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Abstract—An extensive error analysis for arbitrary near-field antenna
measurements is performed. Expressions are derived to estimate
the far-field uncertainty using the available near-field data together
with the measurement inaccuracy but, most importantly, without
the knowledge of the reference far field. Error analysis techniques
presented so far either assume a specific set of antennas or a
specific measurement surface and are difficult to generalize. We
present a generalized approach providing realistic error estimates using
the recently developed Fast Irregular Antenna Field Transformation
Algorithm (FIAFTA). FIAFTA utilizes equivalent plane wave sources
to represent radiated antenna fields and is able to process near-
field data collected on arbitrary measurement grids. The unknown
plane wave coefficients are determined by solving a linear system
of equations. The error model is applied to planar, cylindrical,
and spherical near-field measurements and is also valid for arbitrary
measurement grids. The estimated far-field uncertainties show good
agreement with the reference far-field errors.

1. INTRODUCTION

Near-field antenna measurements in combination with near-field far-
field transformations constitute an effective way to determine the
radiation characteristics of an antenna under test (AUT) [1]. The
approach provides a good alternative to space limited direct far-field
measurements and expensive compact ranges for large antennas, but
at the cost of great care required during the near-field measurements.
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No matter what precautions are used, there will always be several
measurement and environmental errors in a practical setup. Therefore,
a reliable error estimate in the far field against inaccuracies in the near
field is one of the primary concerns. Several attempts have been made
in the past and a well established body of literature is already available
but either for some specific scanning geometries or for a specific set of
antennas.

A major computer simulation based study for planar near-field
measurement errors has been performed by Rodrigue et al. in [2].
Rodrigue perturbed the hypothetical near field with position and
instrumentation errors to determine the far-field behavior. Newell
and Crawford estimated the scan area truncation error [3] by utilizing
the measured near-field data. The first specific error analysis
for planar near-field antenna measurements has been performed by
Yaghjian [4] to determine upper bound errors in far-field parameters.
With a rigorous theoretical analysis, he derived expressions for
estimating the uncertainty in the far field due to scan area truncation,
probe positioning inaccuracies, instrumentation errors, and multiple
reflection errors. However, the analysis is only valid for electrically
large antennas (> 10λ) and it is assumed that the size of the scan
plane is appreciably larger than the antenna size. Also, for the probe
position inaccuracy, the worst case error is assumed in the direction
of observation involving the side lobe region. A similar concept is
valid for other errors as well. Therefore, the resulting error estimates
predict an error which is unrealistically high. Newell performed more
realistic error analyses in [5] making use of a known spatial dependency
of the errors. This comprehensive analysis identifies the significant
errors and also estimates the magnitude of all near-field error sources.
The presented 18-term error model in [5] is formally accepted by
the National Institute of Standards (NIST) (formerly called National
Bureau of Standards). Error equations are derived to determine the
relationship between the measurement errors and the far-field results.
However, the analysis is again valid only for planar scanning surfaces
and assumes antennas with electrical size > 4λ for the derivation of
the error equations. A more rigorous methodology is presented in [6]
for the accuracy qualification of near-field measurement ranges. The
methodology involves computer simulation, component certification,
self tests, and comparison tests to determine upper bound far-field
errors due to near-field measurement errors. Afterwards a near-field
error budget is proposed for each near-field system component.

A detailed error analysis for spherical near-field measurements is
presented in [7]. Mechanical inaccuracies, spherical area truncation,
receiver errors, probe parameter errors etc. are considered and the
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results of computer simulations with known inaccuracies are compared
with inaccuracies in real measurements. The emphasis of the analysis
is mainly on errors occurring in the main beam and in the first side
lobe region. Nevertheless, it is stated that the results are applicable
only for directive spot-beam antennas and may only be considered
as guidelines. There are many other contributions in which authors
address individual error sources and in some cases also propose error
correction techniques. The error studies include, e.g., probe positioning
error compensation [8–10], effect of random errors [11], reduction of
measurement area truncation error [12, 13], analysis of system phase
errors [14], methods to reduce leakage errors [15], etc..

