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Abstract—Dynamical stability of a system of bilaterally coupled
periodic Gunn oscillators (BCPGO) has been studied employing
Melnikov’s global perturbation technique. In the BCPGO system, a
fractional part of the output signal of one oscillator is injected into the
other through a coupling network. The injected signal is considered
as a perturbation on the free running dynamics of the receiving
oscillator and the amount of perturbation is quantified by a parameter
named coupling factor (CF). The limiting values of CFs leading to
chaotic dynamics of the BCPGO system are predicted analytically by
calculating the Melnikov functions (MFs) in the respective cases. Also
the effect of the frequency detuning (FD) between the Gunn Oscillators
(GOs) on the computed values of MFs has been examined. A thorough
numerical simulation of the BCPGO dynamics has been done by
solving the system equations. The obtained results are in qualitative
agreement with the analytically predicted observations regarding the
roles of the system parameters like CF and FD.

1. INTRODUCTION

In past few decades, researchers have shown enormous interest
in studying the dynamical behavior of different coupled nonlinear
oscillators. This is mainly due to the huge application potential of
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coupled systems in various fields of science and engineering [1–4]. In the
field of electronic communication, coupled oscillators play important
roles in generating spectrally pure signals, combining power of signals
from different sources, coherent modulation and detection process,
chaos generation etc. [5–7]. Generally, coupled modes are either
unilateral type (having master-slave configuration) [8] or bilateral type
(i.e., the output of one is applied to the input of the other) [9].
Several interesting dynamical phenomena like synchronization, quasi-
periodicity, intermittency and chaos are observed in coupled oscillators
due to their inherent nonlinearity [7]. In [9] the phase-dynamics and
synchronization of a system of two coupled Van der Pol oscillators
under external harmonic force has been studied. [10] focuses on
synchronization and bifurcation effects in periodically driven coupled
non-identical Duffing oscillators. The mechanism of synthesizing
a hyperchaotic oscillator by use of two coupled chaotic Colpitts
oscillators is discussed in [11].

Recently, authors have reported some works on the dynamics of X-
band microwave GOs [12–14]. In [12] generation of chaotic microwave
oscillations in a driven under-biased GO was illustrated. The bilateral
coupling between two such microwave chaotic GOs was thoroughly
studied in [13]. In [14] the behavior of a system of BCPGO was
studied experimentally and numerically. It showed that depending
on the coupling strengths, the BCPGO system exhibits synchronized,
quasi-periodic or chaotic states. However, considering the system-
complexity, analytical predictions on the complete dynamics of
BCPGO is a formidable task. To the knowledge of the authors, not
much works have been reported in the literature on this problem.
In the present paper, we explore this problem with the help of
well-known Melnikov method of nonlinear analysis [15–17]. It is
a global perturbation method and can be applied to any system
that is perturbed by small damping and periodic forcing terms.
Considering the internal damping of the GOs and coupled signal as
small perturbations, we find the MF of the system. The knowledge of
the MF would help us to predict the system response.

The paper is organized in the following way. In Section 2, using the
circuit theoretic model of the GOs we have formulated mathematical
equations of the BCPGO system. In Section 3, using the system
equations, the expression of the MF for each oscillator is derived and
the effects of variation of CFs as well as FD between two oscillators
on the MF are calculated. It helps to predict the dynamics of each
oscillator in the coupled system analytically. We present in Section 4,
the results of numerical integration of system differential equations
and compare them with the analytical predictions. Some concluding
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discussions are given in Section 5.

2. MATHEMATICAL MODEL OF BCPGO SYSTEM

Figure 1 shows the functional block diagram of the BCPGO system,
where i-th GO (i = 1, 2) is coupled bi-directionally with the j-th
GO (j = 2, 1) through coupling networks characterized by CFs kij

and kji, respectively. kij (or kji) indicates the fraction of j-th (i-
th) GO output applied as injected signal into i-th (j-th) GO in the
coupled system. In isolated condition, both GOs are considered to
operate in stable periodic mode but in general may have different free
running frequencies and output amplitudes. In a GO, a Gunn diode
is mounted inside a resonant cavity and shows negative differential
resistance (NDR) property under suitable biasing condition. In the
equivalent circuit of the oscillator [14], Gunn diode can be modeled
by series combination of two nonlinear voltage sources (vr and vc).
Considering cubic type nonlinearity [14], we write vr and vc as:

vr = −β1i + β3i
3 (1)

vc = −α1q + α3q
3 (2)

