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Abstract—An original target identification method using Wave-
Coefficients (WCs) as feature vector is proposed. The scattering fields
of arbitrary shaped targets are expressed as a sum of spherical waves
and the distinctive coefficients are exploited as the target feature.
Decision rule based on correlation coefficient is established, and some
analyses on the properties of the WCs are conducted. Numerical
simulations of four targets are carried out and the recognition
performances without and with noise are provided and discussed.

1. INTRODUCTION

Target identification has been a hot topic even since the invention of
radar. It includes two essential steps: (1) selection and acquisition of
feature vectors for the known targets to form a training database, and
(2) extraction of feature vector from received responses and comparison
with those of stored targets to make a decision by some rules.

The radar target identification can be realized using various target
features, such as high resolution range profiles (HRRP) [1–5], synthetic
aperture radar (SAR) [6–9] and inverse synthetic aperture radar
(ISAR) [10, 11] images, natural frequencies [12–16] and the RCS (radar
cross section) data [17]. The HRRPs and RCSs of a target are easy
to get, but are highly sensitive to the orientation of the targets. The
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SAR and ISAR images are usually used for ship target identification.
However, the obtaining of SAR and ISAR images is usually time-
consuming and sometimes difficult. Identification methods based on
the natural frequencies were considered to be promising, either by
directly matching the natural frequencies or via the E-pulse techniques,
because the natural frequencies are independent of the target-aspect.
However, the energy contained in the late-time part is too weak and
high Signal-to-Noise-Ratio (SNR) is hard to achieve.

In this paper, we develop a new target identification method
based on wave-coefficients. The concept of wave-coefficients of two-
dimensional (2D) objects was advanced in [18] and extended to three-
dimensional (3D) objects in [19]. The proposed method can be applied
to any a frequency range, with increased insensitivity to aspect angle at
lower frequencies. However, if the frequencies are chosen too low, the
targets are equivalent to point target, the proposed wave-coefficients do
not embrace enough target discriminant information for recognition.
The frequency range in resonance region is suggested in this paper.
Simulation results show that the wave-coefficients can tolerate big
aspect variation, yielding a significant advantage in saving memory
space for establishing the template database. A simple decision rule
based on correlation coefficient is established. Numerical experiments
of four targets are conducted and identification performances with and
without noise using the proposed scheme are presented.

In the following, Section 2 formulates the methodology. Section 3
presents the classifier and the recognition scheme. Some analyses on
the properties of the WCs and recognition performances with and
without noise based on WCs are given in 4. Finally, Section 5 is
reserved for some concluding remarks.

2. BASIC PRINCIPLES

Consider that a plane wave is impressing on a conducting target with
arbitrary shape. If the target were a sphere, the incidence were along
the z-axis, and the electric field were polarized in x-direction, the
scattered field of θ-component can be written as [20]

Es
θ = −E0 cosφ

kr

∞∑

n=1

jn (2n + 1)
n(n + 1)

{
PnanĤ(2)

n (kr)P (1)
n (cos θ)

−jQnbnĤ(2)′
n (kr)

[
cos θP (1)

n (cos θ)− γnP 2
n(cos θ)

]}
(1)

where γn = 0 if n = 1 and 1 otherwise, and the coefficients Pn’s
and Qn’s are identically to be 1 for a sphere target. k = ω/c is the
wave number, r the distance between radar and the target, and ae
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an effective radius defined by ae = d/2 with d the minimum diameter
of the sphere that encloses the target. Ĵn(χ) and Ĥ

(2)
n (χ) are the

Ricatti-Beseel and Rcatti-Hankel functions defined as Ĵ
(2)
n (χ) = χjn(χ)

and Ĥ
(2)
n (χ) = χh2

n(χ) with jn(χ) and h2
n(χ) the spherical Bessel and

Hankel functions, respectively. Pm
n (cos θ) is the associated Legendre

Polynomial, and P
(1)
n (cos θ) = ∂P 1

n (cos θ) /∂(cos θ). The an and bn in
(1) are

an(k) = Ĵn (kae) /Ĥ(2)
n (kae) , bn(k) = Ĵ ′n (kae) /Ĥ(2)′

n (kae) (2)

In practice, the target is not a sphere, and the incidence is also
arbitrarily relative to the orientation of the target. However, we may
still write the scattered fields in the same form as (1) by modifying
the coefficients Pn’s and Qn’s, which are called the Wave-Coefficients
(WCs) in this work. They are assumed to be dependent on the incident
direction, but not sensitive to the angular frequency ω. Radar target
recognition is usually a far-field inverse scattering problem, thus using
the asymptotic formula

