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Abstract—We carefully investigate the structure of single- and multi-
frequency imaging functions, that are usually employed in inverse
scattering problems. Based on patterns of the singular vectors of
the Multi-Static Response (MSR) matrix, we establish a relationship
between imaging functions and the Bessel function. This relationship
indicates certain properties of imaging functions and the reason behind
enhancement in the imaging performance by multiple frequencies.
Several numerical simulations with a large amount of noisy data are
performed in order to support our investigation.

1. INTRODUCTION

One of the main objectives of the inverse scattering problem is
to identify the characteristics of unknown targets from measured
scattered field or far-field pattern. In research fields such as physics,
medical science, and materials engineering, this is an interesting and
important problem. Related works can be found in [2,7,9-11, 32] and
references therein. In order to solve this problem, various algorithms
for finding the locations and/or shapes of targets have been accordingly
developed.

In many research studies [1,7,9,13,17,26], the shape reconstruc-
tion method is based on Newton-type iterative algorithms. However,
for a successful shape reconstruction using these algorithms, the iter-
ative procedure must begin with a good initial guess that is close to
the unknown target because it highly depends on the initial guess; for
more details, refer to [16, 26].
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To find a good initial guess, alternative non-iterative recon-
struction algorithms have been developed, such as the MUltiple
SIgnal Classification (MUSIC)-type algorithm [5,23,25], linear sam-
pling method [8,12], topological derivative strategy [3,6,18,21,22],
linear-0, vector and multipolarized approaches [29,30], and the multi-
frequency based algorithm such as Kirchhoff and subspace migra-
tions [2,4,15,19,20,24]. Among them, although the multi-frequency
based subspace migration has exhibited potential as a non-iterative
imaging technique, a mathematical identification of its structure needs
to be performed for its heuristical applications, which is the motivation
behind.

In this paper, by intensively analyzing the structure of single-
and multi-frequency subspace migration, we discover some properties
and confirm the reason behind the enhancement in the imaging
performance by applying multiple frequencies. In recent work [4], this
fact was verified by the Statistical Hypothesis Testing but our approach
is to find a relationship between imaging functions and Bessel functions
of the first kind of the integer order.

This paper is organized as follows. In Section 2, we briefly review
the two-dimensional direct scattering problem, and an asymptotic
expansion formula for far-field patterns, and introduce the imaging
function introduced in [19]. In Section 3, we analyze the single- and
multi-frequency based imaging functions and discuss their properties.
In Section 4, we present several numerical experiments and discuss the
effectiveness, robustness, and limitation of imaging functions. Finally,
a brief conclusion is given in Section 5.

2. REVIEW ON IMAGING FUNCTION

In this section, we survey the two-dimensional direct scattering
problem and an imaging algorithm. A more detailed discussion can
be found in [4, 5, 19, 20, 24].

2.1. Direct Scattering Problem and Asymptotic Expansion
Formula

Let X,, be a homogeneous inclusion with a small diameter p in the
two-dimensional space R%2. Throughout this paper, we assume that
every Y, is expressed as

Ym =T+ pDp,

where r,,, and p denote the location and size of ¥,,, respectively. Here,
D, is a simple connected smooth domain containing the origin.
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Let g9 and pg respectively denote the dielectric permittivity and
magnetic permeability of R?. Similarly, we let €, and i, be those of
>m. For simplicity, let ¥ be the collection of ¥,,, m = 1,2, ..., M,
and we define the following piecewise constants:

em for rel,
and p(r) =

tm for red,

elr) = po  for reRAX.

g0 for reRAZ

Throughout this paper, we assume that eg = pug = 1 and ¢, > &y,
fm, > po form =1, 2, ..., M. At a given frequency w, let u,,.(r, d;; w)
be the time-harmonic total field that satisfies the Helmholtz equation

v. (1Vum(r, di: w)) + et dsw) =0 (1)
p(r)

with transmission conditions at the boundaries of ¥3,,.

