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Abstract—A 2-D analytic based eddy-current transient model for a
conducting plate is derived that is capable of accounting for continuous
changes in the input conditions. Only the source field on the surface
of the conducting plate needs to be known. In addition, a 2-D
steady-state analytic based eddy-current model that is capable of
accounting for frequency and velocity changes in two directions is
derived. Both analytic based models have been validated using finite
element code. The transient and steady-state models are integrated
into an electromechanical system where the magnetic source is a
Halbach rotor. The accuracy of both calculation methods is compared.
The stiffness and damping coefficients are derived using the steady-
state model.

1. INTRODUCTION

Most magnetic suspension (maglev) systems create suspension forces
by either electromagnetic [1] or electrodynamic [2, 3] means. Both such
methods typically involve translationally moving a magnetic source
rapidly over a conductive surface. However, this motion gives rise to
a large drag force. Various (costly) methods are used to reduce this
drag force. An alternative is to try to use this drag force to create
propulsion. This can be achieved by rotating a magnetic source rather
than simply translationally moving it, as illustrated in Figure 1. The
magnetic thrust force creation is analogous to an automobile wheel
using frictional forces to create propulsion. The rotation of the magnets
can create both a propulsion force in addition to suspension force [4, 5].
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Figure 1. Finite element analysis model of
a four pole-pair Halbach rotor rotating and
translationally moving above an aluminum
plate guideway. The field created by the
Halbach rotor is shown as well as the induced
guideway currents within the aluminum
guideway plate.

Figure 2. Field lines
created by a four pole-
pair Halbach rotor.

In order to create a large lift force a flux-focusing Halbach rotor [6–8],
as shown in Figure 2, can be used.

If the relative velocity of the rotor, as seen by the conducting
plate, is greater than the translational velocity, propulsion forces result,
whereas if the rotor is rotated slower than the translational velocity
braking forces are created [4, 5]. The use of a flat aluminum plate
enables the normal forces to be used for suspension purposes. The
slip, sl, between the translational and rotational velocity is given by

sl(t) = ωm(t)ro − vx(t) (1)

where ωm is the mechanical angular velocity, ro the outer radius of the
rotor, and vx the translational velocity. The circumferential velocity
vc of the rotor is defined as

vc(t) = ωm(t)ro (2)

The device shown in Figure 1 has been termed an electrodynamic wheel
(EDW).

It is well known that electrodynamic suspension systems are highly
underdamped [9]. Davis and Wilkie [10] analytically studied the
dynamics of a long wire moving above a thin continuously uniform
nonferromagnetic conducting plate while Baiko et al. [11] studied
the dynamics using a rectangular coil. Both authors calculated that
positive vertical damping is present at low-speeds while at high-speed
the vertical damping can become negative. In contrast, Yoshida and
Takakura [12] and Urankar [13] calculated that vertical damping is



Progress In Electromagnetics Research B, Vol. 49, 2013 3

always positive when a conducting coil is translationally moved above
a conducting sheet. However, the damping values greatly reduce at
high speed. Davis and Wilkie [10] and Yoshida and Takakura [12]
calculated the forces utilizing a thin-sheet approximation approach
in which the current is assumed to be constant throughout the plate
thickness while Baiko et al. [11] and Urankar [13] accounted for current
variation throughout the plate thickness.

Yamada et al. [14], Iwamoto et al. [15], Fujiwara [16], and Higashi
et al. [17] calculated damping between translationally moving coils on
a vehicle and stationary coils on a guideway. Iwamoto et al. used a
lumped parameter based analysis while Fujiwara used a field based
approach. They all concluded that the vertical magnetic damping
becomes negative at medium and high speed, while Ooi [18], Takano
and Ogiwara [19], Kratki and Oberretl [20], and He and Coffey [21]
concluded the opposite. They used lumped parameter models to show
that vertical magnetic damping was always positive but it decreased
to very low values at high translational speeds.

The damping responses from experimental laboratory studies
have been equally contradictory [9]. For instance, Zhu et al. [22]
and Yamada et al. [14] performed vibration experiments using a
rotating drum and a cantilevered magnet. They concluded that
negative vertical damping occurred at high-speed, while Fujiwara [16]
experimental results using superconducting magnets over guideway
coils showed no negative damping at high speeds.

All researchers concluded that the inherent magnetic damping
was insufficient and therefore active control of an electrodynamic
maglev system is essential [9]. In this paper the dynamic response
when a magnetic source has translational, vertical and rotational
motion will be considered. The modeling characteristics when using
two different formulation techniques for simulating the dynamics in
an electromechanical eddy current device that utilizes a continuous
linear finite thickness conducting plate will be presented. Exact
electrodynamic stiffness and damping equations are derived.