Ĥ(2)
n (χ) = χh(2)

n (χ) =
√

πχ

2
H

(2)

n+ 1
2

(χ) = e−j(χ−nπ/2−π/2) (3)

and substituting it into (1), we get

Ẽs
θ =

jE0 cosφ

k
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n=1

(2n + 1)
n(n + 1)

{
PnanP (1)

n (cos θ)

+Qnbn

[
cos θP (1)

n (cos θ)− γnP 2
n(cos θ)
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(4)

where Ẽs
θ = Es

θ · r/e−jkr. The WCs may be extracted by many
means, and a way termed “Galerkin match” is suggested in this study.
Actually, Ẽs

θ may be seen as an expansion by the “basis” functions
an(k) and bn(k), thus, we match (4) by using the same “basis” function
as the “weighting” functions. Multiply both sizes of (4) by a∗m(k) and
b∗m(k), where “∗” denotes the complex conjugate, and integrate over
the frequency band. We have

2N∑

n=1

CmnBn = gm, m = 1, 2, . . . , M, M ≥ N (5)

where N is the truncation terms, and B, gm and Cmn are given as
follows:

Bn =
[

Pn

Qn

]
, Cmn =

[
C1

mn

C2
mn

]
, and gm =

[
g1
m

g2
m

]
(6)
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with

C1
mn =
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kmax∫
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θ(k)kdk (8)

The C2
mn and g2

m are the same as C1
mn and g1

m just by replacing a∗m(k)
with b∗m(k) in the formulae.

The left hand of (4) is obtained by numerical simulation using
the method of moments (MoM). The Wave-Coefficients (WCs) are
obtained through solving (5) by the method of least square (LS). The
backscattering (φ−φi = ±π, θ + θi = π) circumstance is considered in
this study. It should be mentioned that if the actually received fields
in time domain is ER

θ (t), then Es
θ(ω) = ER

θ (ω)/A(ω) is used, where
ER

θ (ω) is the frequency spectrum of ER
θ (t) and A(ω) is the frequency

spectrum of the radar waveform.

3. CLASSIFIER AND RECOGNITION SCHEME

The right hand of Equation (5) varies with the incident angle, while
Cmn is independent of the incident angle; consequently, the WCs
change with the incident angle. The Correlation Coefficient is used
to evaluate the similarity of two feature vectors (namely two set of
WCs in this work). Let B(i, j) = {Bn(i, j) : n = 0, 1, . . . , N}be
the j-th feature vector stored in the database for the target i, and
let X = {Xn : n = 0, 1, . . . , N} be an incoming feature vector belonging
to an unknown target to be compared. The Correlation Coefficient is
defined as

C(i, j;X) =

∣∣∣∣
N∑

n=0
Bn(i, j) ·X∗

n

∣∣∣∣
√

N∑
n=0

|Bn(i, j)|2 ·
N∑

n=0
|Xn|2

(9)

where the asterisk denotes the complex conjugate. It is clear that
0 ≤ C ≤ 1 and C = 1 if and only if the two feature vectors are
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in proportion. The Correlation Coefficient is an intuitive measure of
similarity between the two feature vectors. As a result, for a pre-
estimated incident direction denoted by j0, the Correlation Coefficient
value for the target i is C(i, j0;X), and the unknown target will be
judged to be the target i0 if the maximum Correlation Coefficient value
is produced for i = i0.

Using the above decision rule, the proposed recognition procedure
goes as follows:

Step 1: Build the database containing the WCs of K preselected
targets at aspects of interest. Denote it by Bi(θ, φ) for each target i
at the azimuth (θ, φ). The sampling interval δθ and δφ is determined
by the WCs’ sensitivity to incident angle θ and φ which is studied in
the next section.

Step 2: Obtain the input WC X(θ0, φ0) of an unknown target and
estimate its aspect (θ0, φ0) with respect to the radar. Denote them by
(θ̃0, φ̃0).

Step 3: Suppose the estimated errors are within ±∆θ and ±∆φ,
respectively. Find all

{
Bi(θ, φ)/θ̃0 −∆θ ≤ θ ≤ θ̃0 + ∆θ, φ̃0 −∆φ ≤ φ

≤ φ̃0 + ∆φ
}

from the database, and compute the Correlation
Coefficient {C(X, Bi)/1 ≤ i ≤ K}.

Step 4: Identify the unknown target to be the one that has the
maximum Correlation Coefficient.

