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Abstract—Ultra-wideband synthetic aperture radar (UWB SAR) is
a sufficient approach to detect landmines over large areas from a safe
standoff distance. Feature extraction is the key step of landmine
detection processing. On the one hand, the feature vector should
contain more scattering characteristics to discriminate landmines from
clutters; on the other hand, the dimensionality of feature vector should
be lower to avoid the “curse of dimensionality”. In this paper, a
novel feature vector extraction method is proposed. We first obtain
the scattering characteristics in four domains, i.e., range, azimuth,
frequency and aspect-angle, via the space-wavenumber distribution
(SWD). Since the data after SWD are with higher dimension and local
nonlinear structures, a typical manifold learning method, Isomap, is
used to reduce the dimension. The validity of the proposed method is
proved by using the real data collected by an airship-borne UWB SAR
system.

1. INTRODUCTION

Ultra-Wide Band Synthetic Aperture Radar (UWB SAR) with the
ground penetrating capability has become an alternative way to detect
landmines over large areas [1–3]. The typical detection procedure is
first to extract the Regions of Interest (ROIs) from the entire SAR
image, which is called prescreening in this paper. Each ROI contains
a mine-like target. Some mine-like targets are landmines, whereas
some are only clutters. In prescreening, high detection probability
is desired, which leads to a high false alarm rate. The next step
is to detect landmines from clutters in the extracted ROIs, which
is called detection processing here. Detection should reject clutters
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as many as possible while maintaining a high detection probability.
Detection processing includes two main steps: feature extraction and
detector design. Features are obtained through the feature extraction
procedure and then formed the feature vector for the following detector.
Numerous studies have focused on the detector design, such as k-
Nearest Neighbors (KNN), Support Vector Machine (SVM) [4–6] and
Neural Network [7, 8]. However, a set of suitable features may achieve
a correct detection, even if using a simple detector; on the contrary,
it could be difficult to achieve a satisfactory detection performance
without well-selected features of landmines, even if using a complex
detector. Therefore, we focus on feature extraction in this paper.

The ROI image data generated by SAR system usually has very
high dimension and very limited number of samples. The target
detection based on it is a typical high-dimensional identification of
small samples, which is one of the most difficult problems in the
modern pattern classification study. In UWB SAR, a metallic antitank
landmine often yields two dominant scattering centers along the range
direction, which correspond to the front and rear edges of the top
surface of the landmine and is called double-hump signature [9, 10].
Therefore, the range cut through the ROI image center is usually used
as the input feature vector for landmine detection, which has the two-
peak characteristic [11]. This feature has lower dimension than the
whole ROI image and is suitable to discriminate the clutter without two
peaks, which will reduce the false alarm rate. However, this method
still cannot fulfill the practical requirement, due to that the range cut
data only use the scattering characteristic in range domain. Frequency
features are another consideration due to the wide bandwidth of radar.
For example, the features of sub-bands with good target-to-clutter
contrast are input into a classifier designed based on Fischer’s linear
discriminant in [12]. The time-frequency (TF) analysis can extract
the target features of the time domain and the frequency domain
simultaneously, which yields a potentially more revealing image of the
ROI range components [13–15]. However, these studies do not provide
much attention to the azimuth characteristics of target scatterings.
Actually, the scattering characteristics of landmine represent at least
in the four domains: range, azimuth, frequency and aspect-angle,
which can be obtained by the space-wavenumber distribution (SWD)
method. However, it means that we need to process the data with
higher dimension if we want to use more characteristics.