2. FIELD BASED MODELING

The applicable quasi-static Maxwell’s equations to model the problem
shown in Figure 1 are [23, 24]

∇×E = −dB
dt

(3)

∇×B = µoJ (4)
∇ ·B = 0 (5)
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J = σE (6)
B = ∇×A (7)

E = −dA
dt

−∇V (8)

where E = electric field intensity (Vm−1), B = magnetic flux density
(Wbm−2), µ0 = permeability of free space (Hm−1), J = current density
(Am−2), A = magnetic vector potential (Wbm−1), σ = conductivity
(Sm−1) and V = electric scalar potential (V). Using the Coulomb gauge

∇ ·A = 0 (9)

and assuming the conductive plate region is linear and simply
connected then the governing transient eddy current field equation
within a conductive plate can be described by [23]

∇2A = µ0σ
dA
dt

(10)

In general the vector potential can be a function of both position and
time such that A(x(t), y(t), z(t), t). In this case the chain-rule can be
applied to the time derivative term in (10) such that [25]

dA
dt

=
∂A
∂t

+ (v · ∇)A (11)

where v is a velocity vector. Substituting (11) into (10) gives

∇2A = µ0σ
∂A
∂t

+ µ0σ(v · ∇)A (12)

In this case the last term on the right side of (12) models the
field’s spatial change due to the position of the magnetic source while
the first term on the right models changes in source field itself with
respect to time.

Transient eddy current models are capable of accurately
simulating the motion of complicated moving source fields. However,
transient eddy-current simulations that utilize (10) or (12) can be very
time intensive when incorporated into a dynamic mechanical system.
This is especially so when there is continuous motion of the source field
and there is a need for constant feedback between the eddy current
force and the mechanical motion. In contrast, steady-state field based
solutions can be solved much more quickly since the time variation is
assumed to be [26]

A(x, y, z, t) = A(x, y, z)ejωet (13)

and therefore (12) reduces down to

∇2A = µ0σ(jωeA + (v · ∇)A) (14)
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Equation (14) can be calculated with relative ease when compared
with the transient solution. The vast majority of steady-state models
incorporate only one velocity term in the conducting region. Invariably
this velocity term is in the direction of motion [24, 26, 27]. In this
paper, the modeling accuracy will be considered when incorporating
both a translational velocity, vx, and a heave velocity, vy, into an
electromechanical transient simulation [28]. This study will be limited
to a 2-D based analysis. However, the results and conclusions presented
in this paper can be extended to 3-D based problems. For 2-D problems
(10) and (14) reduce down to [5, 29, 30]

∇2Az = µ0σ
∂Az

∂t
(15)

∇2Az = µ0σ

(
jωeAz + vx

∂Az

∂x
+ vy

∂Az

∂y

)
(16)

A 2-D solution is approximately accurate as long as the plate
is sufficiently wide and the plate overhang width is significantly
great [24]. Two different dynamic electromechanical simulations will
be compared. The first model utilizes the coupled electromechanical
system summarized in Figure 3 in which an analytic based transient
eddy current formulation is coupled to a transient mechanical system.
The electromagnetic forces, Fx, Fy are calculated using a transient
electromagnetic model. In the second model, shown in Figure 4, a
steady-state based eddy current model in which translational velocity,
vx, heave velocity, vy, as well as rotational motion, ωe, is accounted for
is coupled to the transient mechanical model. The transient changes
in vertical and horizontal position of the source are accounted for
by feeding back the position and velocity terms determined from the
mechanical model at each time step.

An analytic solution to (16) is derived in Section 3. This model
is an extension of the 2-D model presented in [26]. In addition,
the transient model for a step change developed in [31] is extended
so as to be capable of accounting for continuous variations in the
source conditions as derived in Section 4. Both the steady-state

Figure 3. The formulation for transient model.
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Figure 4. The formulation for a steady-state model.

Figure 5. Illustration of the conductive (Ω2) and non-conductive
(Ω1, Ω3) regions and boundaries used by the analytic based model.
The conductive plate has a thickness of b.

and transient eddy current models are incorporated into the same
mechanical model so that the accuracy of the steady-state model
when coupled to a transient mechanical system can be assessed. The
accuracy is compared by using the EDW source.

3. STEADY STATE MODEL

The 2-D problem region is illustrated in Figure 5. It consists of two
non-conducting regions Ω1, Ω3 and a conducting region Ω2. The
conducting plate is of finite thickness, b and it is assumed to have
a length that is significantly longer than the source field. A magnetic
source (not shown) is assumed to be located only in region Ω1.

3.1. Governing Equations and Boundary Conditions

The governing equation within the conducting region is given by (16).
The source field, Bs, and the reflected field, Br, due to the induced
current in the non-conducting region Ω1 and Ω3 is

B(x, y) = Bs(x, y) + Br(x, y) (17)
The reflected field can be further written in terms of the scalar
potential, φn, defined as

Br = −µ0∇φn, in Ωn (18)
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where n = 1, 3 for region 1 and region 3. Taking the divergence of (17)
and since ∇ · Bs = 0 it can be noted that the non-conducting region
can be modeled using

∂2φn

∂x2
+

∂2φn

∂y2
= 0 in Ωn. (19)

By utilizing the scalar potential in Ω1, Ω3 the source term only needs to
be accounted for on the conductive boundary [26, 32]. The boundary
conditions for the electromagnetic fields at the top boundary interface
between the non-conducting and conductive guideway regions, Γ12, are

nnc · (B1 −B2) = 0, on Γ12 (20)
nnc × (H1 −H2) = 0, on Γ12 (21)

Since the permeability of the non-conducting and conducting regions
is the same, the boundary condition (21) can be written as

nnc × (B1 −B2) = 0, on Γ12 (22)

The field in the non-conducting region 1 is composed of a source field,
Bs and an eddy current reflected field Br defined as

B1 = Bs + Br (23)

The reflected field can be defined in terms of the scalar potential

Br = −µ0∇φ1 (24)

