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Abstract—A modified Schwarz-Christoffel transformation (SCT) is
used to obtain guided- and radiated-wave characteristics of a singly-
curved rectangular patch antenna. The method is to map a straight
channel into an arbitrarily-curved channel. This simplifies the problem
to that of a planar rectangular patch antenna. Applying conventional
SCT to the problem confronts two difficulties: the region under
investigation is elongated, and it has curved boundaries. Therefore,
SCT is modified to handle the problem. Input impedance, VSWR
and radiation patterns of a conformal patch antenna on a parabolic
surface are obtained utilizing the proposed SCT and either numerical
or analytical treatment of a planar patch antenna, and the results
are verified. Effect of parabolic curvature on the above-mentioned
characteristics is investigated.

1. INTRODUCTION

Analysis and design of conformal antennas have been a subject
of interest for years. The complexity of these antennas prevents
them from having a closed form analytic formula, except for special
structures [1–3]. Common full-wave methods such as MoM, FDTD and
FEM widely apply to these structures [4–7]. However, these methods
are generally very time-consuming and yield no physical insight into
the problem.

Conformal mapping is a fast and powerful tool amongst many
other tools to analyze conformal structures when it is applicable. In
our previous work, we applied this method on a cylindrical leaky-wave
antenna with circular cross-section to predict its scattering parameters
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and radiation patterns [8]. However, that work was only useful for a
circular cross-section. In this paper, a semi-analytic method (modified
SCT) is developed to handle an arbitrary cross-section, and thereby
to analyze and synthesize any singly-curved conformal antenna. Since
this method is specifically designed to deal with conformal antennas,
it makes some assumptions which lets the method be considerably
fast and easy to formulate. Also, it depends only on the curved
surface and not on the structure on it; therefore, SCT is run only
once for a special curved surface, and the results can be tabulated
to be applied on any other structure placed on that surface later.
SCT links a conformal structure to a planar one whose analysis
and design procedures are much faster and may have closed-form
solutions. Reference [9] also deals with conformal structures; however,
it is just an approximation and can’t be used for rigorous scenarios.
Reference [10] solves the conformal map from a closed curve to a circle.
However, it deals with Symm’s integral equation by solving a large
system of equations, which is a time-consuming procedure even for
simple shapes. Reference [11] applies conformal maps to elongated
polygons with straight sides, but curved sides are not studied. That
work is published in applied mathematics field. Reference [12] tries
to generate suitable curved coordinates to be useful in solving fluid
flow in those coordinates. However, no plan is devised to handle
elongated regions. Reference [13] uses conformal mapping to map
cylindrical and elliptic cross-sections into rectangles, whose method
can’t be generalized to analyze an arbitrary cross-section. Up to our
knowledge, in microwave and antenna engineering no effort has been
made to obtain electromagnetic characteristics of curved microstrip
structures with arbitrary cross-section by the means of Schwarz-
Christoffel transformation.

This paper is organized as follows: first, the problem of obtaining
the guided- and radiated-wave characteristics of a patch antenna on a
parabolic surface is proposed. Then, the basic theory of modified SCT
is expressed. The modification is made in order to make SCT suitable
to deal with curved boundaries and elongated regions. Finally, this
method is applied to the main problem, and the results are verified by
the means of CST full-wave simulator.

2. PROBLEM DESCRIPTION AND BASIC THEORY

2.1. Problem at Hand

Figure 1(a) shows a conformal patch antenna with a recessed microstrip
line feed located on a singly-curved body. We assume that the substrate
is a single-layer dielectric, and the ground and microstrip traces are



Progress In Electromagnetics Research C, Vol. 38, 2013 207

(a) (b)

  

  

v

u

Figure 1. (a) A recessed line fed patch antenna on a parabolic surface.
(b) The patch and feed dimensions when exposed to no curvature.

PEC without any thickness. The goal is to obtain input impedance,
VSWR and radiation patterns of this structure.