4. NUMERICAL EXPERIMENTS

Consider the coordinate system shown in Figure 1. The spherical
coordinate system is defined as (r, θ, φ) where r is the distance from
the observation point to origin, θ is the elevation angle and φ is the
azimuthal angle. Assume that there are four types of known aircrafts
including target No. 1, target No. 2, target No. 3 and target No. 4. The
geometrical models for these four types of known planes are shown in
Figure 2. The head of the plane is in the −x-direction, and the left-
wing is in the y-direction. The centers of the planes coincide with the
origin. They have the same length of 2.0 meters; their widths are 1.04
meters, 1.29 meters, 1.29 meters and 1.8834 meters, respectively; and
their heights are 0.4 meters, 0.225 meters, 0.374 meters and 0.1 meters,
respectively. The frequency band is chosen to be 300 ∼ 600MHz in
this paper.

In the following, the distinction of the wave-coefficient is discussed
in Section 4.1. Then the WC’s sensitivity to the aspect angle is
detailedly investigated in Section 4.2. The identification performances
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Figure 1. Coordinate system.
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Figure 2. The geometrical models for the four types of known
planes: (a) Target No. 1, (b) target No. 2, (c) target No. 3, and
(d) target No. 4.

based on WCs without and with noise will be presented in Sections 4.3
and 4.4, respectively.

4.1. Distinction of the Wave-coefficient

The truncation term is taken to be N = 20(Pn : 1 ≤ n ≤ 20, Qn : 1 ≤
n ≤ 20), so that only 40 coefficients are extracted. The typical WCs
of the target No. 1 and target No. 3 are shown in Figure 3.

From Figure 3 we can see that the WCs of different targets have
significant differences from each other, which indicates that the WCs
have obvious target distinction.
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Figure 3. The WCs for incident angle θi = 180◦, φi = 0◦: (a) Pn of
target No. 1, (b) Qn of target No. 1, (c) Pn of target No. 3, and (d) Qn

of target No. 3.

4.2. The WCs’ Sensitivity to Aspect Angle

The Correlation Coefficient is referred to as complex or absolute
depending on whether the complex wave-coefficients or the absolute
values of the wave-coefficients are used in the feature vector
presentation. Both complex and absolute Correlation Coefficients of
adjacent aspect are calculated to examine the tolerance of angular
estimation errors. To study the WCs’ sensitivity to the target-
aspect, an angle matching width (AMW) is introduced. δ is a
prescribed Correlation Coefficient threshold, matching width is defined
as AMW = α2 − α1, where α1 and α2 are respectively the minimum
and maximum values that satisfy

C (i0, αl;α0) ≥ δ, l = 1, 2 (10)

in which α0 is called the middle angle. Next, AMW for each target
is examined in two middle elevation angles, they are θ0 = 104◦ and
θ0 = 164◦, respectively. The azimuth search window is ∆θ = ±10◦.
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The results are plotted in Figure 4.
Figure 4 shows that the AMW varies from target to target. For a

given target, the AMW changes along with the middle angle. Suppose
that a matching tolerability of 10% is acceptable (C > 0.90). In
Figure 4(a), the widest AMW for the four targets is wider than 20◦
and at least 16◦; in Figure 4(b), the widest AMW for the four targets
is wider than 16◦ and at least 6◦; in Figure 4(c), the widest AMW
for the four targets is wider than 20◦ and at least 18◦; in Figure 4(d),
the widest AMW for the four targets is wider than 20◦ and at least
16◦. It can be seen that complex Correlation Coefficients are more
sensitive to aspect. Therefore, a finer angular sampling interval would
be required, leading to a bigger target database. On the other hand,
the absolute identification has better tolerance of angular estimation
error. When constructing the feature vector template database, if we
investigate the matching width in all the aspect of interest (because
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Figure 4. Complex (upper) and absolute (under) AMW for the
targets: (a) Middle angle θ0 = 104◦, (b) middle angle θ0 = 164◦,
(c) middle angle θ0 = 104◦, (d) middle angle θ0 = 164◦.
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of symmetry, the aspect of interest is 0◦–180◦), the sampling interval
δθ should vary with the aspect angle. Thus the number of template
wave-coefficients stored in the data base for the targets can be greatly
reduced.

4.3. Identification Performance Without Noise

For each object two independent experiments are carried out at two
elevation angles: θ = 0◦ and 6◦. For each elevation angle the object is
rotated from φ = 0◦ to 180◦ with an increment of 10◦. For convenience
of description, we list the notations that will be used in the following.
Table 1 lists the data set used. Each data set consists of wave-
coefficients of four targets. A data set tag is appended to each name.
For example, No. 2-2 denotes data of the second target in the data set
DATA2.