The field within the conductive region 2, the transmitted field, can be
expressed in terms of a vector potential defined by

B2 = ∇×Ass
z (25)

Substituting (23) and (25) the boundary conditions on Γ12 can be
written in terms of the vector and scalar field values such that [26, 33]

−µ0
∂φ1

∂x
+ Bs

x(x, b) =
∂Ass

z

∂y
, on Γ12 (26)

µ0
∂φ1

∂y
−Bs

y(x, b) =
∂Ass

z

∂x
, on Γ12 (27)

Similarly, when there is no source in region 3 the boundary conditions
on Γ12 are

−µ0
∂φ3

∂x
=

∂Ass
z

∂y
, on Γ23 (28)

−µ0
∂φ3

∂y
= −∂Ass

z

∂x
, on Γ23 (29)

where Bs
x(x, b), Bs

y(x, b) are the magnetic source terms. The source
field is centered at x = 0. On the outer non-conducting boundaries
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φ1 = 0 on Γ1 and φ3 = 0 on Γ3. In this paper, the source is assumed to
be only located in Ω1 therefore it is only present in boundary condition
(26) and (27). However, this method can be used in a situation when
a source is presented on both the top and the bottom surfaces. In
that case, boundary conditions (28) and (29) will have an extra source
terms similar to (26) and (27).

3.2. Fourier Solution of Governing Equations

The governing Equations (16) and (19) must satisfy the boundary
conditions (26)–(29) and outer boundary requirements. The solution of
this problem has been obtained by using the spatial Fourier transform
technique [34] in which the Fourier transform for the vector and scalar
potential regions with respect to the x-axis are

Ass
z (ξ, y) =

∞∫

−∞
Ass

z (x, y)e−jξxdx (30)

φn(ξ, y) =

∞∫

−∞
φn(x, y)e−jξxdx. (31)

By utilizing (30), (16) reduces to

∂2Ass
z (ξ, y)
∂y2

− 2λ
∂Ass

z (ξ, y)
∂y

− γ2Ass
z (ξ, y) = 0, in Ω2 (32)

where

γ2 = ξ2 + µ0σs0 (33)
so = j(ωeo + ξvxo) (34)

λ =
vyµ0σ

2
(35)

Solving (32) gives the general solution in Ω2 as

Ass
z (ξ, y) =

[
M(ξ)eyβ + N(ξ)e−yβ

]
eyλ (36)

where
β2 = λ2 + γ2 (37)

and M(ξ) and N(ξ) are unknowns. The Fourier transform of (19) is

∂2φn(ξ, y)
∂y2

= ξ2φn(ξ, y), in Ωn (38)
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where n = 1 and 3. Solving (38) and noting that when moving away
from the plate along the y-axis in Ω1 and Ω3 the field must reduce to
zero one obtains the solutions

φ1(ξ, y) = X1(ξ)e−ξy, in Ω1 (39)

φ3(ξ, y) = X3(ξ)eξy, in Ω3 (40)

where X1(ξ) and X3(ξ) are unknowns. The boundary conditions (26)–
(29) are Fourier transformed with respect to x and (36), (39) and (40)
are substituted into the transformed boundary conditions. Solving for
the unknowns M(ξ) and N(ξ) enables the magnetic vector potential
to be derived as

Ass
z (ξ, y) = T ss(ξ, y)Bs(ξ, b) (41)

where

T ss(ξ, y) =

[
[λ− (ξ + β)]eβy − [λ− (ξ − β)]e−βy

]
eλ(y−b)

eβb[λ2 − (ξ + β)2]− e−βb[λ2 − (ξ − β)2]
(42)

can be interpreted as the transmission function for an arbitrary source
field, Bs(ξ, b), imparted on the plate surface, Γ12. The Bs(ξ, b) source
field is

Bs(ξ, y) = Bs
x(ξ, y) + jBs

y(ξ, y) (43)

The reflected field can be determined by solving for X1(ξ), from which
it is determined that [31, 33]

Br
y(ξ, y) = jBr

x(ξ, y) (44)

where
Br

y(ξ, y) =
[
Bt

y(ξ, b)−Bs
y(ξ, b)

]
eξ(b−y) (45)

and the transmitted field Bt
y(ξ, y) is

Bt
y(ξ, y) = −∂Ass

z (ξ, y)
∂x

= −jξT ss(ξ, y)Bs(ξ, b) (46)

The transmitted, reflected and source fields at the boundary, y = b,
are therefore

Bt
y(ξ, b) = Br

y(ξ, y) + Bs
y(ξ, b) (47)

Bt
x(ξ, b) = Br

x(ξ, y) + Bs
x(ξ, b) (48)

3.3. Force Calculation

The forces are calculated by evaluating the stress tensor equation on
Γ12 (y = b). Due to Parseval’s theorem the force integration can be
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evaluated in the Fourier domain thereby avoiding the need to first
obtain the inverse transform [29, 35]. The thrust and lift forces are

Fx =
w

4πµ0
Re

∞∫

−∞
Bt∗

x Bt
ydξ (49)

Fy =
w

8πµ0
Re

∞∫

−∞

(
Bt∗

y Bt
y − Bt∗

x Bt
x

)
dξ (50)

where star-superscript denotes complex conjugation. After substitut-
ing (47), (48) into (49), (50) it can be shown that for an arbitrary
source the force equations are given by [31, 33]