Let w,,.(r, d;; w) be the solution of (1) without X. In this paper,

we consider the following plane-wave illumination: for a vector d; € ¢!,

Upo (v, dj; w) = exp(jwd; - ). Here, €' denotes the unit circle in R
Generally, the total field u,, can be divided into the incident

field u,,. and the unknown scattered field u which satisfies the

Sommerfeld radiation condition

d .
lim /]| (3“(““’) —jkoum<r,dl;w>> =0,

|r|—o00 8|I’|

uniformly in all directions r = ‘ﬁ—l Since we assumed €9 = pg = 1,

scat )

wavenumber ko satisfies kg = w,/eopig = w. As given in [5], u..,, can
be written as the following asymptotic expansion formula

M
Ugene (T, dj5 W) :,02 Z <Vuinc(rm, dj;w) - T(ry,) - VO(rm,, r,w)
m=1

+w2(z-:—Eo)area(Dm)uinc(rm,dl;w)@(rm,r,w)>+0(p2), (2)

where o(p?) is uniform in r,, € ¥, and d; € ¢'. Here area(D,,)
denotes the area of D,,, T(r,,) is a 2 X 2 symmetric matrix:

2
T(ry,) = ¢area(Dm)]Ig,
Hm + Lo

where [, denotes the n x n identity matrix, and ®(r,,, r, w) is the
two-dimensional time harmonic Green function

O(ry,, r,w) = —,uoiHol(w\rm —r),

where H{ is the Hankel function of order zero and of the first kind.
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The far-field pattern is defined as function F(f,d;) that satisfies

Ugene (T, dj; W :MFf,d 0( 1 ) 3
(r,dj;w) it (r,d;) + \/m (3)

xr

as |r| — oo uniformly on ¥ = -

2.2. Introduction to Subspace Migration

The imaging algorithm introduced in [19] used the structure of a
singular vector of the Multi-Static Response (MSR) matrix M =
(Fpg) = (F(f'p,dq)):f)\fqzl, whose elements F(t,, d,;) is (3) with
observation number p and incident number ¢. Note that by
combining (2), (3), and the asymptotic behavior of the Hankel function,
the far-field pattern F(t,,d,) can be represented as the asymptotic
expansion formula (see [5] for instance)

N w2(1 =+ ]) M E—¢€o0 R
Fiayan) =5 2 3 (SmtareatPa) 2y o) )

X exp (jko(dq — 1) rm>. (4)

o
For the sake of simplicity, we eliminate the constant w4\(/1§) in (4).
Then, the incident and observation direction configurations are kept
same, i.e., for each r, = —d,,, the pg-th element of the MSR matrix M

is given by

M
F,y = F(ty,dy) ~ p? Z rm — 0 area(Dy,)

rp=—dp m=1 v €0Ho
2410

+———area(D,,)d, - d ] exp('ko d,+d,) - r )

L + 10 (Din)dyp - dg Jko(dp g) Tm
Based on the above representation of F,,, we introduce a vector

D(r;w) € CV*3 as

ey exp(jkody - 1)
e exp(jkods - 1)

D(r;w) := ,  where e, = (1,d,)T. (5)

en exp(jk:odN . I')
Then M can be decomposed as follows:

M 0> Em — €0 area(Dy,)  O1x2 T
M= Z D(erW) VEOHO D(rm;w) )
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where Oy, denotes the p x ¢ zero matrix. This decomposition leads
us to introduce an imaging algorithm as follows. First, let us perform
the Singular Value Decomposition (SVD) as follows:

M
M=USV" = 3" 0 (@)Up (@) Vi ()7, (6)
m=1

where U,,, and V,, are the left and right singular vectors, respectively,
and a denotes the complex conjugate of a. Then, based on the structure
of (5), we define a vector D(r;w) € CV*1:

C- (1, dl)T exp(jk:odl . I')

N c- (1,do)T exp(jkods - r
D(r;w) := (1,d2) :p(] odz - x) , ceC™N\{o}, (7
¢ (1,dn)" exp(jkody - r)

and corresponding unit vector

~

D .
W(rw) = 2T5e) (8)
D(r;w)|
With this, we can introduce a subspace migration as follows
M
W) = |3 (e Une) ) (W) - V(o)) ' )
m=1
Note that since the first M columns of the matrices {U1, Us, ..., Uy}
and {V1, Vg, ..., Vs } are orthonormal, we can observe that

W(r;w) - Up(w)~1 and W(rw) Vy(w)~1 if r=r,
W(r;w) - Up(w)~0 and W(r;w) Vy(w)~0 if r#r,,
form =1, 2, ..., M. Therefore, W(r; w) will plots peaks of magnitude

of 1 at r = r, € X,, and of small magnitude at r ¢ X,
(see [4,19,20,24]). Complete algorithm is summarized in Algorithm 1.