In this subsection, we consider the situation in which the elevation
angle of the input target is different from that of the database. The
database is DATA-1, and the input vectors are from DATA-2. It is
noted that there is a 6◦ difference in elevation between the target
arrangements used in DATA-2 and DATA-1. The aspect angles for
testing are uniformly sampled and they are φ = 5◦, 15◦, . . . , 175◦. The
complex and absolute Correlation Coefficients between the test target
and the four known targets at all the 18 testing aspect angles are
shown in Figure 5, the test target is supposed to be target No. 1.
In Figure 5(a), the complex Correlation Coefficient is utilized. The
average Correlation Coefficient of the 18 testing aspect angles is 0.9659
to target No. 1, 0.4706 to target No. 2, 0.4354 to target No. 3 and 0.4320
to target No. 4. In Figure 5(b), the absolute Correlation Coefficient
is used. The average Correlation Coefficient of the 18 testing aspect
angles is 0.9833 to target No. 1, 0.7503 to target No. 2, 0.6770 to
target No. 3 and 0.8860 to target No. 4. Both figures show that the
known target of No. 1 has the biggest Correlation Coefficient, i.e.,
resembles the test target most. The identification results are right at
all the 18 testing aspect angles and then the successful identification
rate is 18/18 = 100%. The discrimination capability can be defined as
the discrepancy in the best and the second-best average Correlation

Table 1. Notation of the data set.

Data set Elevation angle Sampling increment in azimuth
DATA-1 0◦ 10◦

DATA-2 6◦ 10◦
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Figure 5. The Correlation Coefficients between the test target (i.e.,
target No. 1 in the first instance) and the four known targets at all
the 18 testing aspect angle of φ: (a) Complex situation, (b) absolute
situation.
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Figure 6. The Correlation Coefficients between the test target (i.e.,
target No. 2 in the second instance) and the four known targets at all
the 18 testing aspect angle of φ: (a) Complex situation, (b) absolute
situation.

Coefficient. Under this definition, the discrimination capability is
0.4953 for Figure 5(a), and is 0.0973 for Figure 5(b). This means that
the complex Correlation Coefficient has better discriminating ability
than absolute Correlation Coefficient. It is also seen from Figure 5(a)
that significant differences exist between the matched and mismatched
targets. On the other hand, the absolute identification is usually based
on small or even negligible differences; however, as discussed above, this
method has wider AMW.

In Figure 6, the test target is supposed to be target No. 2. In
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Figure 6(a), the complex Correlation Coefficient is utilized. The
average Correlation Coefficient of the 18 testing aspect angles is 0.5345
to target No. 1, 0.9506 to target No. 2, 0.8714 to target No. 3 and 0.3690
to target No. 4. In Figure 6(b), the absolute Correlation Coefficient
is used. The average Correlation Coefficient of the 18 testing aspect
angles is 0.6947 to target No. 1, 0.9785 to target No. 2, 0.9039 to target
No. 3 and 0.7652 to target No. 4. Both results show that the known
target of No. 2 resembles the test target most. The recognition results
are correct at all the 18 testing aspect angles and then the successful
identification rate is 18/18 = 100%. The discrimination capability is
0.0792 for Figure 6(a), and is 0.0746 for Figure 6(b). This means that
the complex Correlation Coefficient has better discriminating ability
than absolute Correlation Coefficient. We find that the discrimination
capability is small mostly due to the structural similarity between No. 2
target and No. 3 target.

In Figure 7, the test target is supposed to be target No. 3. In
Figure 7(a), the complex Correlation Coefficient is utilized. The
average Correlation Coefficient of the 18 testing aspect angles is 0.4310
to target No. 1, 0.8018 to target No. 2, 0.9413 to target No. 3 and 0.4160
to target No. 4. In Figure 7(b), the absolute Correlation Coefficient is
applied. The average Correlation Coefficient of the 18 testing aspect
angles is 0.7047 to target No. 1, 0.9544 to target No. 2, 0.9768 to
target No. 3 and 0.7394 to target No. 4. Both figures show that the
known target of No. 3 resembles the test target most. The identification
results are correct at all the 18 testing aspect angles for Figure 7(a) and
then the successful identification rate is 18/18 = 100%, however, the
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Figure 7. The Correlation Coefficients between the test target (i.e.,
target No. 3 in the third instance) and the four known targets at all
the 18 testing aspect angle of φ: (a) Complex situation, (b) absolute
situation.
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recognition results are wrong at 2 testing aspect angles for Figure 7(b)
and then the successful identification rate is 16/18 = 88.9%. The
discrimination capability is 0.1395 for Figure 7(a), and is 0.0973 for
Figure 7(b). This indicates that the complex Correlation Coefficient
has better discriminating ability than absolute Correlation Coefficient.
The discrimination capability is small mostly due to the structural
similarity between No. 3 target and No. 2 target.