To solve this problem, we need to reduce the dimension without
losing information. Principal Component Analysis (PCA) [16–18]
and Linear Discriminant Analysis (LDA) [19] are two typical linear
dimension reduction methods. Linear methods suppose that the
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data are global linear and attempt to maintain consistent Euclidean
distances between points in the low-dimensional embeddings. However,
the UWB SAR imaging is interfered by many factors, such as
radio frequency interference [20], motion of the platform [21], and
speckle [22]. These complexities of SAR imaging results in the
existence of local nonlinear structures, the linear dimension reduction
approaches are no longer appropriate for landmine detection in
UWB SAR. Manifold learning is a newly proposed machine learning
theory, which is a nonlinear dimension reduction method [23, 24].
Nonlinear techniques attempt to maintain consistent geodesic distances
(distances along the manifold) in the low-dimensional embedding. In
this paper, we propose a novel landmine detection method based
on the manifold learning. The proposed method firstly uses the
SWD processing to obtain images with different frequencies and
aspect-angles of an original ROI image, which exhibits the scattering
characteristics of the target. Then we use a typical manifold learning
method which is called Isomap to obtain low-dimensional feature vector
for detection.

The remainder of the paper is organized as follows. Section 2
introduces the traditional feature extraction methods for landmine
detection. Section 3 proposes our feature extraction method. Section 4
proves the validity of the proposed method by using real data collected
by an airship-borne UWB SAR system. Section 5 provides the
conclusion.

2. TRADITIONAL FEATURE EXTRACTION METHODS
FOR LANDMINE DETECTION

The dimensionality will be very high if we form the feature vector
pixel by pixel from the original ROI image. Such high dimension will
encounter the “curse of dimensionality”: the amount of data needed for
robust statistical modeling grows exponentially in the dimensionality.
It means that we need a huge number of samples of landmines, which
are hard to be obtained in practice. To solve this problem, we need to
form the feature vector with low-dimensionality. Traditionally, there
are two ways to extract features from an image: extraction of features
defined by domain experts and data-driven subspace projection. The
former way is based on the experience and computationally tractable.
For landmine detection in UWB SAR image, 1D range cut through
the ROI image center is taken as the feature vector by experience.
The latter way is based on data analysis, the PCA is used to find the
subspace projection and form the feature vector for landmine detection.
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2.1. Taking 1D Range Cut as Feature Vector

Figure 1(b) shows a SAR image of a metallic landmine (Fig. 1(a)) with
the diameter of 0.3 m, which is obtained by an Airship-Mounted UWB
SAR (AMUSAR) system with the operating frequency band of 0.5–
2.5GHz and the accumulated angle of 60◦ [25]. There are two salient
scattering centers along the range direction, which can be called the
double-hump. The double-hump corresponds to the strong scattering
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Figure 1. (a) Optical image of a metallic landmine; (b) SAR image of
a metallic landmine; (c) 1D range cut of landmine; (d) Optical image
of a clutter; (e) SAR image of a clutter; (f) 1D range cut of a clutter;
(g) Optical image of a hole; (h) SAR image of a hole; (i) 1D range cut
of hole.
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echo from the front and rear edges of the landmine. Since the shape
of most clutters are different from landmine, most clutters do not have
the double-hump as shown in Figs. 1(d) and 1(e). Therefore, the
double-hump is an important characteristic to distinguish landmines
from clutters. 1D range cut through the image center as shown in
the Fig. 1(c) can well exhibit the double-hump characteristic, and the
dimensionality of 1D range cut is much lower than the original image,
so people usually take 1D range cut as the feature vector. However,
1D range cut only represents the scattering characteristics in range
direction. Some clutters may also have double-hump in the 1D range
cut. For example, a clutter shown in Fig. 1(g) also exhibits double-
hump in the 1D range cut as shown in Fig. 1(i). Practically, this clutter
can be distinguished via the characteristics in the azimuth direction,
which is discarded in the 1D range cut. As a result, taking 1D range
cut as the feature vector is defective.

2.2. Using PCA to Form Feature Vector

In order to form a low-dimensional feature vector without losing
characteristics of image, some people use data-driven subspace
projection method to find the projection from the original high-
dimensional image space to a lower-dimensional subspace. A classical
data analysis method, principal component analysis (PCA), is usually
used to form the feature vector for landmine detection.