Here i (= dq
dt ) and q are the instantaneous current and charge,

respectively; α1, α3, β1, β3 are the bias voltage dependent device
parameters [14]. The resonant cavity of a GO is replaced by a series
combination of inductor L, capacitor C, and resistor R. Here R
includes the load resistance (RL) along with the lumped resistance
of the cavity. Using this circuit theoretic model, the equivalent circuit
of the BCPGO system is shown in Fig. 2.

Here, coupling of the j-th oscillator with the i-th oscillator is
ensured by including an additional voltage source (proportional to the
current in the latter one). Using Kirchoffs’ mesh law in the equivalent

Figure 1. Simplified block diagram of bilaterally coupled Gunn
oscillator system.
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Figure 2. Equivalent circuit of BCPGO system.

circuit, system equations can be written in normalized form as,
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Here we put ai = α1Ci− 1, bi = α3Ci, ci = β1−Ri−RLi
ωriLi

, di = β3ωri

Li
.

Physically, ai and bi indicate relative contributions of linear and cubic
restoring forces. Similarly, ci and di are the measures of linear and
cubic damping forces. The normalized time τ is ωrit and ωri = 1√

LiCi

represents the resonant frequency of the i-th cavity. To have identical
time-scale for two GOs, we take passive parameters of the cavities so
adjusted that ωr1 = ωr2. However, due to natural difference in the
DC biasing condition of the GOs, their oscillation frequencies may be
different in general.

3. ANALYTICAL APPROACH USING MELNIKOV
METHOD

The dynamical properties of the BCPGO system can be studied by
solving the system Equations (3) and (4). But due to its high nonlinear
character it is difficult to obtain a closed form solution of the system
equations. Hence we propose to examine the system dynamics by
applying Melnikov technique [15–17]. It requires the evaluation of
Melnikov function (MF) of each oscillator that can be obtained from
the total Hamiltonian (H) of the system. For this purpose, we
rewrite (3) and (4) as a set of four first-order coupled differential
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equations as given in (5), by introducing two new state variables p1

and p2

q̇1 = p1 (5a)

ṗ1 = a1q1 − b1q
3
1 + c1p1 − d1(p1)3 + k12(p2 − p1) (5b)

q̇2 = p2 (5c)

ṗ2 = a2q2 − b2q
3
2 + c2p2 − d2(p2)3 + k21(p1 − p2) (5d)

The Hamiltonian (H) of the coupled system is a function of the
parameters qi and pi (i = 1, 2) used in (5). The expression of H is
a sum of unperturbed energies of the component systems, their self-
perturbation energies due to internal damping and the perturbation
energy due to bilateral coupling. Thus,

H = H01(q1, p1) + Hp1(q1, p1) + H02(q2, p2)

+Hp2(q2, p2)±Hpc(q1, p1, q2, p2). (6)

Here, H0i(qi, pi) and Hpi represent, respectively, the unperturbed
and the self-perturbed Hamiltonian respectively of i-th oscillator.
Since parameters c and d are small in magnitude, the damping
terms are considered as small perturbations. Hpc(qi, qj , pi, pj) is the
perturbation term due to coupling between i-th and j-th GO. Their
expressions are obtained as follows:

H0i(qi, pi) =
1
2
p2

i +
1
2
q2
i +

1
4
q4
i (7a)

Hpi(qi, pi) = −ciqipi + diqip
3
i (7b)

Hpc(qi, qj , pi, pj) = −kij(pj − pi)qi − kji(pi − pj)qj . (7c)

To calculate MF for the i-th GO, we consider the j-th GO in a
steady periodic condition. So, the state variables of the j-th GO, qj

and pj are written as
qj = A0j sin(ω0jτ) (8a)

pj = A0jω0j cos(ω0jτ) (8b)