In Figure 8, the test target is supposed to be target No. 4. In
Figure 8(a), the complex Correlation Coefficient is utilized. The
average Correlation Coefficient of the 18 testing aspect angles is 0.5846
to target No. 1, 0.2159 to target No. 2, 0.3787 to target No. 3 and 0.8710
to target No. 4. In Figure 8(b), the absolute Correlation Coefficient is
applied. The average Correlation Coefficient of the 18 testing aspect
angles is 0.8415 to target No. 1, 0.8055 to target No. 2, 0.7390 to target
No. 3 and 0.9460 to target No. 4. Both figures show that the known
target of No. 4 resembles the test target most. The recognition results
are right at all the 18 testing aspect angles and then the successful
identification rate is 18/18 = 100%. The discrimination capability is
0.2864 for Figure 8(a), and is 0.1045 for Figure 8(b). This means that
the complex Correlation Coefficient has better discriminating ability
than absolute Correlation Coefficient. It is also seen from Figure 8(a)
that significant differences exist between the matched and mismatched
targets. On the other hand, the absolute identification is based on
small differences.
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Figure 8. The Correlation Coefficients between the test target (i.e.,
target No. 4 in the fourth instance) and the four known targets at all
the 18 testing aspect angle of φ: (a) Complex situation, (b) absolute
situation.
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4.4. Identification Performance in the Presence of Gaussian
Noise

To investigate the performance of the proposed scheme in a noisy
environment, an additive white Gaussian noise (AWGN) model is
assumed, and the noise-corrupted received fields on the left-hand side
of (4) is taken to be

Es
z(km) = Eso

z (km) + νm, m = 1, 2, . . . , n freq (11)

where n freq is the number of frequency points, Eso
z (km) is the noiseless

fields, i.e., the theoretical fields received by simulations, and νm =
νR

m + jνI
m is a complex white Gaussian noise, i.e., both sequences

{νR
m : m = 1, 2, . . . n freq} and {νI

m : m = 1, 2, . . . , n freq} have
zero mean values and variances ρ2/2 with ρ2 being the noise power
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Figure 9. The successful identification rate with respect to SNR:
(a) φi = 90◦, complex Correlation Coefficient, (b) φi = 75◦, complex
Correlation Coefficient, (c) φi = 90◦, absolute Correlation Coefficient,
(d) φi = 75◦, absolute Correlation Coefficient.
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calculated by
ρ2 = P0 × 10−(SNR/10) (12)

in which P0 is the power of the noiseless sequence {Eso
z (km) : m =

1, 2, . . . , n freq}, and SNR (in dB) is the Signal-to-Noise-Ratio to be
assigned. In the following computations, the SNR is varied from 0 to
40 dB with 5 dB steps.

The coefficients at two typical azimuths of φi = 90◦ and φi = 75◦
from DATA-1 are taken as examples to examine the performance
of our wave-coefficients approach in the presence of additive, zero-
mean, complex Gaussian noise. The noise-contaminated complex or
absolute wave-coefficients are correlated with DATA-1. One thousand
simulations are conducted. The successful identification rate at
different noise levels are plotted in Figure 9. Comparing Figure 9(a)
and Figure 9(c), Figure 9(b) and Figure 9(d), we find that the
complex method is more tolerant of additive noise than the absolute
method. This result is mainly due to better discriminating capability
for complex Correlation Coefficient technique.

5. CONCLUDING REMARKS

The backscattering fields from 3D targets with arbitrarily shape can
be expressed as a sum of spherical wave-modes. The expansion wave-
coefficients have some distinctive properties and may be exploited as
feature vectors for target identification. The Correlation Coefficient of
two feature vectors is taken to be as the identification decision rule.
The absolute Correlation Coefficient technique is tolerant of angular
estimation error, but the discriminating capability is somewhat too
small. The complex correlation coefficient method can provide more
reliable identification. However, it requires comparatively small aspect
increment. The encouraging result is that a fairly wide AMW exists
even for complex Correlation Coefficient method, thus the number of
template feature vectors stored for each target is acceptable. This
technique is especially suitable for recognition of aerospace targets
because their postures and velocities can be estimated to some extent.
The time to search the corresponding template feature vectors stored
in the target database and calculate the Correlation Coefficients can
therefore be fast enough in real applications. The successful recognition
rate in noise environment depends not only on the noise level, but also
on the discriminating capability. Further investigation of the proposed
approach, such as using other algorithms for extraction and the other
decision rules for classification are in progress.
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