PCA assumes that data can be characterized with coordinates in
linear subspaces with lower dimensionality. The coordinates can be
computed as a linear projection from the original high-dimensional
space such that they can be used to optimally reconstruct the original
data points. PCA is especially computationally tractable and scales to
both large-scale and very high-dimensional data sets. The core step is
to diagonalize the covariance matrix of the data. Alternatively, one can
diagonalize the Gram matrix, with elements being the pairwise inner
products between data points. However, despite its popularity and
wide application, PCA is inadequate in capturing interesting structures
in data if the data do not live in a linear subspace. The UWB
SAR imaging is interfered by many factors, such as radio frequency
interference, motion of the platform, and speckle. These complexities
of SAR imaging result in the existence of local nonlinear structures.
Under these circumstances, PCA as a linear dimension reduction
approach is helpless.
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3. PROPOSED FEATURE EXTRACTION METHOD

From above analysis, we can find that the key of feature extraction
for landmine detection is to form a lower-dimensional feature vector
with more scattering characteristics of the target from the SAR image.
In this section we proposed a novel feature extraction method which
is composed of two parts, i.e., the space-wavenumber distribution
processing and the Isomap dimension reduction method. The former
part is used to obtain scattering characteristics in four domains, i.e.,
range, azimuth, frequency and aspect-angle; and the latter part is used
to form a lower-dimensional feature vector.

3.1. Space-wavenumber Distribution Processing

Because of the differences in the principles of imaging, SAR image
is quit different from optical image. Taking the strip map SAR for
example, since the SAR image is synthesized by the data from the
antenna at different positions along the flight path as shown in Fig. 2,
the SAR image contains the aspect-angle characteristics of the target,
whereas the optical image does not. Besides, the response of the target
with different frequency is different, which can be used in detection.
The UWB SAR has a large bandwidth, so the SAR image also contains
abundant frequency characteristics of the target.

Figure 2. Strip-map SAR imaging geometry.

From the above analysis, the UWB SAR image contains 4-D
target scattering information of range, azimuth, frequency, and aspect-
angle. For a landmine, the scattering characteristics represent in
these four domain: in the range direction, a metallic landmine often
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yields two dominant scatterers corresponding to the front and rear
edges of the top of the landmine; in the azimuth direction, there is
at most only one scattering center; in the frequency domain, UWB
SAR system commonly operate in low frequency band (< 3GHz)
which can be defined as resonance band for a landmine, thus the
response of the landmine in the frequency domain is respected to the
shape and size of the landmine [26]; in the aspect-angle domain, a
landmine can be regarded as a body of revolution (BOR) with its axis
rotating perpendicular to the ground, thus the scattering caused by
the landmine is invariable to the various aspect-angles.

However, these characteristics are embedded in the raw data,
but these data are not always available directly, so it will be
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Figure 3. CWD-based SWD processing result of the ROI image in
Fig.1(b): (a) 1 GHz, −20◦; (b) 1 GHz, 0◦; (c) 1 GHz, 20◦; (d) 1.5GHz,
−20◦; (e) 1.5 GHz, 0◦; (f) 1.5 GHz, 20◦; (g) 2GHz, −20◦; (h) 2 GHz,
0◦; (i) 2 GHz, 20◦.
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beneficial to retrieve these variations from the synthesized data.
Several people proposed Subband-Subaperture method to acquire SAR
images of same scene with different frequency bands and aspect-
angle bounds, but it brought a sacrifice of the range and azimuth
resolution [27]. In [28], we proposed a SWD method based on the idea
of Time-Frequency Analysis (TFA), and identified that the Subband-
Subaperture method which actually relied on Short-Time Fourier
Transform (STFT) was a member of SWD. In addition, [28] developed
a SWD method based on the theory of Choi-Williams distribution,
which overcomes the STFT in terms of spatial resolutions.

For instance, The CWD-based SWD processing result of this ROI
image is shown in the Fig. 3. Nine images are obtained with three
different frequencies (1GHz, 1.5GHz and 2 GHz) and three different
aspect-angles (−20◦, 0◦ and 20◦), which represent the landmine
scattering characteristics in four domains: range, azimuth, frequency,
and aspect-angle.