The free running amplitude and the frequency of oscillation of
the j-th GO would be obtained as [14], A2

0j = 4cj

3djω2
0j

and ω2
0j =

aj

2 [
√

1 + 4bjcj

dja2
j
− 1], respectively.
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To get the state variables, qi and pi, of the i-th GO, its
unperturbed Hamiltonian, H0i(qi, pi) as given in 7(a), is equated to
zero. Solving the relation, we obtain,

qi =
√

2ai

bi
sech(

√
aiτ) (9a)

pi = −
√

2
bi

ai sech(
√

aiτ) tanh(
√

aiτ) (9b)

This indicates that the trajectory of i-th GO in the state space is
a homoclinic orbit. The MF of i-th GO is derived as [16],

Mi(τ0) =
∫ ∞

−∞
{Hoi, (Hpi + Hpc)}dτ (10)

where
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Using Equations (7) to (11), and simplifying one gets,
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Here τ0 indicates the time of occurrence of the first homoclinic
intersection between stable and unstable orbits. The evaluation of
Mi(τ0) for different values of the system design parameters can predict
the dynamics of i-th GO in the BCPGO system. The MF gives the
distance between stable and unstable manifolds. If, for a given set of
parameters, the sign of the MF changes from negative to positive, it
is predicted that the system would exhibit chaotic behavior at that
condition. Critical values of system parameters required for the tran-
sition from a stable to a chaotic mode can be obtained from zero value
of MF. In the present work, we study the effect of CFs and the FDs
between two GOs on the system behavior by evaluating the MF.
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3.1. Computed Variation of MF with CFs

In order to analytically predict the system-response, we compute
Mi(τ0) for some chosen values of GO-parameters and CFs. Take, for
example, ω01 and ω02 as 1.29 and 1.16, with A01 and A02 as 2.83 and
2.43, respectively. This is done by suitably adjusting parameters a, b, c
and d. In this condition, Mi(τ0) is evaluated for different values of
kij and kji. We take the value of sin(ω0jτ0) as 1 (its maximum value)
without any loss of generality (since τ0 is arbitrary). The obtained
variation of Mi(τ0) is shown in Fig. 3 where kij and kji are plotted
along the lower and upper horizontal directions, respectively. The
change of sign of Mi(τ0) from negative to positive is observed at some
critical values of kij and the magnitudes of these values increase for
increasing kji. This means that i-th GO would undergo a transition
from a stable state to a chaotic state due to the injected signal of
specific amount from j-th GO. Also the variation of Mi(τ0) with kji

at fixed values of kij indicates a transition of i-th GO from a chaotic
state to a stable state because of the variation of the amount of signal
taken from it. In brief, the dynamics of a GO in the BCPGO system
not only depends on the amount of signal injected into it, but also on
the amount of signal taken from it.

To study the effect of variation of a particular CF on the system-
dynamics, variations of Mi(τ0) and Mj(τ0) with kij (for a fixed value
of kji = 0.2) are calculated and simultaneously plotted in Fig. 4. It is
observed that as kij increases, i-th GO transits from a stable state to

Figure 3. Variation of the Melnikov function of the i-th GO with
kij (lower x-axis), and kji (upper x-axis), other parameters are (A0i =
2.83, ω0i = 1.29, A0j = 2.43, ω0j = 1.16).
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Figure 4. Variation of the Melnikov function for both the GOs in the
BCPGO system with kij , (other parameters are kji = 0.2, A0i = 2.83,
ω0i = 1.29, A0j = 2.43, ω0j = 1.16).

Figure 5. Analytically predicted kij-kji parameter space plot
indicating stable oscillatory (Blue colour) and unstable chaotic (Red
color) mode of operation of the i-th GO for A0i = 2.83, ω0i = 1.29,
A0j = 2.43, ω0j = 1.16.

a chaotic one and the j-th GO transits from a chaotic state to a stable
one. However, for a range of kij (0.06 < kij < 0.38), both GOs are in
chaotic mode. When kij > 0.38, the MF of i-th GO remains positive
but that of j-th GO changes to negative value after crossing zero.
Therefore, in this condition although i-th GO is in a chaotic mode,
j-th GO changes to a periodic state. The computations with different
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values of kji, give similar characteristics of the system response as
described above. However, the critical values needed for transition
from one state to the other and range of parameter kij where both
GOs are in chaotic state, are different.

