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Abstract—We propose a combination chaotic map (CCM) signal
model to resolve the limited-word-length problem in digitally realizing
chaotic signals used for noise radar. The proposed CCM has
approximated infinite dimension, much more complicated phase space
structure as well as better chaotic properties. The radar signal based
on CCM presents much lower PSLR of auto-correlation as well as much
flatter power spectrum, so it is very suitable for generating wide-band
radar signal. Simulation experiments are conducted to show the good
performance of the signal.

1. INTRODUCTION

Chaotic signal is one kind of pseudo-noise signals generated from
deterministic system. Chaotic signal may vary significantly if initial
condition fluctuates, and it is also non-periodic and unpredictable in
long time [1]. Chaotic noise signals have shown very good properties
in radar applications [2–4], and radar signals generated from chaotic
map have shown very good performance of high range resolution, low
probability of intercept and interference, and optimum use of frequency
spectrum [5–8]. Compared with other noise signals, chaotic signals
are much easier to generate and control with low cost. Therefore,
chaotic signals are more and more widely paid attention to in radar
field recently.

However, the sidelobes of some radar signals generated from
chaotic map are not so good, so they are not suitable for high
resolution radar imaging [9, 10]. To lower the sidelobes of radar
signals based on chaotic map, Reference [11] suggested making use

Received 17 November 2012, Accepted 28 December 2012, Scheduled 3 January 2013
* Corresponding author: Qilun Yang (yangqilun110@163.com).



58 Yang, Zhang, and Gu

of the chaotic weak-structure property to produce chaotic map, based
on this idea Multi-Segment Bernoulli (MSB) system was proposed;
Reference [12] suggested utilizing high dimensional chaotic map with
more complicated phase space structure to generate chaotic frequency
modulated (FM) radar signal; Reference [13] took advantage of Hyper
Chaotic Logistic Phase Coded (HCLPC) signal along with Tikhonov
regularization method to lower sidelobes. Nonetheless, all of these
methods didn’t take limited quantization word length (LQWL) into
consideration when digitally realizing chaotic maps. In real digital
system, quantization word length is limited when digital device is
used to realize chaotic map, and the usual maximum quantization
word length is about 14 bits in DDS (Direct Digital Synthesizer)
nowadays [14]. As we know, chaotic signals produced from digital
device are pseudo-random signals essentially, whose maximum period
is restricted by LQWL. For example, when LQWL is M , the maximum
period of one-dimensional chaotic signals cannot exceed 2M , while N -
dimensional chaotic signals cannot exceed 2NM .

To resolve the effect of LQWL on chaotic map and get much better
noise radar signal, we first propose a combination chaotic map (CCM),
and then apply it to generating FM radar signal. Owing to the much
more complicated phase space structure, combination map has been
applied to communication and image encryption [15–17], but little to
radar field at present. The proposed CCM in this paper is made up
of Logistic map and Bernoulli map. Here, the Logistic map is used
to produce the parameters used for Bernoulli maps, and the Bernoulli
mapping sequences with different parameters are combined to finally
get the CCM.

The rest of the paper is organized as follows. In Section 2, the
generation of CCM, as well as the thus generated FM radar signal is
introduced. In Section 3, the characteristics of approximated infinite
dimension of the CCM are shown. In Section 4, the good performance
of the CCM and the corresponding FM radar signal are tested. Finally
Section 5 concludes the paper.

2. FM RADAR SIGNAL BASED ON CCM

2.1. Generation of CCM

The form of one-dimensional chaotic map can be expressed as f :
φ → φ, let φ (n∆t) be the discrete form of φ (t), then

φ[(n + 1)∆t] = φn+1 = f [φ(n∆t)] (1)

where ∆t represents sampling interval, and f(·) is a nonlinear
mapping function, making the sequence {φ0, φ1, . . ., φn} exhibit fractal
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behavior [18].
Logistic map [19] is a well-known nonlinear map which can be

formulated as
xn+1 = f(xn) = u · xn · (1− xn) 0 < xn < 1 (2)

where u is the control parameter, and Logistic map will exhibit chaotic
behavior when 3.569945 < u ≤ 4.

Bernoulli map [20, 21] can be defined as:

xn+1 = f(xn) =





Bxn +
1
2
, xn < 0

Bxn − 1
2
, xn ≥ 0

−1
2
≤ xn ≤ 1

2
(3)

To guarantee Bernoulli map be of chaotic property, B should be chosen
between 1.4 and 2.