3.2. Dimension Reduction

We have obtained images with different frequencies and aspect-angles
of an original ROI image. These images exhibit the scattering
characteristics, but are not suitable to form the feature vector pixel by
pixel directly because the image data have very high dimensionality.
Since the SAR image data always lie on a complex nonlinear manifold,
nonlinear dimension reduction technique is more reasonable than linear
dimension reduction to discover the intrinsic structure in the data.
Manifold learning is a newly proposed nonlinear dimension reduction
method recent years. It focuses on finding the inherent distribution of
the high dimension datasets and solving the corresponding projections.

For example, Fig. 4(a) shows three points A, B, and C on
a polarimetric manifold, on which the same color represents the

(a) (c)(b)

Figure 4. Illustrative example of PCA and nonlinear method:
(a) Original polarimetric manifold in 3-D space; (b) Two-dimensional
embedding by PCA; (c) Two-dimensional embedding by nonlinear
method.
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same class. The dashed line represents Euclidean distance between
two points, and the solid line represents geodesic distance which is
measured along the polarimetric manifold surface. In Fig. 4(a), points
A and B belong to the same class, whereas point C belongs to another.
However, point A is closer to point C compared to point B under
the Euclidean distance, which may lead to the misclassification those
points A and C belong to the same class, whereas point B belongs
to another. In Fig. 4(c), the polarimetric manifold is mapped into
a low-dimensional intrinsic feature space by nonlinear method. In the
intrinsic feature space, point A is closer to point B compared to point B
under the Euclidean distance. Thus, points A and B can be classified
into the same class, whereas point C is classified into another. In
contrast, PCA cannot discover the correct relationship among the three
points, as shown in Fig. 4(b).

In this paper, we use a typical manifold learning method which
is called Isometric mapping (Isomap) [24] to find the low dimension
manifold of the data after SWD processing. Isomap seeks to preserve
the shortest path along the manifold between any two points xi and xj

when data are mapped into a low-dimensional subspace. The shortest
path can be presented via the geodesic distance dG(xi, xj). To achieve
this goal, the process of Isomap is composed by the following steps:
• Step 1: Build the neighborhood graph. Neighborhoods for each

point on the manifold are determined based on the Euclidean
distances d (xi, xj) between pairs of points (xi, xj) by a proper
method. Generally, there are two methods to determine the
neighborhoods. One is to choose k nearest neighboring points,
the other is to select all objects within some fixed radius ε. These
neighborhood relations are denoted as a weighted graph G over
the data set, with edges of weight d (xi, xj) between neighboring
points.

• Step 2: Estimate the geodesic distances dG (xi, xj) between all
pairs of points. dG (xi, xj) can be approximated by the shortest
path distances in the graph G:

dG(xi, xj) =
{

d(xi, xj) If xi, xj are neighborhoods
min {dG(xi, xj), dG(xi, xk) + dG(xk, xj)} else

Then we can obtain the shortest path matrix DG = {dG(xi, xj)}.
• Step 3: Find the low-dimensional coordinates. We apply

classical Multidimensional Scaling (MDS) [29] to DG to build
an embedding of the data in a d-dimensional Euclidean space Y
that best preserves the manifold’s estimated intrinsic structure.
MDS first uses a centering matrix H = I − 1

n11T to centralize
the geodesic distance matrix DG, i.e., B = −1

2HDGH. Here I
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is the identity matrix, and 1 is a column vector of all one. By
performing a spectral decomposition of B, we have B = UΛUT ,
where U is an orthogonal matrix, Λ is a diagonal matrix, and
the superscript T means matrix transposition. In order to keep
the gram matrix positive semidefinite, the negative elements in
the diagonal of matrix Λ are set to 0. Finally, the data X are
reduced to a d-dimensional subspace using an orthogonal matrix
Ud corresponding to Λd, i.e., Y = XUd.

