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Abstract—This paper proposes a microwave filter post-production
tuning based on an optimization process which finds the vector of
deviations of tuning elements that should be applied to tune the filter.
To build the system, the coarse set of scattering parameters is collected
in such a way that every tuning element is detuned while other elements
remain in their proper positions. In the concept, it is assumed that the
relation between the positions of tuning elements and filter scattering
characteristics can be modelled by the sum of one argument polynomial
functions. Each polynomial function depends on the value of only one
tuning element. Therefore, the measured filter characteristics can be
linearly decomposed to characteristics from the collected coarse set
and corresponding tuning element deviations can be found. This is
done by way of optimization process. The presented numerical and
physical experiments on the 7th order cross-coupled, bandpass filter
have verified our approach.

1. INTRODUCTION

Filter tuning is an essential post-production process which is a result
of manufacturing and material tolerance. It is time-consuming and
expensive, hence many researchers have investigated this issue, trying
either to make the tuning faster and easier or to automate the whole
process.

In [1], a time domain approach is described. This method requires
a skilled operator and a “golden” filter to compare time response
between the tuned filter and an ideal one. This method is very fast and
easy adaptable to the new filter type but is very limited as it can be
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used only for low-order filters. However, most techniques are based on
a frequency domain such as [2, 3] where coupling matrix is extracted.
Then, based on its entries, tuning screws which cause detuning are
identified. Here, a high complexity of a filter is not a problem but
a single iteration computation takes a long time. It is because an
optimization must be performed to extract coupling matrix entries.

Another tuning methods are based on mapping of filter
characteristic to the deviation of tuning elements responsible for
detuning. This mapping is performed with the use of artificial
neural network (ANN) multidimensional approximator [4, 5], neuro-
fuzzy system [6] or linear matrix operator [7]. Especially [4, 5] methods
based on ANN are very well examined and proved to be very fast
and able to deal with any type of filter (high complexity, many cross-
couplings).

Recently, we have proposed a novel method for filter tuning [8].
Similarly as in methods [4–7], method [8] considers direct correspon-
dence between filter characteristics and tuning elements. Elabora-
tion [8] is motivated by the fact that in methods [4, 6, 7] an incon-
venient process of controlled, random filter detuning must be done for
each filter type to train, e.g., Artificial Neural Network. That process
takes a long time because it makes it necessary to collect a lot of ran-
dom {∆z, s} pairs containing tuning element deviations ∆z and corre-
sponding scattering parameters s. In [8] an approximator A: s→ ∆z is
proposed, which requires a very coarse set of {∆z, s} pairs. These pairs
are collected in such a way that only one tuning element is detuned at
a time, while the remaining ones are placed in proper positions. More-
over, the method does not need a training phase as the response of the
system is based on linear decomposition of reflection characteristics.

In this work the concept presented in [8] is extended and verified by
theoretical and numerical proofs. Furthermore, apart from reflection,
transmission characteristic is taken into consideration. It allows for
building such an optimizer which, based on scattering parameters from
vector network analyzer, generates deviations of cavities, couplings and
cross-couplings’ values as well.

The proposed method by us turned out to be somewhere between
the described methods. It is not so fast comparing to ANN and Time
Domain methods because a response is obtained by an optimizer.
On the other hand it can deal with many types of filters including
very complex ones as shown in a tuning experiment, Section 5. An
important advantage is a reduction of time needed to prepare a model
for new filter type compared to methods [4–7]. A comparison of
mentioned methods is depicted in Figure 1.
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Figure 1. Filter tuning methods comparison.

2. GENERAL CONCEPT

The coupling matrix model of microwave filters was presented in [9, 10]
for the first time and was applied in filter synthesis [11] and
postproduction tuning. The advantage of the coupling matrix is
that its entries are directly related to the position of the physically
tunable elements. Recently researches have reported new methods of
coupling matrix synthesis [12–17]. When dealing with (N+2)×(N +2)
coupling matrix formulas for reflection S11 and transmission S21 are as
follows [18]:

S11 (λ) = 1 + 2j [λIN − J + M]−1
1,1 (1)

S21 (λ) = −2j[λIN − J + M]−1
N+2,1 (2)

where M is a coupling matrix and J a matrix that has all entries equal
to 0 except J1,1 = JN+2, N+2 = j, whereas IN is a diagonal matrix
with the main diagonal given by (0, 1, 1, . . . , 1, 0) and λ a normalized
frequency.