Both Logistic map and Bernoulli map are one-dimensional chaotic
maps. As pseudo-random sequence, the maximum period of both
Logistic and Bernoulli sequences will not exceed 2M when LQWL is
M . In order to improve the chaotic property of chaotic sequences and
increase their periods when quantization word length is limited, this
paper proposes a CCM by using the above Logistic map and Bernoulli
map, where the Logistic map is used to produce parameter B needed
for Bernoulli map, then Bernoulli sequences with different parameters
can be combined to get CCM sequence. The form of CCM sequence
{φ} can be expressed by the following equation:




xm+1 =u · xm · (1− xm) 0<xm <1
Bm =1.4 + 0.6 · xm 0≤m≤M

ym,n+1 =g(ym,n) =
{

Bmym,n + 0.5, ym,n <0
Bmym,n − 0.5, ym,n≥0 0≤n≤N

Φ={{y0,0, y0,1, . . . , y0,N}, {y1,0, y1,1 . . . , y1,N},
. . . , {yM,0, yM,1, . . . , yM,N}}

(4)

where {xn} is the Logistic sequence. In view of the fact that the
boundary of Logistic sequence is 0 < xn < 1, and the limit of parameter
B is 1.4 < B < 2, one can let Bm = 1.4 + 0.6 · xm. Figure 1 shows the
structure of CCM.

2.2. FM Radar Signal Based on Chaotic Map

The form of FM radar signal based on chaotic map can be expressed
as follows:

s(t) = A exp[j2πKΦ(t)] = A exp


j2πK

t∫

0

φ(u)du


 (5)
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Figure 1. The structure of CCM.

where A is the amplitude of radar signal and K the coefficient of
frequency modulation. The K · φ (t) term indicates the instantaneous
frequency of radar signal, and the frequency interval of s (t) is
K · φmin(t) ≤ f ≤ K · φmax(t). The Nyquist theorem should be
guaranteed when sampling the radar signal without distortion, i.e.,
fs ≥ K · [φmax(t)− φmin(t)], so the sample interval is ts = 1/fs.

The discrete form of s (t) can be then expressed as:

s(n ·ts) = A exp



j2πK

n·ts∫

0

φ(u)du



 = A exp

{
j2πK

n∑

i=0

φi · ts
}

(6)

Under the condition of φmin(t) = −1
2 , φmax(t) = 1

2 , as well as let
ts = 1/fs = 1/K, (6) can then be transformed into the following form:

s(n) = A exp

{
j2π

n∑

i=0

φi

}
= A exp

{
j2πφ0 + j2π

n∑

i=1

φi

}
(7)

3. ANALYSIS OF APPROXIMATE INFINITE
DIMENSION ON CCM

In this section we will show by simulation that the sequences are
uncorrelated for two Bernoulli maps with different parameters of B1

and B2, though the difference is very tiny. In the simulation, we
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Figure 2. Comparison between normalized auto-correlation and cross-
correlation. (a) Bernoulli sequence with different parameters having a
difference of 1/106. (b) Gauss noise sequence.

set B1 = 1.5, B2 = 1.500001, i.e., the difference between B1 and
B2 is as small as 1/106; the sequence length is set to be 2000. To
ensure reliable simulation, we generate the Bernoulli map 50 times
with random initial conditions, and then average the obtained 50
auto-correlations and cross-correlations. Figure 2 shows the simulation
result, from which one can see that the normalization cross-correlation
of Bernoulli sequences is below −40 dB, it is close to cross-correlation
of Gauss noise sequences. Therefore, the Bernoulli sequences with
different parameters can be regarded as uncorrelated.

The property of Bernoulli sequence is only determined by
parameter B, and the Bernoulli sequence corresponding to a certain
B has one dimension. If we do not take LQWL into account,
then the number of parameter Bm produced from Logistic map
could approach infinite because of chaotic property, that is to say
the number of Bernoulli sequences corresponding to Bm approaches
infinite. Therefore, when we combine Bernoulli sequences with
approximately infinite Bm to get CCM sequence, the CCM sequence
will have approximated infinite dimension as well [22].

If LQWL is considered, the chaotic map will become pseudo-
random sequence with periodicity definitely. When the length of
chaotic mapping sequence is longer than the period, the sequence
will repeat. For example, if the quantization word length is M , the
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maximum sequence periods of both Logistic and Bernoulli map will not
exceed 2M . However, if the Logistic sequence’s period is 2M1 (M1 ≤ M)
and the Bernoulli sequence’s period is 2M2 (M2 ≤ M), then the CCM
sequence’s period will be at the magnitude of 2M2 · 2M2 . . . 2M2︸ ︷︷ ︸

2M1

=

2M1·M2 , so the period of CCM sequence can be much longer than that
of Logistic and Bernoulli maps.

