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EFFECTS OF NONLINEARITY ON WAVE PROPAGA-
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Abstract—In this paper, we show that the solution of linear coupled
mode equations (LCME) is a good approximation to that of the
nonlinear coupled mode equations (NLCME) for small times, provided
that the nonlinearity is weak. We bound the difference between the
two solutions using energy estimates. We illustrate our findings in
numerical examples.

1. INTRODUCTION

This work is motivated by the need to examine the behavior of a fiber
Bragg grating when large amplitude light is propagated in the fiber.
We start with the assumption that the grating has been designed
for operation in the linear regime, while the fiber itself has a mild
nonlinearity.

A fiber Bragg grating, in its simplest form, is a length of
fiber whose index of refraction is periodic in the direction of light
propagation. It can be made by exposing a treated fiber to ultra-
violet radiation which changes the index of refraction. It has many
uses, for instance, filtering and dispersion compensation [6]. It works
by coupling the forward- and backward-moving waves in the fiber.
The periodicity and the wavelength of light determines the coupling
strength.

While it is not the scope of this work to examine the rich
phenomena that result from nonlinearity and periodicity, it should
be mentioned that some work exploring such aspects as solitons, gap
solitons, and light-stopping, exists [3, 4, 9]. In this work, we start with
the nonlinear coupled mode equations (NLCME), whose derivation
can be found in [9]. It has been pointed out that NLCME is related
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to light propagation in a fiber modeled by the anharmonic Maxwell-
Lorentz equations [5]. Perturbation techniques may be applied to
reduce NLCME to the familiar nonlinear Schrödinger’s equation, which
is more readily analyzed [7, 8]. We mention a related work in [10] where
it is shown that nonlinearity in a fiber Bragg grating can lead to pulse
splitting in the reflected waves.

The focus of this work is the difference between the solution of
the full NLCME and that of its linearized counterpart, the linear
coupled mode equations (LCME). Our analysis begins with the energy
estimates for NLCME presented in [5]. We show that these energy
estimates can be used to bound the difference between the solution
of NLCME and that of LCME. We devise a numerical method for
integrating NLCME based on the method of characteristics. Numerical
calculations are carried out that support our claims.

The contents of this paper are as follows. In Section 2, we give
an outline of coupled mode theory leading to the linear and nonlinear
coupled mode equations. In Section 3, we introduce our main result,
Theorem (3.1), and in Section 4 we present an explicit numerical
method for solving NLCME and numerical results illustrating the main
findings of this work.

2. COUPLED MODE THEORY

The propagation of light in optical fibers is governed by Maxwell’s
equations, together with the constitutive relations that describe the
interaction of the electromagnetic waves with the medium. In the case
of optical fibers, the medium is nonmagnetic and the propagation is
restricted to one dimension. Maxwell’s equations reduce to [1]

∂2E

∂z2
− 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
, (1)

where µ0 is the magnetic permeability in vacuum and c the speed of
light in vacuum.

In the case of a linear medium, P (z, t) = ε0χ
(1)(z)E(z, t) where ε0

is the vacuum permittivity. We denote ε(z) = 1 + ε0χ
(1)(z) and write

Equation (1) in the form:

∂2E

∂z2
− ε(z)

c2

∂2E

∂t2
= 0.

The dielectric constant ε is related to the index of refraction n by
ε(z) = n2(z). The index of refraction in a fiber Bragg grating is
modeled by

n(z) = n̄ + ∆n(z) cos
2πz

Λ0
. (2)
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Here, n̄ denotes the average index of refraction, ∆n(z) is the
modulation depth of the grating and Λ0 is the reference period of the
grating. Light propagating with a frequency ω in a uniform medium
with index of refraction n(z) is characterized by a wavenumber k = ωn̄

c .
Coupled mode analysis is based on the idea that if ∆n(z) is small,

the solution to the wave equation can be written as [2]

E(z, t) = E+(z, t)e−i(ω0t−k0z) + E−(z, t)e−i(ω0t+k0z) + c.c., (3)
where the quantities E+ and E− vary slowly with z and t.

