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Abstract—In this paper, the fast Fourier transform (FFT) to
perform spatial convolutions of the time domain discrete Green’s
functions (DGF) method related to the analysis of the antenna with
more than one dimension has been proposed. For this aim, the
discrete Green’s functions and the currents on the antenna have
been appropriately defined periodic so as to use the zero padded fast
Fourier transform. The computational complexity of this approach is
O(NwNxNyNz log(NxNyNz)), contrary to O(NwN2

xN2
y N2

z ) for direct
implementation of the convolutions. Simulation results demonstrate
the great efficiency of the FFT-based spatial convolutions in the
modeling of planar antennas.

1. INTRODUCTION

The time domain analysis is inevitable in electromagnetic problems.
The finite-difference time-domain (FDTD) method is the differential
equation based time domain method and has been extensively used for
analysis of antennas, especially, wide band antennas [1–5]. However,
the FDTD method can be very time consuming, practically, along
with optimization techniques, due to the fact that the determining the
fields at free space nodes and terminating computational space using
absorbing boundary conditions are necessary in the FDTD method.
With the aim of avoiding the need for absorbing boundary conditions
and calculation of free space nodes around the antenna, the dyadic
FDTD compatible Green’s function, referred to as the discrete Green’s
function (DGF), in infinite free space, has been proposed by Vazquez
and Parini in 1999 [6]. By the multidimensional z-transform of FDTD
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equations in time and spatial domains, they derived the analytical
closed form of the discrete Green’s functions (DGFs). Then, they
applied those expressions in the modelling of the dipole antenna [7].
Some references have been presented for the other formulation of
the DGFs. In [8], Kastner obtained an analytical expression for
frequency and time domain of DGFs. Jeng also derived new closed
form expressions for the dyadic discrete Green’s function in free
space using the ordinary z-transform along with the spatial partial
differential operators [9]. In [10], a new technique for acceleration of
the DGF computation based on the Jeng’s formulation on the CPU-
GPU heterogeneous parallel processing system has been proposed. It
is worthwhile to point out that the discrete version of the Green’s
function is quite different from the discrete samples of continuous
one. The need for the DGF to reflect the dispersion and anisotropy
properties of FDTD equations was described by Kastner [8].

The DGF method has a significant potential to solve time domain
EM problems. However, this method has been used for the modeling
of wire antennas such as log periodic dipole and Yagi Uda arrays
and presented significant saving in memory storage and computation
time [11, 12]. One reason this method has not yet been considered
in the analysis of planar antennas is there are multi dimensional
convolutions for calculating current distribution on antennas. The
direct implementation of multidimensional convolutions requires a
much larger number of operations per time steps than conventional
FDTD.

The acceleration of electromagnetic numerical simulations based
on the fast Fourier transform (FFT) algorithm has been presented
recently [13–15]. In this paper, we have shown that the DGF method
can be combined with FFT algorithms to increase its performance
in modeling of planar antennas. Due to the discrete nature of
convolutions of this method, FFT can be used for improving the
computational speed compared to the regular FDTD method. With
this aim and without loss of generality, a simple planar bow-tie
antenna has been considered and current distributions on it have been
calculated using DGF method. Results and computational speed of
DGF and FDTD methods have been compared.

2. DYADIC DISCRETE GREEN’S FUNCTION

According to [11], scattered electric field of an antenna at the time step
(n∆t) can be obtained using the convolution of the current induced on
the antenna and discrete Green’s functions as (we denote a space point
in a uniform rectangular lattice as (i, j, k) = (i∆x, j∆y, k∆z), where
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∆x, ∆y, and ∆z are, respectively, the lattice space increments in the
x, y, and z coordinate directions):

[
~Escat

]n

i,j,k
=

n∑

n′=0

∑

i′,j′,k′

[
Ḡ
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where [Ḡ] is the dyadic discrete Green’s function. Due to the fact
that the sum of the incident and scattered electric fields on the electric
conductor antenna must vanish, we have:
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The update equation for the electric current on the antenna can
be achieved using the property of the zero time step discrete Green’s
function which occurs at n = n′ and is equal to spatial delta Kroneker
function. Therefore, the time step n = n′ can be considered separately
from the rest of the time steps resulting in the following:
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As we can see, in DGF method, the density of current at a certain
time instant is in terms of the incident field at the same time instant
and the current densities at previous time steps and the calculations
are only performed on the cells in which the scatterer is placed instead
of updating the fields in an iterative fashion as occurs in the FDTD
method.