3. STRUCTURE ANALYSIS OF IMAGING FUNCTIONS

3.1. Structure of Single-frequency Subspace Migration (9)

We now determine the structure of imaging function (9). Before
proceeding, we assume that scatterers are well resolved by the
measurement array and based on the Rayleigh resolution limit from
far-field data, any detail less than one-half of the wavelength cannot
be seen so that scatterers are well-separated to each other, refer to [2].
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Algorithm 1 Imaging algorithm via Subspace Migration (SM)

1: procedure SM(w)

2 identify permittivity €9 and permeability o of R?

3 given w, initialize W(r;w)

4: for ¢ =1to N do

5: for p=1to N do

6 collect MSR matrix data F(t,,d,) € M > see (4)
7 end for

8 end for

9: perform SVD of M = S > see (6)
10: choose {U1,Usg,..., Uy} and {V1,Va,....,Vy} > see [25]
11: for r € O C R? do > (2 is a search domain
12: generate D(r;w) and W (r;w) > see (7) and (8)
13: initialize I(r)

14: for m =1to M do o o

15: I(r) — I(r) + W(r;w) - Up(w)(W(r;w) - Vi (w))

16: end for

17: W(r;w) = [I(r)|

18: end for > see (9)
19: plot W(r;w) and find r =r,, € ¥, > W(r;w) ~1

20: end procedure

For determining the structure, we recall some useful statements.
Lemma 3.1 ([4]). A relation A ~ B means that there exists a constant
C such that A = CB. Then, for vectors Uy, and V,, in (6) and
W(r;w) in (8), the following relationship holds

W(r,;w) ~Up(w) and W(rp;w) ~ Vi (w).
Lemma 3.2 ([14]). Let d,r € R?, and w > 0; then

/@1 exp(jwd - r)dS(d) = 2nJy(w|r|),

where J,(x) denotes the Bessel function of order v of the first kind.

Subsequently, we can explore the structure of (9) as follows
Lemma 3.3. If the total number of incident and observation directions
N is sufficiently large and satisfies N > M, then the imaging
function (9) can be represented as follows:

M
W(riw) ~ > Jo(wlrm — r|)%, (10)
m=1

Proof. By hypothesis, we assume that N is sufficiently large. Since
the incident and observation direction configurations are same, we set
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Figure 1. (a) 2-D plot of (10) for w = 03 T and (b) 2-D plot of (11) for
wlzgfﬂ andngfQLr when m =1 and r,,, = 0.

Ady, = |dy,—dp_1| forp=2,3,..., N, and Ad; := |d; —dp]|. Then,
applying Lemmas 3.1 and 3.2 yields

M
W(r;w) = W(r;w) - Up(w W(r;w) - Vo (w
( mZ(( @) (W <>)‘
2
M [N
NZ Zexp(]wdp (rm r))i:p
m=1 =1

4772 Z(/ exp(jwd - (I'm—I‘))dS(d))QZmi;JO(whm—rDQ

This completes the proof.

Note that Jy(x) has the maximum value 1 at = 0. This is the
reason that the map of W(r; w) plots magnitude 1 at r = r,, € X,,.
Moreover, due to the oscillating property of Jy(x), Theorem 3.3
indicates why imaging function (9) plots unexpected replicas, as shown
in Figure 1.

2. Reason Behind Enhancement in the Imaging
Performance by Applying Multiple Frequencies

According to Theorem 3.3, the oscillating pattern of the Bessel function
must be reduced or eliminated in order to improve the imaging
performance. One way to do so is to apply the high-frequency w = 400
in theory. Another way is to apply several frequencies to the imaging
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function (9) as follows:

(11)

Z Z( r;ws): (%))(W(r;ws) -Vm(ws)> .