The coupling effect is stronger for light with wavelengths at or
near the wavelength λ = 2Λ0, when approximately half a wavelength
fits into each period of the grating. This assumption is known as the
Bragg condition and is written as

λB = 2n̄Λ0.

The wavelength λB is called the Bragg wavelength.
Using (3) in (1) with k0 = 2π/λB, we can show that E+(z, t) and

E−(z, t) satisfy, approximately, the following linear system of coupled
mode equations (LCME) [9]:

i
∂E+

∂z
+ i

n̄

c

∂E+

∂t
+ κ(z)E− = 0,

−i
∂E−
∂z

+ i
n̄

c

∂E−
∂t

+ κ(z)E+ = 0,

(4)

where κ(z) = π
λB

∆n(z) represents the local coupling strength.
To model the propagation of light in the nonlinear regime, we

assume an instantaneous nonlinear polarization PNL(z, t) = χ(3)(z)E3.
Combining this with Equation (1), we have

∂2E

∂z2
− ε(z)

c2

∂2E

∂t2
= µ0

∂2PNL

∂t2
.

The square of the index of refraction with the addition of nonlinear
terms becomes

n2(z,E2) = n̄2 + 2n̄∆n(z) cos
2πz

Λ0
+ χ(3)E2.

In this case, the dynamics of the forward and backward propagating
waves are described by the nonlinear coupled mode equations
(NLCME) [9]:

i
∂E+

∂z
+ i

n̄

c

∂E+

∂t
+ κ(z)E− + Γ

(|E+|2 + 2|E−|2
)
E+ = 0,

−i
∂E−
∂z

+ i
n̄

c

∂E−
∂t

+ κ(z)E+ + Γ
(|E−|2 + 2|E+|2

)
E− = 0,

(5)

where Γ = 4πε0cn̄n2
λB

is the nonlinearity. The quantity n2 is defined in [1]

as n2 = 3χ(3)

4ε0cn̄2 .



4 Minut

3. ENERGY ESTIMATES

In this section, we derive energy estimates for the difference between
the solution of (5) and the solution of (4). The L2 bounds we obtain
show that for relatively small times, the solution of NLCME can be
controlled by the solution of LCME.

For a proof of the following propositions, we refer to [5]. Note that
in [5], the notation T is used for the “slow time variable” εt.

Proposition 3.1 If E = (E+, E−) is a solution of (5), then the
L2 norm of E is preserved; i.e., the energy ||E||22 =

∫
(|E+|2 + |E−|2)dz

is conserved.
Proposition 3.2 Let E = (E+, E−) satisfy the system (5) with

initial conditions E(0) ∈ Hs for s ≥ 1. Then there exists Cs =
Cs(||E(0)||Hs , T ) such that ||E(T )||Hs ≤ Cs(||E(0)||Hs , T ).

Theorem 3.1 Let (E+, E−) be a solution of the NLCME (5) and
let (E0

+, E0−) be a solution of the LCME (4). Let e+ = E+ − E0
+ and

e− = E− − E0− and let ||e||2L2 =
∫

R
(|e+|2 + |e−|2)dz. Then

||e(t)||2L2 ≤ C1e
C2t + C3e

C4t,

where Ci, i = 1, 2, 3, 4 are constants and depend on Γ, t and ||e(0)||L2 .
Proof. The NLCME system (5) can be written as:

∂E+

∂z
+ v

∂E+

∂t
− iκ(z)E− − iΓ(|E+|2 + 2|E−|2)E+ = 0,

∂E−
∂z

− v
∂E−
∂t

+ iκ(z)E+ + iΓ(|E−|2 + 2|E+|2)E− = 0,

(6)

where v = n̄
c and the LCME system (4) as:

∂E0
+

∂z
+ v

∂E0
+

∂t
− iκ(z)E0

− = 0,

∂E0−
∂z

− v
∂E0−
∂t

+ iκ(z)E0
+ = 0.