The dyadic discrete vector Green’s function, [G], can be obtained
through the discrete Green’s function of the scalar wave equation by
applying the relationship between them. For example, the three matrix
elements are computed as (it is assumed that ∆x = ∆y = ∆z):
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∆t

(
gn
i,j,k − gn−1

i,j,k − αx

n∑

l=0

gl−1
i−1,j,k − 2gl−1

i,j,k + gl−1
i+1,j,k

)



20 Mirhadi, Soleimani, and Abdolali

[Gejxy]
n
i,j,k = − µ

∆t

(
αx

n∑

l=0

gl−1
i,j+1,k − gl−1

i−1,j+1,k + gl−1
i−1,j,k − gl−1

i,j,k

)

[Gxz]
n
i,j,k = − µ

∆t

(
αx

n∑

l=0

gl−1
i,j,k+1 − gl−1

i−1,j,k+1 + gl−1
i−1,j,k − gl−1

i,j,k

)
(4)

gn
i,j,k is the impulse response of the scalar wave equation (scalar discrete

Green’s function) and can be achieved using multi dimensional z-
transform as [6]:
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and J
(α,β)
n (ξ) is the orthogonal Jacobi polynomial. In other words, gn

i,j,k

is the solution of the second order central difference approximation of
the scalar wave equation with Kronecker delta excitation expressed as
(it has been considered as i′ = j′ = k′ = n′ = 0 due to the shifting
capability of the Green’s functions):
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and can also be computed through a time stepping FDTD equation
with Kronecker delta excitation as:
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We rewrite Eq. (3) as:
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3. DGF IMPLEMENTATION CHALLENGES AND
SOLUTIONS

The implementation of Eq. (3) (or Eq. (8)) for the antenna with more
than one dimension has some drawbacks. First, it is necessary that all
previous time instant currents to be stored for the calculation of the
summation of the convolution. The second problem is that, in addition
to the main loop of updating current, another time loop is needed for
the calculation of time convolution which, in turn, includes several
loops for the spatial convolutions. It is noted that the convolutions
cannot be calculated recursively according to the nature of DGFs. For
the former, Parini and Vazquez have proposed windowing of DGFs,
due to the fact that the amplitude of the DGFs decreases to the level
that can be truncated [7]. For the latter, we suppose to use the FFT
algorithm due to the discrete nature of the simulation. According
to the convolution theorem, the convolution in one domain can be
converted to the point-wise multiplication in another domain.

At this stage, the problem is that the currents and DGFs are not
periodic. As we know, the Fourier transform of the discrete and non-
periodic function is continuous and periodic which we get away from
the discrete solution. Hence, we have to define DGFs and the currents
periodic appropriately so as to use fast Fourier transform. For the FFT
in time domain, the period of DGFs and currents can be assumed to be
the width of the window function (Nw). While the period of the DGFs
and currents, for the FFT in spatial domain, is supposed the maximum
number of DGFs required. If the maximum dimensions of the antenna
along x, y, and z axis are Dx, Dy, and Dz, respectively, the maximum
number of the DGFs, along every axis, will be Nx = 2× (Dx/∆x) + 1,
Ny = 2×(Dy/∆y)+1, and Nz = 2×(Dz/∆z)+1 which is related to the
relative positions between every two nodes considering the direction of
the current element. The period of the DGFs and currents along axis
x, y, and z can be assumed Nx, Ny, and Nz, respectively. Note that
the period of the currents is larger than the nodes that the currents
are calculated; hence, the currents are zero-padded to make the period
of current as the period of the DGFs.