F ss =
w

8πµ0

∞∫

−∞
[2ξAz(ξ, b)Bs∗(ξ, b)− |Bs(ξ, b)|2]dξ, on Γ12 (51)

where the normal, Fy, and tangential force, Fx, on the rotor are

F ss = Fy + jFx (52)

Therefore

Fx = −Im[F ss ] (53)
Fy = −Re[F ss ] (54)

Based on convention lift force is defined as a positive force and therefore
the negative signs in (53) and (54) ensures that both lift and thrust
force are the force acting on the rotor source. The force equation
given by (51) can be further simplified. Substituting (41) into (51)
and rearranging gives

F ss =
w

8πµ0

∞∫

−∞
Γ(ξ, b)|Bs(ξ, b)|2dξ, on Γ12 (55)

where

Γ(ξ, b) = 2ξT ss(ξ, b)− 1 (56)

=
µ0σ[so − υyξ]

2ξ2 + µ0σso + 2βξ coth(βb)
(57)

4. TRANSIENT EDDY CURRENT MODEL FOR AN
ARBITRARILY CHANGING SOURCE

In [31, 33] the 2-D transient eddy current forces due to a step change
in angular velocity and/or translational velocity of a source field above
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a linear conductive plate were derived. The model was validated by
comparing it with finite element analysis (FEA) code. Unlike with
the steady-state model, the motional effects are accounted for by
moving the source field. The model is capable of predicting transient
force changes given an initial steady-state condition. In order to be
coupled to a dynamic electromechanical model the transient eddy-
current model must be capable of predicting forces for continuous
changes in operating inputs from non-steady state initial conditions. In
this section the model presented in [31] is extended to model continuous
changes in the source input. The Fourier and Laplace transformed
solution for the vector potential in Ω2, for the case when Az(x, y) = 0
at t = 0 is [31]

Atr
z (ξ, y, s) = T tr(ξ, y, s)Bs(ξ, b, s) (58)

The superscript tr stands for transient. The transmission function for
the transient case is

T tr(ξ, y, s) =
(α + ξ)eαy + (α− ξ)e−αy

eαb(α + ξ)2 − e−αb(α− ξ)2
(59)

and
α2 = ξ2 + µ0σs. (60)

4.1. Vector Potential Step and Impulse Response

If the source field is a unit-step

Bs(ξ, b, t) =
1
s

(61)

then by using (58) and following the derivation method given in [31]
the vector potential field at y = b is

Astep
z (ξ, b, t) = A1u(t) +

9∑

n=0

(
An

t esn
t t + An

c esn
c t

)
(62)

where u(t) denotes the unit step function. In (62) only the first 10
roots of cot and tan are evaluated numerically and the root index is
denoted by the superscript n = 0, 1, . . . 9. The other variables in (62)
are

A1 = T (ξ, b, 0) = 1/(2ξ) (63)

An
t = − 8kn

t

µoσb3ξ2

(2kn
t cot(2kn

t ) + bξ)
sn
t (−λkn

t + cot(kn
t )) (λ + sec2(kn

t ))
(64)

An
c =

8kn
c

µoσb3ξ2

(2kn
c cot(2kn

c ) + bξ)
sn
c (λ + csc2(kn

c )) (λkn
c + tan(kn

c ))
(65)
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and the time constants are

sn
q = −

[(
2kn

q

b

)2

+ ξ2

]
1

µoσ
(66)

where the subscript q = t or c denotes the root solutions for the tan
and cot terms. The impulse response can be obtained from the step
response solution. Laplace transforming (62) and multiplying through
by s gives

Aimp
z (ξ, b, s) = A1 +

9∑

n=0

(
An

t s

s− sn
t

+
An

c s

s− sn
c

)
(67)

inverse Laplace transforming (67) one obtains

Aimp
z (ξ, b, t) = A1δ(t)+

9∑

n=0

(An
t + An

c ) δ(t)+
9∑

n=0

(
An

t sn
t esn

t t + An
c sn

c esn
c t

)

(68)
where δ(t) is the unit impulse function.

The transient response due to an arbitrary source change
Bs(ξ, b, τ) at any point in time can be obtained by utilizing the
convolution integral of the impulse response [36]

Az(ξ, b, t) =

t∫

0

Bs(ξ, b, τ)Aimp
z (ξ, b, t− τ)dτ (69)

substituting (68) into (69) gives

Atr
z (ξ, b, t) =

t∫

0

Bs(ξ, b, τ)

[(
A1 +

9∑

m=0

(An
t + An

c )

)
δ(t− τ)

+
9∑

n=0

(
An

t sn
t esn

t (t−τ) + An
c sn

c esn
c (t−τ)

)]
dτ. (70)

The x and y-component flux density transient response can be derived
from the derivative of (70) [33].

4.2. Force Calculations

The transient forces can be computed using [31, 33]

F tr(t) =
w

8πµ0

∞∫

−∞
[2ξAz(ξ, b, t)Bs∗(ξ, b, t)− |Bs(ξ, b, t)|2]dξ, on Γ12

(71)
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such that the normal and tangential force will be

F tr(t) = Fy + jFx (72)

The accuracy of this transient eddy current model was validated with
an FEA model [33]. The validation is provided in the Appendix.