4. PERFORMANCE OF CCM AND THE
CORRESPONDING FM SIGNAL

4.1. Performance of CCM

Figure 3 shows the phase space structure of CCM and that of Logistic
and Bernoulli maps. In the simulation, the initial values are selected
randomly within range, and the parameters are selected as u = 4 for
both Logistic map and CCM, and B = 2 for Bernoulli map. The
structure of Logistic map’s phase space and that of Bernoulli map’s
phase space are one-to-one correspondence, so the structures are robust
and distinct, and at the same time, they can be easily recognized and
reconstructed [23, 24]. However, the CCM’s phase space structure is
one-to-many correspondence, it is to say even we know the CCM’s
value and phase space structure at present, we can’t predict its values
in future, so CCM is of very good confidentiality characteristic.

Figure 4 shows the auto-correlation of CCM, as well as comparison
with that of Logistic and Bernoulli maps. Figure 4(a) gives the results
of auto-correlation of the three chaotic mapping sequences without
considering the effect of LQWL, and Figure 4(b) shows the results
obtained when 14-bit of LQWL is considered. The sequence length in
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Figure 3. The phase space structures of the Logistic, Bernoulli and
Combination chaotic maps.
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Figure 4. Auto-correlations of the sequences of Logistic, Bernoulli and
Combination chaotic maps. (a) Without considering LQWL. (b) 14-bit
of LQWL considered.

the simulation is 1000. To guarantee reliability, we conduct sequence
simulation 50 times with random initial conditions, and then average
the auto-correlations.

From Figure 4(a) one can see that when we do not take LQWL into
consideration, the performances of the all auto-correlations are very
similar with PSLR around −31.5 dB. However, when 14-bit LQWL is
considered, the performance deteriorates remarkably for the Logistic
and Bernoulli maps, with PSLRs increasing to −1.5 dB and −10 dB,
respectively, but it almost has no change for CCM. It is clearly shown
that the LQWL effect destroys the chaotic properties of Logistic and
Bernoulli maps, while has little impact on CCM.

It is well known that entropy can be used to measure the
randomness of variable, the bigger the entropy, the more random the
variable, or the smaller the entropy, the less random the variable. For
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continuous variable, the entropy is defined as:

S = −
∫ ∞

−∞
p(x) ln[p(x)]dx (8)

where x is the corresponding continuous variable and p (x) is its
probability density. For discrete variables, the entropy [25] is defined
as:

S = −
M∑

k=1

Pk ln[Pk] (9)

where M is the number of segments within range and Pk the probability
of variable in the kth segment. In the following, we shall conduct
comparison between the entropies of CCM, Logistic map and Bernoulli
map. Figure 5 presents the simulation results, from which one can see
that when neglecting the LQWL effect, the entropy of CCM is almost
the same as that of Bernoulli map, and the entropy of Logistic map
is the smallest. It means that the CCM and the Bernoulli map have
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Figure 5. Entropies of CCM, Logistic map and Bernoulli map.
(a) Entropies without considering the LQWL effect. (b) Entropies
with LQWL of 14-bit. (c) The entropy decrement between (a) and
(b).
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almost the same randomness, while the randomness of Logistic map
is the worst. When the LQWL of 14-bit is used, the entropies of
Bernoulli map and Logistic map decrease remarkably as the sequence
number increases, while the entropy of CCM changes very little as
shown in Figure 5(c). The results indicate that the Logistic and
Bernoulli map are susceptible to LQWL, while the CCM is robust to
LQWL. The reason is because both Logistic map and Bernoulli map
is one-dimensional chaotic map with finite dimension, while the CCM
has approximate infinite dimension. As pseudo-random sequence, the
period of CCM is much longer than that of Logistic and Bernoulli
maps.

4.2. Performance of FM Radar Signal Based on CCM

The auto-correlation of radar signal reflects the range resolu-
tion [26, 27], which can be expressed as:

R(τ) = E {s(t)s∗(t + τ)} (10)

where τ is the time delay. The discrete form of (10) is:

R(m) = E {s(n)s∗(n + m)} (11)

In order to evaluate the performance of FM radar signal based
on CCM, we conduct simulation for two cases as before: (a) without
considering LQWL, (b) set the LQWL to be 14-bit. In the simulation,
the signal’s time duration is 10µs, number of samples is 1000, and the
corresponding bandwidth is 100 MHz. Owing to chaotic sequence’s
pseudo-random property, we realize FM radar signal based on chaotic
map with random initial condition 50 times and then average these
auto-correlations to guarantee simulation’s reliability.

