. 1 the magnetic dipole moment in its
“force” definition mf obeys the same transformation rule, just like
the magnetic dipole moment in “source” definition ms does. Since
any current-loop model of magnetic dipole can be presented to be
filled by a large number of small rectangular closed circuits of Fig. 1
(where the currents in adjacent sections mutually cancel each other,
giving rise to a non-compensated boundary current), the validity of
transformation (10) for the circuit in Fig. 1 with respect to “force”
definitions of the magnetic dipole moment signifies the general validity
of Equation (10) for mf .

Thus we conclude that the “source” definition and “force”
definition of magnetic dipole moment occur equivalent to each other
for the force law (16), and both ms, mf obey transformation (10).

In order to achieve further progress in the analysis of introduced
definitions of magnetization and magnetic dipole moment for a
moving dipole, we now emphasize that among these definitions, the
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“configuration” definition is the most simple with respect to formal
analysis and therefore, next we focus our attention to this definition of
a moving magnetic dipole mc given by Equation (5).

Now we point out an inconsistency in the derivation of its
transformation (6) suggested by Fisher [5]. We remind that Fischer
obtained Equation (6) via the Lorentz transformations for the
distance [15]

r = r0 − (γ − 1)
γv2

(r0 · v)v (27)

and for current density

j = j0 +
(γ − 1)

v2
(j0 · v)v (28)

(in the case, where the proper charge density of magnetic dipole ρ0 =
0), with further substitution of Equations (27), (28) into Equation (5)
and with taking into account of relativistic transformation of volume
dV = dV0/γ.

We have no objections against Equation (27). However,
considering transformation (28), we remind that that the measurement
of current density j in a moving medium is carried out with a cross-
section of unit area, passing through the medium, when this area is
at rest in the laboratory. If so, not only the proper current density
of the carriers of current (e.g., the conduction electrons for the circuit
in Fig. 1) contributes to j, but also the convective current of charges
of opposite sign, moving along with the medium and immovable in
its rest frame (i.e., the positive ions for the moving circuit of Fig. 1).
At the same time, it is obvious that the convective current of positive
ions does not contribute to the magnetic dipole moment of a moving
dipole. Moreover, this convective component of current density does
not satisfy the equality ∇ · j = 0, which, as shown in [6], is required
for correctness of the definitions (8) and (5). Thus, the substitution
of Equation (28) into Equation (5) constitutes a physically incorrect
operation.

Therefore, before applying Equations (8), (5) to a moving
magnetic dipole, one has to re-define properly the current density in
these equations, in order to make it divergence-free.

In order to solve this problem we address to our recent paper [10],
where we introduced the notion of proper current density jpr for a
moving magnetic dipole to be measured with the cross-sectional unit
area, co-moving with the dipole. In this definition, we exclude the
convective currents of positive ions. Thus, jpr is completely determined
by the flow of free carriers of current, and ∇ · jpr = 0 in any inertial
reference frame.
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The proper current density can be formally defined as a number
of charges passing across a unit area S during a unit time interval,
when this area co-moves with the magnetic dipole at the velocity
v. Designating ρcr the charge density of carriers of current, as seen
in the laboratory frame, the number of such charges (which directly
determines the proper current density) is equal to

jpr = ρcr (u− v) , (29)

where u is the velocity of carries of current in the laboratory frame.
Applying the Einstein law of velocity composition [15]

u =
(

u0

γ
+ v +

(γ − 1)
γ

(u0 · v)v
v2

) (
1 +

u0 · v
c2

)−1
, (30)

and the relativistic transformation for the charge density

ρcr = γ (ρcr)0
(
1 +

u0 · v
c2

)−1
(31)

(where (ρcr)0, u0 are respectively the charge density and flow velocity
of carriers of current in the rest frame of magnetic dipole), we further
substitute Equations (30), (31) into Equation (29) and obtain:

jpr = j0 − (γ − 1)
γ

(j0 · v)v
v2

, (32)

where j0 is the current density of carries of current in the rest frame
of dipole.

We point out that due to the equality ∇ · jpr = 0, Equation (32)
complies with the continuity requirement for the proper current

Ipr =
∫

S

jpr · dS (33)

for any current-loop model of magnetic dipole. For example, for the
circuit in Fig. 1, Equation (32) yields

(jpr)1 = (jpr)3 = j0, (jpr)2 = (jpr)4 = j0/γ.