5. HALBACH ROTOR SOURCE FIELD

The field results derived in Sections 3 and 4 can be utilized with any
source term. Only the Fourier transformed field value on the surface of
the conducting plate must be specified. In this analysis the source field
is assumed to be a Halbach rotor that can simultaneously rotate and
move in the x, y plane above the conductive plate. The coordinate
system for such a Halbach rotor is shown in Figure 6. The center
of the Halbach rotor is located at (xo, yo). The rotation frequency
is assumed to be at a single frequency, ωe(t), but its value however
can change with time. The electrical and mechanical angular velocity,
ωm(t), are related by ωe(t) = ωm(t)P where P is the number of pole-
pairs. An airgap, g, between the rotor and conducting plate is always
assumed.

Figure 6. Coordinate system for Halbach rotor position above a
conductive plate.
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5.1. Transient Source Equation

The 2-D Halbach rotor field in air was derived in [37]. It can be
expressed in vector potential form as

As
z(r, θ, t) =

C

P

ejPθ

rP
ejPωmt (73)

where

C =
(

2BrP

P + 1

)
(1 + µr)r2P

o (rP+1
o − rP+1

i )
(1− µr)2r2P

i − (1 + µr)2r2P
o

(74)

Br = magnet remanence, ri = inner rotor radius and µr = relative
permeability. The magnet eddy-current losses are neglected in the
analysis but as the Halbach magnets are highly segmented, these losses
will be relatively low [38]. The Halbach rotor’s coordinate axis is
located at (xo, yo) where

yo = b + g + ro (75)

Using the complex analysis conversion [26, 33]

ejPθ

rP
=

1
(xo − jyo)P

(76)

and converting (73) to the conducting plate Cartesian coordinate
reference frame gives

As
z(x, y, t) =

CejPωmt

P [(x− xo)− j(y − yo)]P
(77)

The translational source velocity term, vx can also be included into
(77). After including this, the source field flux density is given by

Bs
y(x, y, ωm, vx, t) = −∂Az

∂x
=

C

[(x−vxt−xo)−j(y−yo)]P+1
ejPωmt (78)

Bs
x(x, y, t) = jBs

y(x, y, t) (79)

Equations (78), (79) are utilized in the transient solution. The Fourier
transformed transient source solution at y = b is given by [26]

Bs
x(ξ, b, t) = (−j)P 2

P !
CπξP e−ξ(g+ro+jxo)ej(Pωm−ξvx)tu(ξ) (80)

Bs
y(ξ, b, t) = −jBs

x(ξ, b, t) (81)

and the source equation defined by (43) for a Halbach rotor is then
given by

Bs(ξ, b, t) = 2(−j)P 2
P !

CπξP e−ξ(g+ro+jxo)ej(Pωm−ξvx)tu(ξ) (82)
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5.2. Steady-state Source Equation

In the steady-state formulation the oscillating source frequency, ωe, as
well as both the translational and heave velocity terms are accounted
for within the conducting plate solution given by (41). Therefore, the
steady-state source equation used in (41) is [26, 33]

Bs
y(x, y) = −∂Az

∂x
=

C

[x− xo − j(y − yo)]P+1
(83)

Bs
x(x, y) = jBs

y(x, y) (84)

Substituting (83) and (84) into (43) and taking the Fourier transform
gives the steady-state source solution at y = b as

Bs(ξ, b) =
4πCξP

P !
e−ξ(ro+g+jxo)u(ξ). (85)

Equation (85) was used in (41).

6. TWO DEGREE OF FREEDOM VEHICLE
SIMULATION

In order to understand the impact on the electromechanical dynamic
characteristics when the eddy current forces are calculated using the
steady-state force model, a 2-degree of freedom electromechanical
model comparison has been made. An electromechanical model using
four EDWs has been created in the Matlab-Simulink environment.
Each EDW is connected to the vehicle through a drive shaft. The
traction motors have not been modeled. The torque is directly applied
to the drive shafts. The basic configuration of the ‘vehicle’ is shown
in Figure 7 and the block diagram for the integration of the wheel
and vehicle model is shown in Figure 8. The parameters used by
this model are given in Table 1. The selection between the transient
and steady state eddy-current model is achieved by changing the

Figure 7. The maglev vehicle used for simulation where Bv, Hv and
Lv are the breadth, height and length of the vehicle.
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Figure 8. Block diagram showing the electrodynamic wheel and
(mechanical) vehicle coupling. The steady state model includes vy

while the transient model includes the time.

position of the switch (in Figure 8). Only the variation in the vehicle
height, yo, in the y-axis, and translational position, xo along the x-
axis is considered. The vehicle’s x and y-axis motion acts like an
electromechanical nonlinear spring-mass system [39]. The governing
mechanical equations are

m
d2y(t)
dt2

= Fy(t)− Fg(t) (86)

m
d2x(t)

dt2
= Fx(t)− Fd(t) (87)

where Fg = gravitational force and m = mass of vehicle and the rotor
magnets. Fx(t) and Fy(t) are the thrust and lift force respectively. The
aerodynamic drag force, Fd(t), is given by [40]