Now, the question is for which convolutions FFT must be used,
time or spatial or both. To answer this question, we have considered the
computational complexity. The maximum computational complexity
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of Eq. (9) for direct implementation of convolutions is O(NwN2
xN2

y N2
z )

at each time step. (Note that in case n < Nw, the computational
complexity at each time step is O(nN2

xN2
y N2

z ) and in case n ≥ Nw,
the computational complexity at each time step is O(NwN2

xN2
y N2

z ), so
we have considered the maximum complexity). If Fourier transform is
used for the computation of Eq. (9), it can be considered as:

~Sn−1
i,j,k = IMFFT(MFFT(Ḡ(i, j, k, n))⊗MFFT( ~J(i, j, k, n))) (10)

where MFFT and IMFFT denote the multi-dimensional FFT and
inverse multi-dimensional FFT, respectively. ⊗ is the matrices
element-by-element product operator. The complexity of a single
multidimensional MFFT or IMFFT is O(N1N2 . . . log(N1N2 . . .)), so
the overall computational complexity is O(3N1N2 . . . log(N1N2 . . .) +
N1N2 . . .) = O(N1N2 . . . log(N1N2 . . .)), where O(N1N2 . . .) is the
complexity of element-by-element product of matrices.

According to the above discussion, the computational complexity
of Eq. (9) at each time step for the computation of the
spatial convolutions using FFT is O(NwNxNyNz log(NxNyNz)),
for the computation of the time convolution using FFT is
O(NwN2

xN2
y N2

z log(Nw)), and for the computation of the time and
spatial convolutions using FFT is O(NwNxNyNz log(NxNyNzNw)).
The computational complexity of mentioned algorithms is listed in
Table 1. FFT-based time convolution algorithm has the highest
complexity, while FFT-based spatial convolutions algorithm has the
lowest complexity which is appropriate to speed up the DGF method.

Table 1. Comparison of the computational complexity of DGF
method and FDTD.

Algorithm
Computational complexity

at each time step

DGF with Direct

implementation of

the multi-dimensional

convolutions

O(NwN2
xN2

y N2
z )

DGF with MFFT for

spatial convolutions
O(NwNxNyNz log(NxNyNz))

DGF with FFT for

time convolution
O(NwN2

xN2
y N2

z log(Nw))

DGF with MFFT for time

and spatial convolutions
O(NwNxNyNz log(NxNyNzNw))
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To confirm above discussions, we have considered a half
wavelength dipole antenna and simulated it with regular FDTD, DGF
with direct time and spatial convolutions, DGF with FFT for time
domain convolution, DGF with FFT for spatial domain convolutions,
and DGF with FFT for time and spatial domain convolutions. In
this example, the half wavelength dipole with λ/40 grid resolution is
considered and 21 Green’s function is needed in the calculation due
to the fact that there are 21 relative positions between every two
nodes and the Green’s function is the function of the relative positions.
Therefore, the period of DGFs and currents is considered as 21 for the
FFT in spatial domain. (Note that, in this example, since the dipole
antenna is one dimension and only one Green’s function is computed
along the antenna (for example Gzz for the antenna along the z axis),
the maximum number of Green’s function is dependent on the relative
positions, not the direction of the element currents). In addition, the
width of the step window function for truncation of the DGF is chosen
100 as a result of test and trail. Therefore, the period of currents and
DGFs for FFT in time domain is considered 100.

For a 32-bit PC computer with quad core 3.2GHz CPU and 4 GB
RAM and MATLAB programming, the results are shown in Fig. 1.
Each of the implementing algorithms of the DGF is faster than the
FDTD for the one dimensional antenna. As expected, applying FFT
for the time domain convolution reduce the execution speed as a result
of having the maximum computational complexity. In contrast, with
the use of FFT for the spatial domain convolution, the execution speed
increases remarkably. The execution speed of the two dimensional FFT
for the computation of the time and spatial domain convolutions is
approximately equal to that of the direct convolution.