Taking into account the transformation of area

S1 = S3 = S0/γ, S2 = S4 = S0, (34)

we derive from Equation (33) the equality of proper current in all
segments of the circuit, i.e.,

(Ipr)1 = (Ipr)2 = (Ipr)3 = (Ipr)4 = I0/γ. (35)

In the view of definition of current as I = dQ/dt, Equation (35) has a
clear physical meaning and reflects the time dilation effect for a moving
circuit.
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In contrast, applying the transformation (28) for the total current
density, used by Fisher [5] in the derivation of transformation (6), we
derive for the circuit in Fig. 1

j1 = j3 = j0, j2 = j4 = γj0,

so that with Equations (33), (34) we get

I1 = I3 = I0/γ, I2 = I4 = γI0

(see also Equations 22(a)–(22b). We observe that I1 = I3 6= I2 = I4,
which simply indicates that the contribution of convective current
of positive ions into the total current (measured by means of cross-
sectional area resting in a laboratory) is different in the different
segments of the circuit (on this subject see also Refs. [4, 10, 16]). As we
have mentioned above, such a convective current of immovable charges
(in the rest frame of dipole) does not contribute to the magnetization
and magnetic dipole moment of moving medium and thus, in physically
meaningful “configurational” definition of magnetization/magnetic
dipole moment, we have to replace in Equations (8), (5) the total
current density j by the proper charge density jpr, arriving at the new
definitions

Mc =
1
2

(r× jpr) , (36a)

mc =
1
2

∫

V

(r× jpr) dV , (36b)

where ∇ · jpr = 0. Hence, using the Lorentz transformations (27)
and (32), we determine the relativistic transformation for the
“configurational” magnetization:

Mc =
1
2

(
r0 − (γ − 1)

γ

(r0 · v)v
v2

)
×

(
j0 − (γ − 1)

γ

(j0 · v)v
v2

)

= M0 − 1
2

(γ − 1)
γv2

[(j0 · v) r0 × v − (r0 · v) j0 × v] , (37)

where we designated M0 = 1
2(r0 × j0) the magnetization of medium in

its rest frame.
Further we use the equality

(j0 · v) r0 × v − (r0 · v) j0 × v = (v × (r0 × j0))× v, (38)

which is straightforwardly proved via the vector identity

a× (b× c) = b (a · c)− c (a · b) . (39)
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Combining Equations (37), (38), we arrive at the relativistic
transformation of magnetization in its “configurational definition”:

Mc = M0 − (γ − 1)
γv2

(v ×M0)× v. (40)

Applying again the vector identity (39), we can present Equation (40)
in the equivalent form

Mc =
M0

γ
+

(γ − 1)
γ

(M0 · v)v
v2

. (41)

Taking into account the relativistic transformation of volume,
V = V0/γ, we further derive the transformation of “configurational”
magnetic dipole moment:

mc =
m0

γ2
+

(γ − 1)
γ2

(m0 · v)v
v2

. (42)

The latter equation replaces the Fisher’s transformation (6) for
magnetic dipole moment in its configurational definition.

We again emphasize that the proper current density entering
into the definitions (36a)–(36b) is the divergence-free in any inertial
reference frame. Hence we can conjecture that Equation (42) provides
the implementation of the known equality for small dipole

mc = IprS (43)

for any inertial observer. Indeed, for such a small dipole, we can adopt
that its area is plane, and it can be divided into the elements

∆S0 = a0 × b0, (44)

in the rest frame of the dipole, where a0, b0 are some small vectors.
Applying the transformation (27) to the vectors a, b of a moving area,
we obtain:

∆S=
(
a0 − (γ − 1)

γv2
(a0 · v)v

)
×

(
b0 − (γ − 1)

γv2
(b0 · v)v

)

=∆S0 − (γ − 1)
γv2

(b0 · v)a0 × v − (γ − 1)
γv2

(a0 · v)v × b0

=∆S0 − (γ − 1)
γv2

[(b0 · v)a0 − (a0 · v)b0]× v

=∆S0− (γ−1)
γv2

[v×(a0×b0)]×v=∆S0 − (γ−1)
γv2

(v×∆S0)×v

=
∆S0

γ
+

(γ − 1)
γ

(∆S0 · v)v
v2

, (45)
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where we used the identity (39) twice. Substituting ∆S in place of
S into Equation (43), and using the relativistic transformation for
proper current Ipr = (Ipr)0/γ (see Equation (35)), we arrive at the
transformation (42). It proves the validity of Equation (43) for a small
dipole in any inertial reference frame.