With e+ and e− defined above, they satisfy:

∂e+

∂z
+ v

∂e+

∂t
− iκ(z)e− − iΓ

(|E+|2 + 2|E−|2
)
E+ = 0,

∂e−
∂z

− v
∂e−
∂t

+ iκ(z)e+ + iΓ
(|E−|2 + 2|E+|2

)
E− = 0.

(7)

We start by taking the first of (7) and multiplying it by e+. Next
we take the complex conjugate of the first of (7) and multiply it by e+.
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The resulting equations are added to obtain:
∂

∂z
|e+|2 + ν

∂

∂t
|e+|2 + iκ(z) (e−e+ − e+e−)

+iΓ(|E+|2 + 2|E−|2)
(
E+e+ − e+E+

)
= 0.

A similar operation is done to the second of (7), and the resulting
equation is subtracted from the above result to get:

∂

∂t

(|e+|2 + |e−|2
)

= −1
v

∂

∂z
|e+|2 +

1
v

∂

∂z
|e−|2 +

iΓ
v

((|E+|2 + 2|E−|2
) (

E+e+ − E+e+

)

+
(|E−|2 + 2|E+|2

) (
E−e− − E−e−

))
.

Next, we evaluate the last term of the above inequality∣∣(|E+|2+2|E−|2
)
(E+e+−E+e+)+

(|E−|2 + 2|E+|2
) (

E−e−−E−e−
)∣∣

≤2|E+||e+|
(|E+|2 + 2|E−|2

)
+ 2|E−||e−|

(|E−|2 + 2|E+|2
)

≤((|E+|2+ 2|E−|2
) |E+|

)2 + |e+|2+
((|E−|2+ 2|E+|2

) |E−|
)2 + |e−|2

≤|e+|2 + |e−|2 +
7
2

(|E+|2 + |E−|2
)3

Hence
∂

∂t

(|e+|2+|e−|2
)

≤−1
v

∂

∂z
|e+|2+

1
v

∂

∂z
|e−|2+

Γ
v

(
|e−|2+|e+|2+

7
2

(|E+|2+|E−|2
)3

)
(8)

Integrating (8) on R, we get
d

dt
‖e‖2

L2 ≤ Γ‖e‖2
L2 +

7Γ
2v

∫

R

(|E+|2 + |E−|2
)3

dz. (9)

Let
‖E‖2

L2 =
∫

R
(|E+|2 + |E−|2) dz, (10)

and
‖E‖L∞ = max(|E+|L∞ , |E−|L∞).

With this notation, the last term of (9) becomes∫

R

(|E+|2 + |E−|2
)3

dz ≤
∫

R
(|E+|+ |E−|)4

(|E+|2 + |E−|2
)
dz

≤
∫

R
(2 sup(|E+|, |E−|))4

(|E+|2 + |E−|2
)
dz

≤16
∫

R
‖E‖4

L∞
(|E+|2 + |E−|2

)
dz.
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From Proposition 3.2, for small time t and a constant C1, we have that

‖E(t)‖L∞ ≤ ‖E(0)‖L∞eC1t/2.

Therefore, putting this in the inequality above, we get∫

R
(|E+|2 + |E−|2)3 dz ≤ 16e2C1t‖E(0)||4L∞‖E(t)‖2

L2 .

Therefore (9) becomes

d

dt
‖e‖2

L2 ≤ Γ‖e‖2
L2 +

56Γ
v

e2C1t||E(0)||4L∞ ||E(t)||2L2 .

Using Gronwall’s inequality we get

‖e‖2
L2 ≤ ‖e(0)‖2

L2e
Γt+

56Γ
v
||E(0)||4L∞

∫ t

0
eΓ(t−s)e2C1s||E(s)||2L2ds (11)

Again, from Proposition 3.2 (C2 is a constant and time t is small), we
have

‖E(t)‖L2 ≤ ‖E(0)‖L2eC2t/2

and Equation (11) becomes

‖e‖2
L2 ≤ ‖e(0)‖2

L2e
Γt +

56Γ||E(0)||4L∞ ||E(0)||2L2

v(−Γ + 2C1 + C2)

(
e(2C1+C2)t − eΓt

)
.