Fd(t) = 0.5ρCdAvx(t)2 (88)

where, ρ = density of air, Cd = aerodynamic drag coefficient, A =
frontal area of the vehicle. No aerodynamic damping in y-direction
is included. The values were chosen to match an experimental setup.
The ‘vehicle’ was started with initial conditions: 10 ms−1 translational
velocity, 0 ms−1 heave velocity, airgap g = 10 mm, ωm = 400 rads−1.
These initial conditions result in a positive slip sl = 10 ms−1. The
response when using these initial conditions with the steady-state
model (given in Section 3) and transient model (Section 4) are
compared in Figure 9 and Figure 10. Both use the same mechanical
model. The large initial transient is due to the positive slip of the
vehicle creating a thrust and lift force and consequently acceleration
in the x and y direction at t = 0 s. One can note that the steady-state
model tracks the transient response quite closely. This is because of
the presence of the vy term in (16). The sudden change in lift force
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Figure 9. Simulation response when a step change in maglev vehicle
weight of 50 N occurs at t = 5 s. The resulting response when (a) the
transient eddy current model is used and (b) the steady-state eddy
current model is used is shown. The thrust, lift, air-gap variation and
heave velocity have been plotted.
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Table 1. Dynamic simulation parameters.

Description Value Units

Vehicle

Length of the vehicle, LV 40 cm
Breadth of the vehicle, BV 20 cm
Height of the vehicle, HV 10 cm
Thickness of vehicle, TV 4 cm

Frontal area of the vehicle, A 0.0476 m2

Density of iron, ρFe 7.93 g/cm3

Length of drive shaft, LDS 4 cm
Radius of drive shaft, RDS 1 cm
Total mass of vehicle, m 21.38 kg

Aerodynamic drag coefficient, Cd 0.25 kgs−1

Halbach
rotor

Outer radius, ro 50 mm
Inner radius, ri 34.20 mm

Width, w 50 mm
Magnet (NdFeB), Br 1.42 T

Magnet relative permeability, µr 1.08 -
Pole-pairs, P 4 -

Conducting
plate

Conductivity (Al), σ 2.459× 107 Sm−1

Single sheet width, ω 50 mm
Thickness, b 10 mm

Air-gap between rotor and plate, g 10 mm

creates a mechanical acceleration and consequently this is captured
by the vy term, without the feedback created by vy the steady-state
model cannot account for the dynamic variation in the airgap, g.
The resulting error in airgap estimation is relatively small, as shown
in Figure 11. Electromagnetic damping is clearly present. The lift
and thrust forces are highly coupled. The translational velocity is
smoothly increasing because the conducting plate is assumed to be
infinitely uniform in the x-axis. At time t = 5 s a step change in
mass occurs and this results in a second transient phase; again the
electromechanical system with steady-state forces closely tracks the
transient eddy-current electromechanical model.

A comparison for a step change in angular velocity is shown
in Figure 12 and Figure 13. The model starts in a steady-state
condition and then a step change in ωm from 400 to 600 rads−1
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occurs at t = 1 s. This results in an increased slip and consequently
an increase in translational velocity. As the velocity is greater the
new steady-state airgap value increases. The steady-state coupled
electromechanical model again closely tracks the eddy-current based
transient electromechanical model.
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Figure 12. Electromechanical simulation results for a step change in
angular velocity when using the stead-state and transient eddy current
model.
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time.



20 Paudel and Bird

7. STIFFNESS AND DAMPING ANALYSIS

The two degree freedom vehicle simulation results indicate that
the eddy current damping and stiffness characteristics of the
electromechanical system can be relatively accurately predicted by
using (16). Therefore, as the steady-state equations are significantly
simpler to understand and greatly faster to compute they have been
used to study the stiffness and damping characteristics for this system.
The magnetic damping coefficients are dependent on the transmission
functions. The damping coefficient is defined as the negative derivative
of force with respect to the velocity [41]. Differentiating (55) with
respect to velocities in the x and y directions, one obtains

[
Dxx Dxy

Dyx Dyy

]
=

[ −dFx
dvx

−dFx
dvy

−dFy

dvx
−dFy

dvy

]
=


 Im

[
dF ss

dvx

]
Im

[
dF ss

dvy

]

Re
[

dF ss

dvx

]
Re

[
dF ss

dvy

]

 (89)

The velocities, vx and vy in (89), are the velocities of the rotor and the
damping forces are computed on the vehicle rather than the conductive
plate. The derivative terms in (89) can be further written as

dF ss

dvx
=

w

8πµ0

∫ ∞

−∞

∂Γ(ξ, b)
∂vx

|Bs(ξ, b)|2dξ (90)

dF ss

dvy
=

w

8πµ0

∫ ∞

−∞

∂Γ(ξ, b)
∂vy

|Bs(ξ, b)|2dξ (91)

The derivatives of the transmission function in (90) and (91) are
evaluated analytically and are determined to be

∂Γ(ξ, b)
∂vx

= −jµσξ2

(γ2 + 2λ(λ− ξ) + ξ2) coth(bβ)
+2β(ξ − λ) + bβ(γ2 + 2ξλ− ξ2)csch(bβ)2

β[2ξς coth(bς) + γ2 + ξ2]2
(92)

∂Γ(ξ, b)
∂vy

= ξµσ

(γ2(2ξ − λ) + λξ2) coth(bβ) + β(γ2 + ξ2)
+bλβ(γ2 + 2ξλ− ξ2)csch(bβ)2

β[2ξς coth(bς) + γ2 + ξ2]2
. (93)