3.3. Detection Procedure

We take the AMUSAR data for example, Fig. 6 shows the flowchart
of our landmine detection procedure. AMUSAR system provides
surveillance of large areas via a strip-map SAR mechanism. Fig. 5(a)
shows the photos of the system which employs two planar Archimedean
spiral antennas with cross-circular polarization. The step-frequency
system operates at frequencies of 0.5–2.5 GHz. The airship flies at
100m above the ground when AMUSAR is working. We choose
the time-domain back-projection imaging algorithm [30–34] for its
simplicity and good adaptation to motion compensation. Fig. 5(b)
shows the optical image of the experimental area with landmines. The
area has size of 160 m× 280 m. The spatial sampling rates of the SAR

(a) (b)

Figure 5. (a) Photos of the airship-mounted UWB SAR system;
(b) Optical image of the area.

Figure 6. Flowchart of the detection procedure.
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image in the ground range direction and azimuth direction are both
0.04m.

Our landmine detection procedure includes four stages: ROI
extraction, SWD processing, Isomap dimension reduction and
detection. In the first stage, the CFAR method [35] and morphological
filter are used to extract the ROIs. In the second stage, for each
ROI, images with different frequencies and different aspect angles are
obtained via the SWD processing. In the third stage, low-dimensional
feature vectors are formed via the Isomap method. In the last stage,
the detection results are obtained via a detector based on the low-
dimensional feature vector.

4. EXPERIMENTS RESULTS

The data used in the experiments are also collected by the AMUSAR
system. The Signal Noise Ratio (SNR) of the image data is about
14.1 dB. We firstly use the CFAR method and morphological filter
to extract the ROIs. The size of each ROI is 21 × 21 pixels, so the
dimensionality of each ROI image is 441. There are aggregately 35
landmines and 500 clutters in the image. Then three feature extraction
methods are used to form the feature vectors:

ãMethod A: Take 1D range cut through the image center as the
feature vector directly. Since the 1D range cut includes 21 pixels,
here the dimensionality of feature vector formed by Method A is
21.

ãMethod B: Use the PCA method to form the feature vector from
the original ROI image.

ãMethod C: Proposed Method. We use the SWD processing to
obtain images with three different frequencies (1 GHz, 1.5GHz
and 2 GHz) and three different aspect-angles (−20◦, 0◦ and
20◦). The dimension of the data after SWD processing is 3969
(21×21 pixels×3 frequencies×3 aspect-angles). Then we use the
Isomap to reduce the dimension.

In order to compare the performance of each method on the
detection results, the data are randomly divided into two parts:
training data and test data, and input a KNN detector after their
dimension reduction. The detection is executed six times. Then the
average is taken as the result. Fig. 7 illustrates the plots of receiver
operating characteristic (ROC) of each method. The dimensionalities
of feature vectors formed by each method are all 21. Since the
data of range cut through the ROI image center only contain the
scattering characteristics in range domain, Method A performs worst.
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of the proposed method with
different dimensions.

The scattering characteristics of original ROI image is more abundant
than the range cut, so Method B performs better. Finally, Method C
performs the best, which contains scattering characteristics in range,
azimuth, frequency and aspect-angle domains. Fig. 8 illustrates the
plots of ROC of proposed method with different dimensions. The
detection performance improves with the dimensionality; however, the
improvement becomes small when the dimensionality exceeds 16.

5. DISCUSSION AND CONCLUSION

Extraction of feature vectors with abundant scattering characteristics
and low dimension is the key of landmine detection in UWB SAR.
In order to construct such feature vectors, the CWD-based SWD
processing and Isomap are used in this paper. The former processing
is used to obtain the scattering characteristics in four domains: range,
azimuth, frequency and aspect-angle. And the latter processing is used
to reduce the dimension. The performance of real data processing
shows the validity of the proposed method. Knowing that there are
other manifold learning methods besides Isomap, for future work, we
intend to try other manifold learning methods and develop to detect
other types of targets, such as foliage-concealed vehicles.
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