Let us assume that we have a filter with R tuning elements
which adjust cavities, couplings and cross-couplings. Its ideal, tuned
characteristic corresponds to the coupling matrix M0, so for any
detuned characteristic we obtain:

S11 (λ) = 1 + 2j
[
λIN − J + M0+∆M

]−1

1,1
(3)

S21 (λ) = −2j
[
λIN − J + M0+∆M

]−1

N+2,1
(4)

where ∆M is responsible for detuning a filter and consists of deviations
of coupling matrix entries (∆m1, ∆m2, . . . , ∆mR) which correspond
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to deviations of tuning elements. Thus, we can write a general formula
for scattering parameters s for a certain normalized frequency λ.

s = f (∆m1,∆m2, . . . ,∆mR) (5)

where f: RR→ R. Assume that the tuned coupling matrix M0 is given
and know that the values of vector containing deviations of coupling
matrix entries ∆m = (∆m1, ∆m2, . . . , ∆mR) scattering parameters
can easily be found using (3) and (4).

Relationships described so far are quite complicated, so let us
try to estimate s = f(∆m) dependence in a simpler way. Assuming
that (5) is a T -times differentiable function at the point ∆m0 =
{0, 0, . . . , 0} ∈ RR, according to Taylor’s theorem for multivariate
functions, there exists such hα: RR→ R that:

f(∆m)=
T∑

|α|=0

Dαf
(
∆m0

)

α!
(
∆m−∆m0

)α+
∑

|α|=T

hα(∆m)
(
∆m−∆m0

)α
(6a)

and

lim
∆m→∆m0

hα (∆m)= 0 (6b)

where D is a differential operator

Dαf =
∂|α|f

∂∆m1
a1 . . . ∂∆mR

aR
(7)

where α is a R-tuple, hence multi-index notation is applied: |α| =
α1 + . . . + αR, α! = α1! . . . αR!.

Setting T to some constant integer, which ensures sufficient
approximation and neglecting a remainder term of (6a), we come to
the first degree of approximation of s:

sTaylor =
T∑

|α|=0

Dαf
(
∆m0

)

α!
(
∆m−∆m0

)α (8)

Next, it can be observed that (8) consists of three kinds of terms:

sTaylor = A + f∗ (∆m) + f∗∗ (∆m) (9)

where A represents zero degree terms. f∗(∆m) has terms dependent on
a single variable, and f∗∗(∆m) consists of terms dependent on multiple
variables. It can be observed that A may be written as

A = s0 = f (0, 0, . . . , 0) (10)

which is simply a tuned characteristic of a filter.



Progress In Electromagnetics Research, Vol. 135, 2013 455

As the complexity of sTaylor is still high, let us introduce a second
degree of approximation of s, in which term f∗∗(∆m) is neglected, as
it is believed to be small enough for our approximation needs.

sappr = s0 + f∗ (∆m) (11)
An assumption that terms dependent on more than one variable may
be omitted for tuning purposes will be verified shortly. This important
step allows us to write (11) as a sum of one argument polynomials,
since f∗(∆m) consists of terms dependent only on single variables.

sappr = s0 +
T∑

t=1

pt1∆mt
1 +

T∑

t=1

pt2∆mt
2+ . . .+

T∑

t=1

ptR∆mt
R

= s0 +
R∑

r=1

T∑

t=1

ptr∆mt
r (12)

where ptr are polynomial coefficients of rth polynomial and tth-order
term. Using (12) a general formula for scattering parameters s
depending on only one variable (e.g., ∆m1) can be written as:

f(∆m1, 0, . . . , 0) = s0 +
T∑

t=1

pt1∆mt
1 (13)

It leads to the following observation:
s ≈ sappr = f (∆m1, 0, . . . , 0) + f (0,∆m2, . . . , 0)

+ . . . + f (0, 0, . . . , ∆mR)− (R−1) ∗s0 (14)
where R is the number of tuning elements. All the formulas
given so far can be computed for a specified number of normalized
frequencies λ. Hence, following notation will be used: s, sTaylor

and sappr denote vectors which represent a concatenation of reflection
and transmission complex characteristics, evenly distributed within
a specified frequency band. These signals are computed by (5) —
exact characteristic, (8) — Taylor approximation, and (11) — proposed
approximation respectively.