The stiffness coefficient is defined as the negative derivative of forces
with respect to the displacement [41]. The stiffness matrix for 2D
model can be obtained by taking the derivative of force with respect
to the x and y-axis displacements as given by

[
kxx kxy

kyx kyy

]
=

[ −dFx
dxo

−dFx
dyo

−dFy

dxo
−dFy

dyo

]
(94)
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Using (52), (94) can be written as

[
kxx kxy

kyx kyy

]
=


 Im

[
dF ss

dxo

]
Im

[
dF ss

dyo

]

Re
[

dF ss

dxo

]
Re

[
dF ss

dyo

]

 (95)

Assuming that the complex force function (52) has a derivative over all
space then it can be said that (52) is analytic and therefore the Cauchy-
Riemann equation is applicable. The Cauchy-Riemann equation states
that [42]:

∂Fy

∂xo
=

∂Fx

dyo
(96)

∂Fy

∂yo
= −∂Fx

dxo
(97)

Equation (97) is the 2-D form of Earnshaw’s theorem [43–45].
Substituting (96) and (97) into (95), the stiffness matrix becomes

[
kxx kxy

kyx kyy

]
=

[ −Re[dF ss

dyo
] Im[dF ss

dyo
]

Im[dF ss

dyo
] Re[dF ss

dyo
]

]
(98)

When the source field is given by (85) it can be noted that the airgap,
g, will be changing therefore

dF ss

dyo
=

∂F ss

∂g

∂g

∂yo
=

∂F ss

∂g
(99)

Substituting (85) into (55) and evaluating (99) gives

dF ss

dyo
=

w

4πµ0

∞∫

−∞
ξΓ(ξ, b) |Bs(ξ, b)|2 dξ, (100)

and from (96), (97) and (100) one obtains

dF ss

dxo
=

jw

4πµ0

∞∫

−∞
ξΓ(ξ, b) |Bs(ξ, b)|2 dξ, (101)

Using the parameters given in Table 1 the lift and drag force on
the EDW as a function of translational velocity for the case when
ωe = 0 and vy = 0 is shown in Figure 14. The stiffness coefficients
obtained using (95) is shown in Figure 15. The stiffness coefficients
kyy is positive for increase in translational velocity. This stiffness
coefficient is acting similar to the mechanical spring; when the rotor is
pushed close to the conductive plate, it will be pushed back because
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of a positive stiffness, a necessary condition for stability. The stability
exists in the direction of positive stiffness if the reaction force acts to
oppose perturbatory displacements [46]. The negative stiffness, kxy, is
a consequence of the drag force decreasing with height.

Figure 16 shows that for small changes in the EDW heave
velocity the variation in the lift and drag force is linear. Figure 17
and Figure 18 show the EDW vertical and horizontal damping
characteristics calculating using (89). The damping coefficient Dxx

is positive at velocities below the peak of the drag force and then
becomes negative with further increase in translational velocity. In
terms of energy, the positive damping means taking away energy from
the system whereas negative damping refers to adding energy to the
system [47]. The damping coefficient Dyx is always negative and peaks
at a low translational speed. Since the lift force increases with increase
in vx (see Figure 14), energy is being added to the system, hence, the
damping coefficient Dyx is negative.
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Both drag and lift force are decreasing with an increase in
the EDW heave velocity (see Figure 16), the energy is being taken
away from the system. Therefore, the damping coefficients Dxy

and Dyy are both positive. The vertical damping coefficient, Dyy

decreases and becomes almost zero with an increase in translational
velocity. However, the damping coefficient Dxy reaches a maximum
value at peak drag force and then decreases with further increases in
translational speed. These damping characteristics shown in Figure 18
agree with the calculations performed by Yoshida and Takakura [12],
Urankar [13] in which no negative vertical damping Dyy was calculated.

For the case when ωe 6= 0 a slip will be present as defined by (1).
Depending on the slip value the tangential force can be either a thrust
or a drag force as shown in Figure 19. The lift and tangential force
as function of slip and translational speed is shown in Figure 20
while Figure 21 shows the stiffness contour plots. The same stiffness
relationships given by (95), (96) and (97) apply when ωe 6= 0. The
cross coupled stiffness terms kxy, kyx become positive for positive
slip values and therefore this should improve stability. The damping

Translational velocity, v    (m/s)x

D
  

  
 (

N
s
/m

)
y
y

D
  

  
 (

N
s
/m

)
x
y

Dxy

Dyy

Figure 18. The electrodynamic
damping terms, Dxy and Dyy.

D
ra

g
/T

h
ru

s
t 

F
o

rc
e

, 
F

  
 (

N
)

x

L
if
t 

F
o

rc
e

,F
  

 (
N

)
y

Slip, s   (m/s)l

Thrust/Drag

Lift

Figure 19. Thrust (tangential)
force and lift (normal) force as
a function of slip when vx =
20ms−1.

(a)

 T
ra

n
sl

at
io

n
al

 

v
el

o
ci

ty
 (

m
s
−

1 )

Slip (ms −1) 

-20 -10 0 10 20 30 40 50
0

5

10

15

20

25

30

-50

0

50

(N)

(b)

 T
ra

n
sl

at
io

n
al

 

v
el

o
ci

ty
 (

m
s
−

1 )

Slip (ms −1) 

-20 -10 0 10 20 30 40 50
0

5

10

15

20

25

30

50

100

150

(N)

Figure 20. (a) Thrust force and (b) lift force as a function of slip and
translational velocity at g = 10 mm and vy = 0 m/s.