Several researches in [2,4,19,20] have confirmed on the basis of
Statistical Hypothesis Testing and numerical experiments that the
multi-frequency imaging function (11) is an improved version of the
single-frequency version (10). The reason for this is discussed as
follows.

Theorem 3.4 If wg and the total number of incident and observation
directions N is sufficiently large and satisfies N > M, then the
structure of the imaging function (11) is

M
W(r;S) ~ Z [wgw—swl <J0(w5\rm —r|)? + Ji(ws|tm — r\)2>
m=1

w1

(oCerlem =02 + erlem = x)?) | 12

Proof. According to (10), we can observe that

W(r; S) ~ 1 ZS: % Jo(ws|rm — Z / Jolwlrm = x)* ;
’ S wg — wi

s=1m=1

ws — wq

Using this, we apply an indefinite mtegral formula of the Bessel
function (see [27, page 35]):

/Jo w:x<Jg()+J1 >/J1 V2dz

in addition to a change of variable w|r,, — r| = . This yields

wg
/ Jo(w|ry, —r|)2dw

w1

1 wg|em—r|
= Jo(x)?dx

|I‘m—1‘| w1 |rm—r|

_ ws(Jo<ws|rm—r\>2+J1<ws|rm—rr>2)

—wy (Jo(wl\rm—r]) +J1 (w1t — 1) > / Jy(w|r, —1]) dw.



Progress In Electromagnetics Research, Vol. 136, 2013 615

Now, we consider the upper bound of
ws

A(|ry, —r|,w1,wg) := / Ji(w|r, — r))2dw

1
Note that since J1(0) = 0, let us assume that |r,, — r| # 0 and
0 < ws|rm — r| < v/2. Then applying asymptotic behavior

and boundedness property .J,, (w\rm - r]) f yields

wg wg
/ J1 (W[t — r|)2dw < Ji(w|ry, —r|)dw
w1 f w1
1 wg|rm—r| J 1 wg|rm—r|
= — 1(2) dr = / rdx
V2 Jorlem—r| 1Tm — 1 22|t — 1| Joorjrp—r|

2 2
I CE) el CID M “’S(ws|rm - r!) <« =2 = O(ws).

42 42

Now, assume that wg satisfies

. 2
wslty — 1| >V2 e, |t,—r|> Z}f > 0.
S

Then since
/Jl(a:)dx = —Jo(x),

we can obtain

ws
/ Ji(w|ry, — r|)dw

w1
ws |rm—| J
= / 1(z) dx
w1 |rm—r| |I'm—I"

1
= |I__r|<Jo(wl]rm —r|)— Jo(wg|rm— r\)) < Vws.

’m_|

Therefore, the term A(|r,, — r|, w1, wg) can be disregarded because
_ WS )2 N2
P <Jo(wgrm r))* + Ji(ws|tm — 1)) >
w
— s (Bertrn — x? + Sarlr — x)?) = Ofus)
ws — w1

and A(Jry, — r|,wi,ws) < O(wg). Hence we can obtain (12). This
completes the proof.
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Two-dimensional plot for (12) is shown in Figure 1. This shows
that (11) yields better images owing to less oscillation than (10) does so
that unexpected artifacts in the plot of W(r; S) are mitigated when S
is sufficiently large. This result indicates why a multi-frequency based
imaging function offers better results than a single-frequency based
one.

4. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, we describe the numerical experiments we conducted
to validate our analysis. For this purpose, we choose a set of three
different small disks ¥,,. The common radii p of ¥, are set to 0.1,
and parameters €y and po are chosen as 1. Locations r,, of ¥, are
selected as r; = (0.4, 0), r2 = (0.6, 0.3), and r3 = (0.1, —0.5). For
a given wavelength Ag, each frequency is selected as w;, = %\—:, for
s = 1,2,..., 8. Note that the test vector ¢ in (7) is selected as
c = (5,1, )T and all the wavelengths A\, are uniformly distributed in
the interval [A1, Ag]. The observation directions d, are selected as

N N

and the incident directions d, € ¢! are selected analogously.