In Fig. 5, the predicted dynamical states of i-th GO in the BCPGO
system have been shown for different pairs of CFs. With the values
of GO parameters taken as above, the magnitude and the sign of the
MF computed using (12) are used to predict the state of the GO.
The results given in the parameter space kij-kji show that, with the
GO parameters under consideration, i-th GO is in chaotic state for all
reasonable values of injected signal. But if the injected signal into j-th
GO taken from i-th GO increases, the chaotic state of i-th GO changes
to a stable state. Also, the more would be the amount of signal injected
into i-th GO, the greater would be the required amount of signal to be
injected into j-th GO for quenching the chaotic state of i-th GO.

3.2. Computed Variations of MF Values with the FD
between GOs

To examine the effect of relative frequencies of the GOs on the system
response, the MF of a particular GO is calculated with a suitable FD
between the oscillators in the system. With a fixed set of kij and kji,
the variation of Mi(τ0) is observed with the variation of (ω0j). Fig. 6
represents computed results obtained for fixed values of ω0i, kji and
oscillator output amplitudes (as shown in the caption of Fig. 6). With
a moderate strength of the injected signal to the i-th GO (kij = 0.25)

Figure 6. Variation of the Melnikov function of the i-th GO with free
running frequency of the j-th GO for kji = 0.2, A0i = 2.83, ω0i = 1.29,
A0j = 1.65, ω0j = 1.18.
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the variation of ω0i around ω0j would cause chaotic transition of its
dynamics. This is evident from the change of sign of the MF from
negative to positive value. However, the possibility of transition to
chaotic oscillations has sensitive dependence on the amplitudes of the
GOs and CFs. Even though a quantitative prediction of the system
dynamics from the derivation of MF is difficult to get, a qualitative
prediction is possible using a sufficient number of computed results.

(b)

(a)

(c)

Figure 7. Time domain plot, state space trajectory and frequency
spectrum of the i-th GO for (a) kij = 0.02, (b) kij = 0.081, and
(c) kij = 0.39 (Other parameters are kji = 0.2, A0i = 2.83, ω0i = 1.29,
A0j = 2.43, ω0j = 1.16)).
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4. NUMERICAL ANALYSIS

To obtain real-time dynamics of GOs in the BCPGO system,
Equations (3) and (4) are solved numerically. For this purpose, 4th
order Runge-Kutta numerical integration technique is applied. In the
simulation, the step size for time increment is taken as 0.001. To get a
steady state response, a sufficient number of initial results are discarded
to avoid transients. From the simulated results time development of
the output of each GO (qi and qj), their state space trajectories (in
qi− pi and qj − pj planes) and the frequency spectra of the time series
data are obtained under different conditions of operation. Fig. 7 and
Fig. 8 depict a few results for i-th and j-th GOs respectively for some
fixed values of CFs.

(a)

(b)

(c)

Figure 8. Time domain plot, state space trajectory and frequency
spectrum of the j-th GO for (a) kij = 0.02, (b) kij = 0.081, and
(c) kij = 0.39 (Other parameters are kji = 0.2, A0i = 2.83, ω0i = 1.29,
A0j = 2.43, ω0j = 1.16).



224 Sarkar et al.

The effects of variation of the frequency of j-th GO on the
dynamics of i-th GO is studied numerically keeping the strength of the
coupling coefficients fixed. The obtained results are presented in Fig. 9.
It shows that, in an isolated condition both the GOs are considered to
operate in stable periodic mode with different free running frequencies
(ω0i = 1.29 and ω0j = 1.16) and output amplitudes (A0i = 2.83 and
A0j = 2.43). As they are bilaterally coupled, the combined dynamics
is found to depend on the strengths of the CFs and FDs between
them. Fig. 7 and Fig. 8 give numerically obtained responses of i-th
and j-th GO, respectively. The fixed parameters of the system leading
to these responses are given in the captions of the figures. With a
fixed moderate value of kji (= 0.2), the parts (a), (b) and (c) of
Fig. 7 and Fig. 8 show the responses with small (0.02), comparable