The last formula obtained in (14) means that s can be modelled
by a sum of functions which depend only on single variable ∆mr.
Keeping in mind that there is a direct correspondence between the
coupling matrix entry ∆mr and the tuning element ∆zr a following
conclusion can be made. To model scattering characteristic s the only
pieces of information that must be collected are these that stem from
detuning a filter on a single element only while the others are set
to their proper positions. It would allow us to reduce significantly
the number of {∆z, s} pairs which need to be collected comparing to
methods presented in [4–7].
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3. NUMERICAL PROOFS OF THE CONCEPT

To make sure that the above-mentioned assumptions can lead to
reasonable solutions numerical experiments have been performed on a
4th order cross-coupled filter described by the coupling matrix below,
which is taken from [11, Figure 10.33(a)].




0 1.1506 0 0 0 0
1.1506 0.0530 0.9777 0.3530 0 0

0 0.9777 −0.4198 0.7128 0 0
0 0.3530 0.7128 0.0949 1.0394 0
0 0 0 1.0394 0.0530 1.1506
0 0 0 0 1.1506 0




(15)

Let us denote the matrix (15) as M0. According to (3) and (4) and
letting ∆M be a null matrix a scattering characteristic of a tuned filter
which is depicted in Figure 2 may be calculated.

Firstly, an integer parameter T must be specified for further tests.
It determines the order of Taylor polynomial (8) and the higher it
is, the more accurate the approximation sTaylor (8) is. Next, 10
random vectors ∆m = (∆m1, ∆m2, . . . , ∆mR) which describe the
matrix ∆M were generated. The values of ∆mr ranged from −0.2 to
0.2 to simulate a significantly detuned filter. For each vector ∆m
a Taylor approximation sTaylor was computed using (8) and sappr

using (11) for different orders of Taylor polynomial up to the 4th order.
The exact characteristics s were also identified, using (3) and (4),
for assumed frequency range. For each case a root mean square
error (RMSE) was computed to obtain the information how close the
resulted approximated characteristics are to the real one. For instance,

Figure 2. Scattering characteristics of the 4th order filter used in
numerical experiments. Solid line — reflection characteristic (S11).
Dashed line — transmission characteristic (S21).
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Figure 3. RMSE between approximated and exact characteristics.
Solid line — RMSE between sTaylor and s. Dashed line — RMSE
between sappr and s.

when comparing exact characteristic s with sappr RMSE equals:

RMSE =

√√√√
∑M

i=1 (Re(sdiff (i) ))2 +
∑M

i=1

(
Im(sdiff (i) )

)2

2M
(16)

where sdiff = s − sappr , M is the length of vector sdiff . Real and
imaginary parts of signals are analysed separately, therefore term 2M
is placed in denominator of above formula.

For 10 mentioned random cases of ∆m and for three values of the
parameter T , the results of RMSE were averaged and are depicted in
Figure 3.

As it was expected, it can be noticed that sTaylor (8) is better
approximated if the parameter T is bigger. Changes of RMSE
between s and sappr (11), which lacks terms dependent on multiple
variables, are very small. For T>3 required calculations were very
time consuming. Taking all these observations into account, T= 3
was chosen for further tests. Figure 2 also shows that the obtained
RMSE is small enough for quiet good match between the exact
characteristics and the approximated ones. To provide better intuition
with the scale of defined RMSE, one of random vectors ∆m =
(0.164, 0.042, 0.058, −0.194, −0.176, 0.062, −0.032) was chosen and
sappr , sTaylor and s were again computed with T= 3. RMSE between
sTaylor and s was 0.032 and RMSE between sappr and s was 0.06.
Reflection and transmission characteristics of sappr , sTaylor and s are
plotted in Figure 4.

While analyzing Figure 4 it may be observed that for such detuned
filter the approximation given by sappr (11) is satisfactory. It seems
that, in this situation, terms dependent on more than one variable can
indeed be omitted. But more tests have to be performed, e.g., how
well sappr fits with the real characteristic in different cases of detuning.

To answer that question the following numerical experiment
was performed. Let us introduce a random vector ∆c =
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Figure 4. Reflection an transmission characteristics after applying
the vector of coupling matrix changes ∆m. Solid line — s. Dotted
line — sTaylor . Dashed line — sappr .

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.05 0.1 0.15 0.2 0.25 0.3

R
M

S
E

Detuning  factor k

Figure 5. RMSE between approximated and exact characteristics.
Solid line — RMSE between sTaylor and s. Dashed line — RMSE
between sappr and s.