In this case, SCT is used as a conformal map w = f(z) to map a
planar structure into a curved one. Conformal maps preserve guided-
and radiated-wave characteristics of a two dimensional structure
working in TEM mode, in which the longitudinal component of the
field is zero and hence Laplace’s equation can be applied. Conformal
maps preserve Laplace’s equation. When only one mode propagates,
microstrip structures with a dielectric other than air have a very small
longitudinal field component which can be ignored. In this case, the
working mode is called quasi-TEM and thereby, conformal mapping
yields good approximations of the electromagnetic characteristics of
the structure [14]. In this paper, we made sure that both conformal and
planar antennas work in quasi-TEM mode at the desired frequencies
using CST software facilities. The method is to monitor electric field
components at some cross-sections of the feed and the patch, and to
compare the longitudinal component of the field with transversal one.
This was done for both conformal and planar mapped structures. We
concluded that the mode is quasi-TEM when the transversal field was
much larger (at least 10 times larger) than longitudinal field. Note
that the patch antenna which works in TM010 mode, has very small
longitudinal fields in the studied frequencies, whose mode of operation
can also be considered quasi-TEM. Figure 1(b) shows the dimensions
of the patch antenna when it is not exposed to any curvature. The
proposed SCT generates a one-to-one function between points on the
curved and planar bodies, in other words, by this method both SCT
and inverse SCT are obtained. Hence, any segment on the curved
boundary corresponds to a segment with a determined length on the
planar one whose design is much easier and its simulation is much
faster.
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2.2. Modified SCT

SCT was originally utilized to map upper half plane into a polygon [15].
If the polygon has an elongation (Figure 2(a)), the points zi

(prevertices) in the z-plane which should be mapped to their
corresponding points wi in the w-plane may be too close to each
other which can’t be distinguished in any computer arithmetic system
(crowding effect). If the shape to be mapped has an elongation too, the
crowding effect may not happen. Elongated regions have large Aspect
Ratios (AR À 1), whereas regions without any elongation have aspect
ratios near to unity (AR ≈ 1). Intuitively, crowding is a helpful concept
but it is difficult to be defined precisely. Roughly speaking, the ratio of a
length in w-plane to the corresponding length in z-plane is exponential
when the shapes have very different ARs and it is linear when they have
close ARs. In w-plane, assume a length that can be understood by a
computer with a specific arithmetic precision. If the shape in w-plane
is elongated and the shape in z-plane is not elongated, the two ARs
are very different and the corresponding distance in z-plane may not
be understood by that arithmetic precision since it is exponentially
smaller than the distance in w-plane. Whereas, if both shapes are
elongated the ARs can be close to each other and the corresponding
length in z-plane is likely to be understood in that arithmetic precision.
Although, it is not guaranteed that the crowding effect never occurs
when both shapes have close ARs, practically it is a useful approach
to circumvent crowding. For more details, see [11]. The cross-section
of the configuration shown in Figure 1 can be assumed as an elongated

(a)

(b)

Figure 2. (a) A curved channel with elongated cross-section in w-
plane. (b) A straight channel in z-plane which is mapped to the curved
channel by SCT. In this paper, we assume that d = h.
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curved rectangle. Here, we use an elongated straight planar channel
extended from both sides to infinity in z-plane. To make the curved
cross-section have the same order of elongation as that of the planar
channel, we extend it linearly from both sides to infinity such that the
lines are tangent to both ends of the curved structure, as shown in
Figure 2(a). In this figure, the dashed lines are the line extensions.
The SCT that maps a straight planar channel to a polygon channel
with M straight sides, is as follows:

f (z) = A

∫ z M∏

i=1

(
e

πξ
d − e

πzi
d

)αi−1
d

(
e

πξ
d

)
+ B (1)

π(1 − αi) is the interior angle of the vertex i in a counter-clockwise
sense. A and B are two constants that determine the orientation and
location of the polygon. Rearranging the factors yields [11]

f (z) = A

∫ z M∏
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[
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π
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This is a suitable formula to map a strip into a polygon with
straight sides, however, the discussed configuration here is curved [12].
As M tends to infinity, we can rewrite (2) as

f (z) = A

∫ z
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(
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)
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where θ(δ) is the change in the direction angle of the tangent to the
curved channel boundary at the image point of the value δ. δ = x on
the planar channel lower part and δ = x + id on the planar channel
upper part.