This completes the proof of Theorem 3.1.

4. NUMERICAL COMPUTATION

In this section we present numerical results for the nonlinear coupled
mode equations (NLCME) for fiber Bragg gratings. We solve
numerically NLCME (5) as an initial value problem. We assume that
the fiber has length 2L and that the left half is filled with homogeneous
nonlinear material while the right half has the grating. The initial
conditions for the forward (right) going wave, E+ is zero for z > 0 and
a Gaussian centered at −L/2 for z < 0. The backward (left) going
wave, E− is zero at t=0.

Given κ(z) and Γ in (5), we want to solve for E+(z, t) and
E−(z, t). By introducing the normalized time variable, t′ := c

n̄ t we
can simplify the system (5). Dropping the prime on the new time
variable, we get

i
∂E+

∂z
+ i

∂E+

∂t
+ κ(z)E− + Γ

(|E+|2 + 2|E−|2
)
E+ = 0,

−i
∂E−
∂z

+ i
∂E−
∂t

+ κ(z)E+ + Γ
(|E−|2 + 2|E+|2

)
E− = 0.

(12)
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4.1. A Numerical Method

A method of characteristics is chosen to solve the above system. We
introduce the following characteristic variables: ξ = (t − z)/2 and
η = (t + z)/2. Then the system (12) becomes

i
∂E+

∂η
+ κ(z)E− + Γ

(|E+|2 + 2|E−|2
)
E+ = 0,

i
∂E−
∂ξ

+ κ(z)E+ + Γ
(|E−|2 + 2|E+|2

)
E− = 0.

(13)

Consider the points A(z0, t0), B(z0 +2h, t0), and C(z0 +h, t0 +h). It
can be seen that A and C are on the line ξ = (t0 − z0)/2, and B, C
are on the line η = (t0 + z0)/2 + h, as indicated in Figure 1.

Given the fields at time t = 0, we integrate along the
characteristics to get the fields at time t = h, after the space z is
sampled at intervals of length 2h. See Figure 2. Integrating the
first equation of (13) along the line AC (ξ = const.), and the second
equation along the line BC (η = const.), we get

i(E+(C)−E+(A))+
∫ C

A

(
κ(z)E−+Γ

(|E+|2+2|E−|2
)
E+

)
dη=0,

i(E−(C)−E−(B))+
∫ C

B

(
κ(z)E+ + Γ

(|E−|2 + 2|E+|2
)
E−

)
dξ=0.

(14)

z

t

h

C (t+h, z+h)

A (t, z)
B(t, z+2h)

ξ − hξ

η

η + h

h h

Figure 1. Characteristic coordi-
nates.

t

2h

h

z

t=h

t=2h

t=3h

Figure 2. Discretization.
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Using the trapezoidal rule to compute the integrals, we get

i(E+(C)−E+(A))+
h

2
(κ(C)E−(C)+κ(A)E−(A))+

hΓ
2

(|E+(C)|2

+2|E−(C)|2) E+(C)+
hΓ
2

(|E+(A)|2+2|E−(A)|2)E+(A)=0,

i(E−(C)−E−(B))+
h

2
(κ(C)E+(C)+κ(B)E+(B))+

hΓ
2

(|E−(C)|2

+2|E+(C)|2) E−(C)+
hΓ
2

(|E−(B)|2+2|E+(B)|2)E−(B)=0.

(15)

Separating the terms at C from the terms at A and B and denoting

FA = iE+(A)− h

2
κ(A)E−(A)− h

2
Γ

(|E+(A)|2 + 2|E−(A)|2) E+(A)

and

FB = iE−(B)− h

2
κ(B)E+(B)− h

2
Γ

(|E−(B)|2 + 2|E+(B)|2) E−(B)

we get[(
i h

2κ(C)
h
2κ(C) i

)
+

h

2
Γ
(|E+(C)|2+2|E−(C)|2 0

0 |E−(C)|2 + 2|E+(C)|2
)]

(
E+(C)
E−(C)

)
=

(
FA

FB

)
.