(∆c1, ∆c2, . . . , ∆cR) with real numbers ranging from −1 to 1. ∆c
represents how the elements of ∆m, thus ∆M, are detuned. Then, let
the k parameter vary from 0 to 0.25. It corresponds to the detuning
range of coupling matrix since ∆m = k∆c. Next, 10 random vectors
∆c were generated and vectors ∆m were computed for the whole range
of the detuning factor k. Similarly to the previous tests, for all vectors
∆m Taylor approximations sTaylor were computed using (8) and sappr

using (11). For each detuning factor k RMSE between sTaylor and s and
RMSE between sappr and s were computed using (16). The averaged
results are depicted in Figure 5.

The results give a clear view of the correspondence between filter
detuning and the quality of approximation given by sTaylor and sappr .
In general, the quality of approximation is higher for filters which are
not significantly detuned and, within a certain range, it becomes lower
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almost linearly, together with the detuning factor. As in the previous
experiment, sappr provides a worse match to the real characteristics
than sTaylor . It is due to lack of terms dependent on more than one
variable in sappr . However, the RMSE is still low and seems to be
sufficient for the approximation requirements.

4. CHARACTERISTICS LINEAR DECOMPOSITION

As it has been mentioned before, there is direct correspondence
between coupling matrix entries and tuning screw elements, and
therefore also between its deviations ∆mr and ∆zr. The previous
section proved that filter characteristics may be represented by
sappr (14) without losing much information about the signal within
a certain detuning range. That is why scattering parameters may be
written as

s ≈ sappr = fz (∆z1, 0, . . . , 0) + fz (0, ∆z2, . . . , 0)

+ . . . + fz (0, 0, . . . , ∆zR)− (R−1) ∗s0 (17)
where fz is a general function for s with regard to tuning element
deviations, ∆zr the tuning element deviation, R the number of tuning
elements, and s0 = fz(0, 0, . . . , 0) the tuned characteristic. It means
that in order to model each lth function fz and thus the whole s, we
have to collect only such pairs {∆z, s} for which ∆zr=l ∈ 〈−K, K〉
and the remaining ∆zr 6=l = 0. K is an integer representing how much
the screw is detuned in order to collect the data. Let us denote the set
collected in such way a coarse set PC = {∆z, sC}.

The described coarse set PC = {∆z, sC} has a very big advantage
over the set PF = {∆z, sF }, collected randomly in the whole NR space
considered in [4]. The random set PF has maximum (2K+1)R pairs,
so it grows very fast with the filter tuning elements R and we are
never certain that we have collected “appropriate” pairs to model the
scattering characteristic optimally. The coarse set proposed by us has
only 2KR+1 pairs, which is a linear dependence in R and describes all
fz in the same manner.

Having collected PC , from the point of view of ∆z, the only
available samples lie on axes of a vector ∆z. But considering
the above-mentioned assumptions PC gives enough information to
approximate any characteristic s corresponding to any screw deviation
∆z. This may be obtained by linear decomposition of characteristic s
to characteristics sC from PC set. Such decomposition can be written
as below, which is, according to our assumptions, complementary
to (17)

s ≈ sappr = s(1)
C (∆z1) + s(2)

C (∆z2) + . . .+sC
(R)(∆zR)− (R−1)∗s0 (18)
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where s(r)
C (∆zr) indicates the characteristic from the PC , corresponding

to ∆z, which is non-zero only on rth element and has the value ∆zr

on this element.
In [8] a numerical experiment was performed on a 9th order filter,

which confirmed that reflection characteristics from a collected random
set PF can be linearly decomposed to reflection characteristics from the
set PC , with high accuracy of approximation of s, using (18).

The main goal of our elaboration is to propose an optimizer
O : s→ ∆z, based on a coarse set PC , which is able to model screw
deviations values ∆z for any scattering characteristic s extracted from
the vector network analyzer. Applying such vector ∆z to a physical
filter would result in tuning the filter. In general, for the given s
characteristic the optimizer finds such ∆zopt = {∆z1, ∆z2, . . . , ∆zR}
for which the given cost function evaluates the smallest value:

C = ‖sappr−s‖ (19)
where sappr is given by (18).

In other words, the characteristic s is linearly decomposed
using (18) in such way that C is as small as possible, i.e., sappr is
very similar to the real signal s. To find a minimum of C, different
optimization techniques were tested and the best results were obtained
using Nelder-Mead method [19].