Figure 1. Comparing run time of FDTD method and different
algorithms used to implement DGF method for modeling of half
wavelength dipole antenna.
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Figure 2. The flow chart of the applying FFT for computation of the
spatial convolution in current solving of Eq. (8).

The flow chart of the application of FFT for the computation of
the spatial convolutions in current solving of Eq. (8) is represented
in Fig. 2. At the start, the variable ~S is zero and the current
vector ~J is computed using the first term of the right side of the
Eq. (8). In the next steps, the variable ~S is computed using the
point wise multiplication of the three dimensional spatial FFT of the
previous currents and discrete Green’s functions together with the
direct convolution of the time domain.

4. PLANAR ANTENNA MODELING USING DGFS

In this section, we have computed time domain current distribution
on the bowtie dipole antenna shown in Fig. 3 using DGF method.
Since the DGF method is based on the FDTD equations, the discrete
representation of the structure follows the same scheme as that in the
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Yee algorithm. Fig. 4(a) shows the relative positions of the electric and
magnetic currents in the DGF method having the same distribution
of the electric and magnetic fields in the Yee grid. Accordingly, the
current distribution of the bowtie dipole antenna is shown in Fig. 4(b).
As we can see, since the antenna is supposed electric conductor, we
have only considered electric currents. In addition, the antenna has
two dimension; hence, two component of currents (Jx and Jy) have
been calculated.

The spatial and time increments have been selected as ∆x =
∆y = ∆z = 1 mm and c∆t = 0.5∆x, respectively. In FDTD
simulation, a spatial grid of 40×60×20, with the same spatial and time

Figure 3. Geometry of the bowtie dipole antenna.

(a) (b)

Figure 4. (a) 3D distribution of the electric and magnetic currents in
the DGF cells. (b) Current distribution on the bowtie dipole antenna.
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increments, and 11 cells of the CPML absorbing condition have been
used. Whereas, in the DGFs simulation, computations are performed
only on the surface of the antenna with the spatial grid of 21 × 42.
In the simulation with DGF, because the antenna is two dimensional,
the two dimensional spatial FFT has been applied. The maximum
number of DGFs along the x-axis is 41 and along the y-axis is 83,
which is related to the Gxy and Gyx. It is worth mentioning that, in
determining of these Green’s functions, the direction of the current
element is important. Considering the above description, the period
of the currents and DGFs is assumed to be 41 along the x-axis and
83 along the y-axis in the two dimensional spatial FFT. Since the
period of the currents in the x and y direction is larger than the nodes
that the currents are calculated, in nodes where there are no currents,
their current values are padded with zero. The antenna is excited by
the incident Gaussian electric field in y direction at feed point. The
temporal response of current at the feed point in comparison with
FDTD method is shown in Fig. 5. Fig. 6 shows the return loss of the
antenna. Very good agreement is observed between FDTD and DGF
methods.

In Fig. 7, the execution speed of the FDTD, DGF with direct
convolution and DGF with spatial FFT are compared. As expected,
the runtime of the direct convolution of the DGF method for the
modeling of the two dimensional antenna is much more than that of the
one dimensional antenna. It is also considerably more than the runtime
of the FDTD method. However, with the use of the two dimensional
spatial FFT, the speed of the runtime of the DGF is approximately 85
percent better than that of the FDTD method.

Figure 5. The temporal response
of the current at the feed point to
the Gaussian incident field.

Figure 6. The return loss of the
bowtie antenna.
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Figure 7. Comparing run time of the FDTD method and the DGF
method for the modeling of the bowtie antenna.

5. CONCLUSIONS

In conclusion, we have shown that the implementation of the
DGF method has faced some restrictions on the calculation of the
multidimensional convolutions in modeling of antennas with more than
one dimension. To solve the problem, we have supposed to use spatial
discrete Fourier transform. The proposed method demonstrates very
favorable runtime speed in the numerical simulations of the bowtie
antenna using the DGF method compared to the FDTD method and
direct convolution implementation of DGF method.
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