If we denote

M =
(

i h
2κ(C)

h
2κ(C) i

)
,

the above equation becomes

M ·
(

E+(C)
E−(C)

)
+

hΓ
2

((|E+(C)|2+2|E−(C)|2)E+(C)(|E−(C)|2+2|E+(C)|2)E−(C)

)
=

(
FA

FB

)
. (16)

If we assume that hΓ ¿ 1, we can write
(

E+(C)
E−(C)

)
=

(
E

(0)
+ (C)

E
(0)
− (C)

)
+ (hΓ)

(
E

(1)
+ (C)

E
(1)
− (C)

)
+(hΓ)2

(
E

(2)
+ (C)

E
(2)
− (C)

)
+ . . . . (17)

With the expansion given above,

|E±(X)|2 =
∣∣∣E(0)
± (X)

∣∣∣
2
+ 2(hΓ)Re

(
E

(0)
± (X)Ē(1)

± (X)
)

(18)

where X = A, B,C. Let

E(C) =
(

E+(C)
E−(C)

)
,
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then using (17), E(C) can be written as

E(C) = E(0)(C) + (hΓ)E(1)(C) + (hΓ)2E(2) + . . . . (19)

Using (16), (17), (18) and (19) we get

M ·E(0)(C)+(hΓ)M ·E(1)(C)+
hΓ
2




(
|E(0)

+ (C)|2+2|E(0)
− (C)|2

)
E

(0)
+ (C)

(
|E(0)
− (C)|2+2|E(0)

+ (C)|2
)
E

(0)
− (C)




=
(

FA

FB

)
.

Then

E(0)(C) = M−1

(
FA

FB

)
.

and

E(1)(C) = −1
2
M−1

(
(|E(0)

+ (C)|2 + 2|E(0)
− (C)|2)E(0)

+ (C)

(|E(0)
− (C)|2 + 2|E(0)

+ (C)|2)E(0)
− (C)

)
.

The truncation error due to the numerical integration scheme is of
order O(h3). As h → 0, the truncation error |Lh(ξ, η)| → 0, thus the
method is consistent. However, the discrete scheme is not expected to
conserve energy due to the quadrature error and the approximation of
the solution. It is possible to derive a Crank-Nicolson scheme which
conserves energy. However, such a scheme does not have as good
dispersion properties as the characteristic scheme and is also implicit.

4.2. Examples

We choose the initial condition E+ = 3.25 ∗ e−200(
z+ L

2
L

)2 , E− = 0,
the mesh size h = 2L

N−1 , where N is the number of points in the
discretization. The following parameters were used in the calculations.

L 10−4 [m]
n̄ 1.46

∆n(z) 0.01e−500(
z−L/2

L
)6

Λ0 0.53545× 10−6 [m]
λB 1.55× 10−6 [m]
Γ 2.5× 10−16 [m/V2]
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Figure 3. Coupling strength κ(z).

The profile of the coupling coefficient κ(z) is shown in Figure 3.
We show the evolution of the system for Γ = 2.5× 10−16 [m/V2].

The initial data are shown in Figure 4(a). The fields E+(z, t) and
E−(z, t) are shown at times t = 0.2, 0.4, 0.8×10−3 ns in Figures 4(b)–
(d). The most noticeable effect is that the nonlinearity changes the
shape and the phase in the propagating pulse.

A graph of the energy defined in (10) is shown in Figure 5. The
numerical scheme does not conserve energy due to quadrature error
and approximate solution to the nonlinear equation. However, for
small nonlinearities the deviation in energy is small. As we can see in
Figure 5, the energy deviates most from its correct value only when
the waves interact with the inhomogeneities in the material; i.e., where
κ′(z) 6= 0. The maximum deviation for Γ = 2.5×10−16 [m/V2] is about
1.5%.

To assess the effect of nonlinearity, we computed the reflected
pulse at time t = 0.8 × 10−3 ns for various values of Γ. The results
are shown in Figure 6 where we display the real and imaginary
parts of E−(z, t). The values of Γ are 0, 2 × 10−16, 4 × 10−16, and
10× 10−16 [m/V2].