5. TUNING EXPERIMENT

A tuning experiment was performed with the use of the optimizer
described in the previous section. The filter used in the tuning
experiment is an 850MHz cavity filter of the 7th order, with three
tunable cross-couplings. This filter is the RX part of an 850 MHz
duplexer. The topology of this filter is depicted in Figure 6. The total
number of tuning elements is R= 18. K — integer representing the
maximum screw deviation — equaled 7. An optimizer was built based
on the collected coarse set PC , which gave 2KR + 1 = 253{∆z, sC}
pairs.

S11 and S21 characteristics (Figure 7, dashed line) of the detuned
filter was given to the optimizer which computed the initial screws
deviations ∆zopt — the distances from properly tuned filter.

∆zopt = {0, 4, 0, 7,−3,−3, 3,−1,−7,−1,−2,−1,−2,−1, 3, 0, 4, 1}
Then, after all tuning iterations, all optimized screw deviations were
minimized to 0, one by one. The resulting characteristics are also
depicted in Figure 7.

It can be seen in Figure 7 that following the process of
adjusting filter elements according to the optimizer output, the
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Figure 6. Topology of a 7th order filter used in the experiment. Large
circles represent cavities, small circles represent couplings and cross-
couplings.

Figure 7. Reflection and transmission characteristics before and after
tuning. Dashed line — characteristics before tuning, Solid line —
characteristics after tuning. Solid, horizontal lines — tuning limits.

tuning requirements were achieved. They were fulfilled for reflection
characteristics and for transmission as well. In [8] an analogous
experiment was conducted on the 9th order filter, but all couplings
were initially pre-tuned and only cavities were taken into consideration.
Filters used in this experiment, as many others on the market, also
require strict control of transmission characteristic and transmission
zeros. Therefore, all tuning elements including couplings and cross-
couplings showed in Figure 6 were taken into consideration.

6. PERFORMANCE OF THE METHOD

The proposed method turned out to be convergent which is also
visible in Figure 8 where a tuning process is depicted along the
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Figure 8. RMSE of characteristics during tuning process. Dashed
line — RMSE between s and sappr . Solid line — RMSE between s and
s0.

optimizer iterations. The dashed line represents an RMSE (16)
between current real characteristic s and sappr which is created from
a decomposition (18), hence it tells us how good the approximation
of sappr is. The solid line represents an RMSE between current real
characteristic s and an ideal, tuned one s0, so it may be viewed as a
tuning error — how much the filter is detuned. Note that the optimizer
ran continuously so there is no correspondence between the optimizer
iteration and the number of screw changes. It depends on the operator
how many changes he/she manages to do in one optimizer iteration.

Apart from the fact that the method converges to its minimum,
Figure 8 shows that the experiment confirmed the correspondence
between the detuning of a filter and the quality of the approximation
given by sappr , which was also considered in Section 3. Namely, the
less detuned the filter, the better approximation is given by sappr .
Fluctuations, seen especially at the beginning of a dashed line in
Figure 8, stem from the fact that the optimizer used in the method does
not always find the global minimum of the cost function (19). Thus,
the current characteristic s is not always decomposed into proper, the
best available terms and sappr do not match the current characteristic
well. It happens in particular when a filter is significantly detuned.
However, the applied Nelder-Mead method [19] was the best among
other tested optimizers, taking into consideration the accuracy of
decomposed signal and computation time.

7. CONCLUSION

In this paper, we suggest that the relation between filter scattering
characteristic and the position of tuning elements can be successfully
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approximated by the sum of one argument polynomial functions
proposed by us. It has been numerically confirmed with the use of
exemplary coupling matrix. Based on this assumption, it has been
proved that an efficient optimizer can be built with the use of a coarse
set. This set is prepared in such a way that the tuning element
positions are detuned only on single element. The optimizer linearly
decomposes characteristic s into characteristics from the coarse set
and finds proper screw deviations ∆zopt. Furthermore, this optimizer
was successfully used in a filter tuning experiment which took into
consideration reflection and transmission, whereas values of cavities,
couplings and cross-couplings were the optimization variables. The
advantage of this method is that a coarse set {∆z, sC} have to be
collected instead of a much bigger random set {∆z, s}. Moreover, a
training phase of the algorithm is not required. On the other hand,
the response of the proposed optimizer is not immediate as in, e.g., [4].
Some time is needed in each optimizer iteration to find proper ∆zopt

values.
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