2.3. Numerical Evaluation of Modified SCT

By decomposing the internal integration interval into N suitably small
elements, we have:

f (z) = A

∫ z

exp

(
− 1

π

N∑

i=1

∫ θi+1

θi

ln
(
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π

2d
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)
dθ(δ)

)
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By approximating θ as [12]

θi=aiδ
2
i + biδi + ci (5)

Equation (4) can be written in the following form:

f (z) = A

∫ z N∑

i=1

[
sinh

π

2d
(ξ − δi)

]− 1
π

(δi+1−δi)(2aiδi+bi)
dξ + B
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A suitably small element is the largest possible element that can be
written in the form of Equation (5). Practically, for smooth surfaces
this element becomes larger and the number of such elements decreases
and hence, the speed is enhanced.

Defining θ̄i to be the slope of the line connecting two points i and
i + 1, we can write:

θ̄i = ai

(
δi+1 + δi

2

)2

+ bi
δi+1 + δi

2
+ ci (6)

We also have

θi+1=aiδ
2
i+1 + biδi+1 + ci (7)

From (5), (6) and (7), ai, bi and ci and hence, the mapping
function is determined in terms of δi. An iterative procedure is needed
to determine δi. For the initial values, we can set

x
(0)
i = ui, (i = 1, . . . , N)

Then, we set the following rules for x
(k)
i to converge:

x
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wi is the correct value of the discretization point on the curve. In each
step, w

(k)
i is evaluated from known x

(k)
i and the iterative procedure is

continued till the error tolerance for w
(k)
i (compared with its correct

value wi) satisfies a predefined goal. Regardless of the number of
discretization points, this iterative procedure converges after a few
ten iterations. Note that two degrees of freedom are used to map −∞
and +∞ to the left- and right-ends of the infinite curve, respectively.
One degree of freedom is remained [11], so we assume x1 = u1 which
is a fixed value. A and B are used to fix the positions of w1 and
wN . In each iteration step, an integration is needed to obtain w

(k)
i .

Since there is a singularity in the integrand when ξ = δ, compound
Gauss-Jacobi quadrature is a preferred method for integration. The
detailed integration method is described in [11]. We implemented the
integration procedure in MATLAB.
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3. VERIFICATION AND DISCUSSION

As shown in Figure 1, the rectangular patch antenna on a surface
with parabolic cross-section is considered. The substrate dielectric
constant and thickness are εr = 2.2 and h = 1.588mm, respectively.
The conformal patch dimensions are W = 12 mm, W0 = 0.3mm,
s = 0.1mm, L = 9.06mm and y0 = 3 mm. SCT is used to map a
straight planar channel to a channel with parabolic cross-section in
the interval uε[0, Lw] and with the parallel-line extension elsewhere.
Assume that the patch is located on the parabola v = au2 (u and v
are in mm). For each curvature factor a, a planar patch antenna is
resulted after mapping, which is designed and simulated very fast. In
this section the methods used to generate plots are as follows: i) DA
(Direct Approach): Full-wave simulation of the parabolic structure
in CST which is a difficult and time-consuming task, ii) CM + CST
(Conformal Mapping + CST): Transforming the parabolic structure
to a planar one and then full-wave simulation of the planar antenna
in CST, iii) CM + TL Model (Conformal Mapping + Transmission-
Line Model): Transforming the parabolic structure to a planar one
and then using the transmission-line model of the planar antenna
(described in [16]) to find the input impedance, iv) CM+Cavity Model
(Conformal Mapping + Cavity Model): Transforming the parabolic
structure to a planar one and then using cavity model of the planar
antenna (described in [16]) to find the radiation-pattern. In this work,
we used a maximum number of 52 segments in order to make the
modified SCT method converge. When the run takes place on a corei7
PC with 12 Gigabytes RAM, the CM + CST , CM + TL Model, and
CM+ Cavity Model methods are about 8, 22 and 22 times faster than
DA, respectively.