Next we calculated the reflected pulse amplitude for various
nonlinearities at location z = −0.5 × 105 nm. The result of these
calculations are shown in Figure 7. This point is chosen because it
is the point where the amplitude of the initial condition for the right-
going wave reaches its peak, as it is shown in Figure 8. If there is no
nonlinearity, then the reflected pulse at this location will simply be
a copy of the incident pulse except that it is imaginary (90◦ phase).
It can be seen that the amplitude is not very sensitive to the level of
nonlinearity. The phase, however, is more sensitive to the nonlinearity.
We calculated the phase at the peak amplitude of the reflected pulse.
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Figure 4. Reflection of a pulse by a fiber Bragg grating. Shown in
(a) is the initial data. (b)–(d) are the snapshots of the fields E+ (top)
and E− (bottom) at times 2, 4, 8× 10−4 ns.
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Figure 5. Energy (10) as a function of time. Note that deviation
from conservation is very small (about 1.5%) and occurs only when
the waves interact with the medium inhomogeneity.
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As a reference, the phase is 90◦ for linear fiber Bragg grating. The
results of this calculation are shown in Figure 9 where it can be seen
that the phase depends almost linearly on Γ in the regime of weak
nonlinearity.

Finally, to assess the effect of nonlinearity versus the required
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Figure 6. Reflected left-going field for different levels of nonlinearity.
The real (solid line) and imaginary (dashed line) parts of E−(z, t) are
shown. The values of Γ are, from (a) to (d), 0, 2 × 10−16, 4 × 10−16,
and 10× 10−16 [m/V2]. Horizontal axis is in units of 104 nm.
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Figure 7. The reflected pulse amplitude at location z = −0.5 × 105.
The values of Γ are, from (a) to (d), 0, 2 × 10−16, 4 × 10−16, and
10× 10−16 [m/V2]. Horizontal time axis is in units of 10−3 ns.

real (E+) for G=0

3.5

3

2.5

2

1.5

1

0.5

0

-0.5
1

0.8
0.6

0.4
0.2

0 -1
-0.5

0
0.5

1

10 -3x

t (ns) z (nm)
10 5x

re
a

l 
(E

  
)

+

Figure 8. The real part of the
transmitted pulse. The maximum
amplitude is located at z =
−0.5× 105.

0 0.2 0.4 0.6 0.8 1 1. 2

x 10 -6

80

100

120

140

160

180

200

220

240

Γ (nm/V 2)

P
h

a
s
e

 (
d

e
g

re
e

s
)

Figure 9. The phase of the re-
flected pulse at its peak amplitude
at z = −0.5× 105 as a function of
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Figure 10. Reflected left-going field for different initial amplitudes
for E+. The real (solid line) and imaginary (dashed line) parts of
E−(z, t) are shown. The values of |E+| are, from (a) to (d), 1, 3, 5,
and 8. Horizontal time axis is in units of 105 nm and the nonlinearity
is Γ = 2.5 × 10−16 [m/V2]. Note that for higher power levels, the
nonlinear effect is quite apparent.

electric field to produce certain distortion, we computed the reflected
pulse at time t = 0.8 × 10−3 ns for various initial values of |E+|. The
results are shown in Figure 10 where we display the real and imaginary
parts of E−. The values of |E+| are, from (a) to (d), 1, 3, 5, and 8.

5. DISCUSSION

We have investigated the effect of nonlinearity on wave propagation
in a fiber Bragg grating. The method for analysis, and for solving
the nonlinear coupled mode equations, can be extended to the case
where the fiber has an index offset and chirp. Our result shows that
the solution of the nonlinear coupled mode equation remains close
to that of the linear coupled mode equation for small nonlinearities
and small travel distances. These findings were further substantiated
in numerical simulations. The result presented here gives further
evidence that weak nonlinearities present little or no impairment to
the performance of a fiber Bragg grating.
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