(a)

(c)

(b)

Figure 9. Time domain plot, state space trajectory and frequency
spectrum of the i-th GO for (a) ω0j = 0.97, (b) ω0j = 1.18, and
(c) ω0j = 1.78 (Other parameters are kij = 0.25, kji = 0.2, A0i = 2.83,
ω0i = 1.29, A0j = 1.65).
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(0.081) and large (0.39) values of kij , respectively. For the CF-set
given in part (a) of the figures, i-th and j-th GOs are periodic and
chaotic respectively as is evident from the real-time, phase-plane and
frequency-spectrum of the oscillator outputs. When both CFs are of
moderate and comparable value, the GOs show chaotic oscillations
(part (b) of the figures.)

In the case shown in part (c) of the figures the roles of i-th and j-th
GOs are reversed, i.e., i-th GO becomes chaotic and j-th GO becomes
periodic. This is natural in a bilaterally coupled system where the
relative values of kij and kji are interchanged as given in part (a). For
the confirmation of the chaotic state, the time series data of i-th (j-
th) GO, the time-series data qi (qj) as obtained from the numerical
simulation is analyzed using the CDA software [18] and the estimation
of the maximum Lyapunov exponent (MLE) is done. The positive
value of MLE confirms the chaotic state of the concerned oscillation.
For the set used in part (a) only the MLE for qj is positive (0.047).
For that used in part (b) the MLEs for qi and qj are both positive
(0.027 and 0.032, respectively) and for the set used in part (c) only
the MLE of qi is positive (0.047). Hence the conclusions regarding the
chaotic states of the GOs are consistent with the obtained values of
MLEs. These observations are in good agreement with the analytical
predictions given in previous section (Fig. 4).

Figure 9 shows for a fixed set of values of CFs, the output of i-

Figure 10. kij-kji parameter space plot of i-th GO (as obtained
from the simulated results) indicating stable oscillatory (Blue colour)
and unstable chaotic (Red color) mode of operation for A0i = 2.83,
ω0i = 1.29, A0j = 2.43, ω0j = 1.16.
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th GO becomes in chaotic mode within a specific range of ω0j . Both
above and below this range, it oscillates in a periodic condition. These
results follow the predictions as obtained from the variation of the MF
of i-th GO with ω0j (Fig. 6). The role of two CFs (kij and kji) on the
dynamical behavior of the GOs (stable periodic or unstable chaotic) in
the coupled system is examined using simulated results and is plotted
in the kij-kji parameter space as shown in Fig. 10. From this figure it is
observed, for a given value of kji, there is a transition in the oscillator
behavior from stable periodic mode to chaotic mode as kij increases.
This observation is in good agreement with the analytically predicted
results given in Fig. 5.

5. CONCLUSION

The dynamics of a system of two GOs, coupled bilaterally, has been
examined analytically and numerically. The analytical method, based
on Melnikov technique, considers the injected signal due to coupling
as a perturbation term. The amount of perturbation is quantified by
the CFs (kij and kji). The validity of the method rests on the choice
of CFs within a moderate range as it is a perturbation technique. The
analytical predictions on the system response have been done by finding
the MF of a GO for different values of CFs and FDs. The amount of
signal injected into as well as that taken from an oscillator, have vital
role in the system dynamics. This is evident from the effects of both kij

and kji on the dynamics of the i-th oscillator. Moreover, the behavior
of one oscillator is modified by the variation of frequency of the other.
For a given set of CFs, it is possible to make one oscillator chaotic for a
range of frequencies of the other. As expected intuitively, the transition
to an unstable state (chaotic) is found to occur when the FD between
the oscillators is moderate for reasonable values of the CFs. For small
values of FD, a state of synchronization may occur and for a large FD,
the interaction between oscillators is not appreciable. The numerical
integration of the system equation provides results which qualitatively
agree with the analytical predictions. The information regarding the
overall dynamics of a BCPGO system reported in the paper would be
useful for the design of chaotic oscillators at microwave frequencies.
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