Figure 3 shows the input impedance of the curved patch antenna
in terms of the curvature factor a. The curvature increases input
impedance by about 6.5|a|. This figure shows the verification of
CM+CST and CM+TL Model methods by DA. Figures 4(a) and 4(b)
show input impedance and VSWR in terms of frequency for two cases
a = 0 (when the patch antenna is exposed to no curvature) and
a = −0.2. As Figure 4 illustrates, the DA and CM + CST methods
agree well. Figure 4(a) shows the effect of curvature on real- and
imaginary parts of the input impedance of the patch antenna seen from
the feed line. Figure 4(b) shows the effect of curvature on VSWR. All
in all, curvature increases VSWR and deteriorates return-loss. As seen,
there is a very small change in the resonance frequency (fr). This can
be described by the proposed theory. The patch cavity model works
in TM010 mode and from [16], fr is mostly dependent on L and not on
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Figure 3. Input impedance in terms of |a|, computed by DA,
CM + CST and CM + TL model methods.
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Figure 4. (a) Input impedance and (b) VSWR in terms of frequency,
when the patch is exposed to no curvature and when it is curved (DA
and CM + CST methods).

W (ignoring the fringing effect). The SCT maps the two dimensional
cross-section and hence affects W , whereas, it keeps L unchanged.
Hence, there should be no change in fr. Considering fringing effect, fr

changes a bit, since in this case it depends on W . Note that both input
impedance and VSWR are functions of the characteristic impedance
(Z0) of the transmission line (TL). Since conformal mapping preserves
Z0 [14], it also preserves input impedance and VSWR of a TL.

Since the patch antenna radiating slots are the curved slots,
the conformal map is expected to preserve the radiation pattern of
the patch antenna. Note that conformal mapping preserves scalar
quantities in z- and w-planes. In w-plane, the radiation-pattern
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is a scalar quantity (electric-field magnitude) around a very large
circle. This quantity is preserved when transforming z-plane to w-
plane. However, the shape to be mapped to the far-field circle is
not necessarily a circle but a very large shape. For any angular
location, this shape is confined between two large far-field circles which
demonstrate the same far-field behavior at that angular location (far-
field radiation-patterns on those circles are independent of the distance
from the antenna). Hence, conformal mapping preserves the far-
field radiation-patterns verified in Figures 5 and 6. Figure 5(a) and
Figure 5(b) show E- and H-plane radiation patterns for different values
of a. As seen, the two CM + CST and DA methods agree well. As
the curvature factor (a) increases, the conformal patch antenna covers
a wider range of angles in H-plane, however, no change occurs for that
in E-plane (Figure 1(a)). Hence, H-plane radiation pattern becomes
broader but the E-plane beamwidth is expected to remain unchanged.
On the other hand, based on the proposed method, as a increases,
the mapped planar patch attains a smaller width (W ). Based on
cavity model formulas described in [16] for a planar rectangular patch
antenna, change in W does not affect E-plane beamwidth but as W
decreases, H-plane pattern becomes broader. Hence, both physical and
analytical explanations of this phenomenon agree well with each other.
Figure 6 compares CM+ Cavity Model and DA methods for E- and
H-plane radiation-patterns. As it is clear, the patch antenna cavity
model can’t predict back lobes. As Figure 2 shows, theoretically both
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(a) (b)

Figure 6. Radiation patterns of patch antenna obtained for a = −0.2,
by DA and CM + Cavity model methods. (a) E-plane. (b) H-plane.

conformal and mapped planar structures are assumed to be infinitely
long and hence have no back lobes. However, for numerical calculations
the infinite intervals are truncated and hence the antennas have finite
lengths and finite ground-planes which results in back-lobes. There is
almost agreement between the two methods in the main lobes.

4. CONCLUSION

A general cross-section for a conformal structure on a dielectric
substrate is a region (sometimes elongated) with curved boundaries.
In this paper, the Schwarz-Christoffel mapping is modified to deal
with elongated regions with curved boundaries. Segmentation of the
curved boundary is used to evaluate SCT numerically. Each segment
is approximated by a second degree polynomial. A relatively small
number of segments make the approaches converge for smooth curves
and yield both SCT and inverse SCT numerically. This theory is
verified by computing the input impedance, VSWR and radiation
patterns of a patch antenna on a parabolic surface and comparing
them with CST full-wave simulator results.
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