The results obtained above are straightforwardly extended to the
case, where the electric dipole moment p0 of a compact bunch of
charges is not equal to zero. Then Equations (42) and (10) take the
form:

mc =
m0

γ2
+

(γ − 1)
γ2

(m0 · v)v
v2

+ p0 × v (46)

for “configurational” definition of magnetic dipole moment, and

ms,f = m0 − (γ − 1)
γ

(m0 · v)v
v2

+ p0 × v (47)

for “source” and “field” definitions of magnetic dipole moment.
The related transformations for magnetization are directly obtained
from Equations (46), (47) via taking into account the relativistic
transformation of volume (V = V0/γ), i.e.,

Mc =
M0

γ
+

(γ − 1)
γ

(M0 · v)v
v2

+ γP0 × v, (48)

Ms,f = γM0 − (γ − 1)
v2

(M0 · v)v + γP0 × v. (49)

3. DISCUSSION

Analyzing transformations (46), (47), we have to answer the question:
why the transformation for mc even in its corrected definition (36b)
differs from the transformation for ms (mf ), as well as to clarify better
the conditions, providing the coincidence of transformation for ms and
mf obtained above.

Answering the first question we consider, first of all, a compact
bunch of charges qi with the position vectors ri and velocities vi at
some fixed time moment. Then at a large distance R from the bunch,
the average vector potential is determined by the equation

Ā =
1
c

∑

i

qivi

|R− ri| ,

and the decomposition of this equation to the first order in 1/R gives:

Ā =
1

cR

∑

i

qiv̄i − 1
c

∑

i

qivi

(
ri · ∇ 1

R

)
. (50)
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Further, it is implied (see, e.g., Ref. [12]) that
∑

i

qiv̄i = 0, (51)

while the second term in rhs of Equation (50) can be transformed to
the form

−1
c

∑

i

qivi

(
ri · ∇ 1

R

)
=

(m×R)
R3

,

where the magnetic dipole moment is defined by Equation (5). If so,
the “configurational” definition of magnetic dipole moment, given by
Equation (5), might coincide with its source definition, yielding

A =
(m×R)

R3
. (52)

However, we emphasize that the adopted equality (51) is valid,
in general, only in a reference frame, where a bunch of charges
rests as the whole, and where indeed m0c = m0f = m0s. In
any other reference frame, wherein the velocity of the bunch is not
zero, the equality (51) is not fulfilled, at least in the order (v/c)2,
even for electrically neutral bunch (

∑
i

qi = 0). Therefore, in this

frame Equation (52) loses its validity, when the magnetic dipole
moment is defined by Equation (36b) (“configurational” definition).
At the same time, replacing the total current density j, entering
into the original Equation (5), by the proper current density jpr

according to our definition (36b), one has to remember that just
the total current density (representing the resultant flow of carries of
current (conduction electrons) and immovable charges (positive ions))
enters into the source term of corresponding Maxwell equation. In
other words, the flow of positive ions moving along with a medium,
does contribute to the generated electromagnetic fields, but does not
contribute to magnetization/magnetic dipole moment of the medium.

In these conditions, it looks reasonable to abandon the
“configurational” definition of magnetic dipole moment and to re-
define magnetization and magnetic dipole moment in the way, which
directly keeps the Lorentz-invariance of Maxwell equations in material
media, as, in fact, is tacitly done in the common approach. However,
the fact that this “source” definition of magnetic dipole moment differs,
in general, from its “configurational” definition has been missed in
the scientific literature. Thus, in the calculation of electromagnetic
field generated by a moving magnetic dipole, even its corrected
“configurational” definition (36b) is not applicable.
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In order to clarify better the physical origin of the difference
between ms (mf ) and mc, we subtract Equations (47) and (46):

ms,f−mc =
[
m0 − (γ − 1)

γ

(m0 · v)v
v2

+ p0 × v
]

−
[
m0

γ2
+

(γ − 1)
γ2

(m0 · v)v
v2

+ p0 × v
]

=

(
γ2 − 1

)
m0

γ2
− (γ − 1)

γ

(m0 · v)v
v2

(
1 +

1
γ

)

=

(
γ2−1

)

γ2

(
m0− (m0 ·v)v

v2

)
=

v×(m0×v)
c2

=− (prel×v) ,

where we have used Equations (39) and (18). Hence

mc = ms,f + (prel × v) , (53)

which shows that the “configurational” definition of magnetic dipole
moment, in comparison with its “source” definition, contains the
additional term (prel × v). This term represents the contribution to
the total magnetic dipole moment, which emerges due to a motion
of electric dipole, caused by relativistic polarization of the original
magnetic dipole.

Similar relationship can be written for the related magnetizations,
i.e.,

Mc = Ms,f + (Prel × v) . (54)

Using Equations (53), (54), it is possible, in general, to re-
formulate classical electrodynamics in material media in terms of
configurational definitions of magnetization Mc corrected according
to Equation (36a), which, however, occurs less convenient than the
common way.

At the same time, one should notice that the “configurational”
magnetic moment mc for a moving dipole is evaluated via the simple
expression (43), and in some particular problems, its direct calculation
via Equation (43) with further application of Equation (53) might yield
the fastest solutions.
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