In all the examples, scattered field data are computed within
the framework of the Foldy-Lax equation [31]. Then, a white
Gaussian noise with 10 dB signal-to-noise ratio (SNR) is added to the
unperturbed data in order to exhibit the robustness of the proposed
algorithm via the MATLAB command awgn. In order to obtain the
number of nonzero singular values M for each frequency ws, a 0.01-
threshold scheme is adopted (see [23,25]). The search domain 2 C R?
is selected as a square Q = [—1, 1] x [-1, 1].

Figure 2 shows the map of W(r;10) via the MSR matrix M for
N = 20 and S = 10 and different frequencies with A\; = 0.5 and
Ag = 0.3. On the left-hand side of Figure 2, we set the same material
properties €, = 5 and u,, = 5, m = 1, 2, 3. As expected, locations
of X, can be clearly identified. On the right-hand side of Figure 2,
we set different material properties €1 = p; = 5, €2 = po = 2,
and €3 = pu3 = 7. Notice that, if an inclusion has a much smaller
value of permittivity and/or permeability than the other, it does not
significantly affect the MSR matrix and consequently, difference in
amplitude appearing in the map of W(r;10), refer to [19,20, 24, 25].
Hence, due to the small values of 9 and pg, the map of W(r; 10) plots
a small magnitude at ro € Y95 but the locations of all ¥, are well
identified.

2 2
d, = (cosﬁp,sinWP> for p=1,2,...,N,
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Figure 2. Maps of W(r;10). (a) Same material property. (b) Different
material property.

Figure 3 shows the influence of the number of applied frequencies
S. As we discussed in Section 3, increasing S yields a more accurate
image. Note that applying an infinite number of S would yield good
results in theory, but in this experiment, S = 10 is sufficient for
obtaining a good result.

Based on the recent work [19], the proposed algorithm can be
applied to imaging of extended, crack-like electromagnetic inclusion(s)
I' with a supporting curve 7 and a small thickness h. However,
note that even a sufficiently large number of N and S applied to
obtain a good image of a complex-shaped thin inclusion using the
proposed algorithm can occasionally yield poor results (see Figure 4).
Furthermore, note that the elements of M are expressed as written by

M
F(dydg) ~ 3 [5 ;OZZ + 2<; . :{))dp t(rm)dy - t(rm)

+2 <1 - lg)dp‘n(rm)dq-n(rm)] exp <jko(dp+dq) -rm) .
Mo Hy

Therefore, ¢ in (7) must be a linear combination of a unit tangential

vector t(r,,) and a normal vector n(r,,) at r,, € . If we have a priori

information of t(r,,) and n(r,,), we can obtain a good result. However,

because this is not the case, it is difficult to obtain a good result. This

is further explained in detail in [25, Section 4.3.1].

m=1
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Figure 3. Maps of W(r; S) with (a) S =1, (b) S=3,(c) S=7, and
(d) S = 20.
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Figure 4. Maps of W(r;S) for complex-shaped thin inclusion.
(a) N =48 and S =10. (b) N =64 and S = 24.
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5. CONCLUSION

Using an integral representation formula and an indefinite integral
of the Bessel function, we determined the structure of single and
multiple electromagnetic imaging functions. Because of the oscillation
aspect of the Bessel function, we confirmed the reason behind the
improved imaging performance by successfully applying high and
multiple frequencies.

Based on recent works in [4,6,19,20,24], it has been shown
that subspace migration offers better results than the MUSIC and
Kirchhoff migration. Specially, subspace migration can be applied
to limited-view inverse scattering problems. However, in order to
determine the structure of subspace migration in the limited-view
problem, the integration in Lemma 3.2 on the subset of a unit circle
must be evaluated; however, this evaluation is very difficult to perform.
Therefore, identifying the imaging function structure in the limited-
view problem will prove to be an interesting research topic. Moreover,
in the imaging of crack-like inclusions, estimating unit tangential and
normal vectors on such an inclusion and yielding relatively good results
will be an interesting work.

Finally, we consider the imaging function for penetrable
electromagnetic inclusions, but it will be applied to the perfectly
conducting inclusion(s) directly. Extension to the perfectly conducting
target will be a forthcoming work. We further believe that the proposed
strategy can be extended to a three-dimensional problem. Based
on recent work [28], it is confirm that the multi-frequency MUSIC
algorithm improves the single-frequency one. Analysis of structure of
MUSIC-type algorithm will be the forthcoming work.
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