24 Paudel and Bird

(a)

  
T

ra
n

sl
at

io
n

al
 

v
el

o
ci

ty
 (

m
s
−

1
)

Slip (ms −1) 

-20 -10 0 10 20 30 40 50
0

5

10

15

20

25

30

-10

5

10

(N/mm)

(b)

  
T

ra
n

sl
at

io
n

al
 

v
el

o
ci

ty
 (

m
s
−

1
)

Slip (ms −1) 

-20 -10 0 10 20 30 40 50
0

5

10

15

20

25

30

5

15

25

(N/mm)

-5

0

20

10

Figure 21. (a) The stiffness coefficients kxy and kyx, (b) the stiffness
coefficients kyy and |kxx| as a function of slip and translational velocity
at g = 10 mm and vy = 0 m/s.

(a)

  
T

ra
n

sl
at

io
n

al
 

v
el

o
ci

ty
 (

m
s
−

1
)

Slip (ms −1) 

-20 -10 0 10 20 30 40 50
0

5

10

15

20

25

30

15

20

(Ns/m)

(b)

  
T

ra
n

sl
at

io
n

al
 

v
el

o
ci

ty
 (

m
s
−

1
)

Slip (ms −1) 

-20 -10 0 10 20 30 40 50
0

5

10

15

20

25

30

5

15

(Ns/m)

5

10

20

10

(c)

  
T

ra
n

sl
at

io
n

al
 

v
el

o
ci

ty
 (

m
s
−

1
)

Slip (ms −1) 

-20 -10 0 10 20 30 40 50
0

5

10

15

20

25

30

-10

5

10

(Ns/m)

(d)

  
T

ra
n

sl
at

io
n

al
 

v
el

o
ci

ty
 (

m
s
−

1
)

Slip (ms −1) 

-20 -10 0 10 20 30 40 50
0

5

10

15

20

25

30

-10

0

10

(Ns/m)

-5

0

5

-5

0

Figure 22. (a) Damping coefficient Dyy, (b) damping coefficient Dxx,
(c) damping coefficient Dxy and (d) damping coefficient Dyx all as a
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relationships are shown in Figure 22. It can be noted that the vertical
damping, Dyy, is always positive but decreases with slip value. Unlike
in Figure 17, the horizontal damping coefficient, Dxx, becomes positive
when both the translational and rotational speed are included. The
magnitude of Dxx however decreases with increase in slip value as
shown in Figure 22(b). The off-diagonal damping term Dyx is positive
for positive slip values. Whereas the other off-diagonal damping term
Dyx is negative when operating with thrust and therefore this term is
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Figure 23. Lift, thrust and airgap plot comparison between the FEA
transient model and analytical transient model when integrated with
the Matlab-Simmechanics vehicle model.

likely to create instabilities. The decrease of the magnetic damping
values at high slip values suggests that the inherent magnetic damping
is insufficient and therefore active control of an electrodynamic maglev
system is essential.

8. CONCLUSIONS

A 2-D analytic based steady-state eddy current model that
incorporates heave and translational velocity as well as rotational
motion has been derived. In addition, a dynamic eddy-current model
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capable of reacting to continuous changes in input conditions has also
been presented. The steady-state and transient eddy-current models
were both incorporated into an electromechanical system in order to
assess the calculation accuracy of the steady-state model when heave
velocity is included. An electrodynamic wheel (Halbach rotor) was
used as the source field. The simulation results indicate that the
inclusion of the heave velocity, vy, into a steady-state model creates a
means for feedback in the electromechanical system thereby enabling
the steady-state based force calculations to quite accurately track the
dynamic behavior. The electromechanical simulation time is greatly
reduced when the eddy current forces are computed from steady-state
equations. Using the concept of reflected and transmitted fields the
tangential and normal force equations were derived in a simplified
form this enabled the exact damping and stiffness equations to be
analytically derived.
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APPENDIX A.

The analytic based electromechanical transient eddy current model
with continuous time varying capabilities presented in Section 4 and
Section 5 was validated by comparing it with a transient 2D FEA
model that was also integrated into the electromechanical system
described in Section 5 [33]. The transient FEA model utilized a
fictitious current sheet [5] approach to model the Halbach rotor. The
FEA model was developed in COMSOL v3.5 and integrated into
the Matlab SimMechanicsTM model environment utilizing Matlab s-
functions. The comparison is made by using the parameters given
in Table 1 except that an equivalent time-varying current sheet value
Jz = 1.1814×106 Am−1 was used to model the source [5]. The ‘vehicle’
was started with initial conditions: airgap go = 10mm, translational
velocity, vxo = 10ms−1 and angular velocity, ωmo = 400 rads−1. These
initial conditions result in a positive slip sl = 10ms−1. The comparison
between the lift force, thrust force and the air-gap are illustrated
in Figure 23. An excellent agreement between the FEA model and
the analytic based transient model for a continuously changing input
condition was obtained. The integrated simulation approach developed
between the transient FEA model and SimMechanicsTM vehicle model
was extremely time intensive. For instance, to obtain the result shown
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in Figure 23 took approximately 2 weeks. However, the computational
time using the analytic based transient eddy current model could be
completed within a few minutes.
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