The simulation results are shown in Figure 6, which clearly shows
that when we neglect the effect of LQWL, the auto-correlation’s
PSLRs for Logistic, Bernoulli, and CCM are −11.2 dB, −27.1 dB and
−28.1 dB, respectively. However, when the LQWL is set to be 14-bit,
the PSLRs of the three FM radar signals become to −12 dB, −14.7 dB
and −27.8 dB, respectively, and evenly, there appears grating lobes
in Logistic map case. Obviously, the performances of both Logistic
map and Bernoulli map based FM signals degraded remarkably, but
the performance of CCM based FM signal keeps unchanged. It is to
say the Logistic map and Bernoulli map based FM signals are greatly
affected by the LQWL effect, but the CCM based FM signal is almost
unaffected.

In the following, we will further use power spectral density to
evaluate the performances of FM signals. According to Weiner-
Khintchine Theorem, the power spectral density of a signal is the
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Figure 6. Auto-correlations of the FM signals based on the Logistic,
Bernoulli and Combination chaotic maps. (a) Without considering
LWL. (b) LWL is set to be 14-bit.

Fourier transform of its auto-correlation. For getting reliable results,
the periodogram is used to estimate the power spectrum. We first
generate FM radar signals with random initial value 50 times, and then
average the auto-correlations. After performing Fourier transform to
the averaged auto-correlation, we get the following periodogram:

P (f) = DFT

{
1
M

·
M∑

k=1

Rk

}
(12)

where Rk is the kth auto-correlation of FM radar signal. The
simulation results are presented in Figure 7. Figure 7(a) is the power
spectra without considering the LQWL, and Figure 7(b) is the power
spectra when the LQWL is set to be 14-bit.
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Figure 7. Power spectra of the FM signals based on the Logistic,
Bernoulli and Combination chaotic maps. (a) Without considering
LWL. (b) LWL is set to be 14-bit.

From Figure 7 one can see that when neglecting LQWL effect,
the power spectrum of Bernoulli map based FM signal is as good as
that of CCM, and the power spectrum fluctuate within 5 dB, while
the power spectrum of Logistic map based FM radar signal fluctuates
over 15 dB. When the LQWL is set to be 14-bit, the power spectra of
both Logistic and Bernoulli maps based on FM signals fluctuate much
more dramatically. In fact, the power spectrum of Logistic map case
fluctuates over 30 dB, and the power spectrum of Bernoulli map case
fluctuates about 25 dB. However, the power spectrum of CCM case is
almost unchanged with fluctuation within 5 dB as before.

To further show how the signal bandwidth affects the power
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Figure 8. The power spectra of radar signals based on Logistic,
Bernoulli and Combination chaotic maps. (a) Without considering
LWL. (b) The LWL is set to be 14-bit. (c) Variance increment of
power spectra between (a) and (b).

spectra quantitatively, we calculate the variance of power spectra. As
we know, the smaller the variance is, the more flat the power spectrum
should be; and on the contrary, the bigger the variance is, the less flat
the power spectrum should be. In the simulation, the signal duration
is 10 µs with bandwidth varies from 50MHz to 200 MHz at step of
10MHz. Same as above, we calculate them for two cases, i.e., (a)
without considering LQWL, (b) the LQWL is set be 14-bit. The
simulation results are presented in Figure 8.

Figure 8 shows that, when neglecting LQWL effect, the variance
of power spectrum of Bernoulli map based FM signal is close to that of
CCM, while the power spectrum variance of the Logistic map based FM
signal is the biggest. When the LQWL is set to be 14-bit, the variance
variations of both the Logistic and Bernoulli maps based signal power
spectra increase as the signal bandwidth increases, but it is almost kept
unchanged for CCM based signal. This means that the CCM based
FM signal is very appropriate for wide-band radar.
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5. CONCLUSION

A CCM is proposed in order to overcome the drawback of bad resistant
capability of LQWL to one-dimensional chaotic sequence. The CCM
is constructed by using the Logistic map and the Bernoulli map. In
fact, it can also be constructed by using other chaotic maps. We use
the Logistic map to produce the parameters for Bernoulli map, and
then combine the Bernoulli map generated sequences with different
parameters to get the final CCM sequence.

The good performance of the proposed CCM is analytically shown
and tested through simulation. The results indicate that the CCM has
approximate infinite dimension because it has more complicated phase
space structure, and its chaotic property is much better. As a pseudo-
random sequence, the CCM generated sequence has much longer period
than that generated by Logistic and Bernoulli maps when LQWL is
considered.

We further show through simulation that the CCM based FM
radar signal has superior performances. The PSLR of its auto-
correlation is much lower and stable even when LQWL of 14-bit is
used. The power spectrum is very flat, and at the same time the power
spectrum variance is very stable as the signal bandwidth increases, so
it is very suitable for realizing wide-band signal and achieving high
resolution radar imaging. In the future, the proposed signal model will
be implemented into an existing experimental radar system and tested
by real experiment.
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