A common observation implicit in the available literature is that
either the error analysis is performed only for a given set of antennas
or it assumes a specific scanning geometry. Error equations are not
generalized and may not be applicable to all antennas. Also, the
analysis is usually performed with emphasis on estimating the error
in the main beam and in the first side lobe of the transformed far field.
Estimating the mean and the maximum errors within the entire valid
angle of the transformed far field requires a more rigorous analysis.
It is highly desirable to develop an error model which is suitable for
arbitrary measurement grids and is suitable for all kinds of antennas.
The error model should also provide realistic error estimates and should
not always consider the worst case scenario.

In this contribution, we present an extensive error analysis for
arbitrary near-field measurements valid for all kinds of antennas. The
analysis is based on the recently proposed Fast Irregular Antenna
Field Transformation Algorithm (FIAFTA) [16, 17] which makes use
of equivalent plane wave sources for representing the radiated AUT
fields. The sole algorithm is capable of processing near-field data
collected on standard as well as arbitrary measurement grids with
full probe correction. A linear system of equations is formulated
to determine the unknown plane wave coefficients. The linearity of
the forward operator makes it possible to oversee the effect of near-
field errors and to estimate the mean and the maximum error in the
transformed far field. The accuracy of the estimated uncertainty in the
far field is dependent on the knowledge of the near-field measurement
inaccuracies. The magnitude of the near-field measurement errors
is usually available for the near-field measurement ranges, e.g., the
corrected planarity (RMS) of a planar NSI scanner 300V-6 × 6
is 0.025 mm [18]. Also, the uncertainty in the received near-field
magnitude via Rohde& Schwarz vector network analyzers R & S rZVL
for 6–13.6 GHz frequency range is < 0.2 dB for pattern levels from
0dB to −50 dB [19]. Similarly, the magnitude of other near-field
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measurement inaccuracies can be extracted from the data sheets
of the equipment. Once the uncertainties in near-field parameters
are known, they can be used to find the uncertainty in the plane
wave spectrum representing the AUT fields and hence the error in
the far field. The error behavior of FIAFTA against planar near-
field measurement errors in comparison with the traditional technique
employing the two dimensional Fast Fourier Transform (2D FFT) has
already been performed. FIAFTA is found more stable against scan
area truncation errors [20], instrumentation errors [21], and probe
pattern inaccuracies [22, 23], while other errors have a similar effect
on both techniques.

Section 2 revisits the essentials of FIAFTA. In Section 3, an error
analysis for arbitrary measurement grids is performed after dividing
the error sources into five categories. The performance of the proposed
error model is evaluated by introducing errors in the near-field data
of synthetically modeled horn antennas. Section 4 concludes and
summarizes the paper.

2. FAST IRREGULAR ANTENNA FIELD
TRANSFORMATION ALGORITHM

FIAFTA is a plane wave based approach which utilizes plane waves as
equivalent sources to represent the radiated AUT fields. Unlike other
plane wave based approaches, FIAFTA considers the distribution of
plane wave sources in all spatial directions. FIAFTA is valid for all
kinds of antennas and is able to process the near-field data collected on
an arbitrary grid. Furthermore, full probe correction without increase
in numerical complexity makes FIAFTA an attractive choice. It should
be mentioned here that the given error analysis is equally valid for other
near-field far-field transformation techniques making use of equivalent
sources but we chose FIAFTA due to its lower computational burden
for arbitrary measurement grids and probes. In the following, we
describe the essentials of FIAFTA.

The near-field probe takes the weighted average of the field around
a measurement point according to the receiving characteristics and the
output signal

U (rM) =
y

Vprobe

wprobe (r) · E (r) dV (1)

is acquired at the measurement point rM. Vprobe is the volume of
the probe and wprobe is the spatial weighting function of the probe.
FIAFTA relates the plane wave spectrum and the near-field samples
using the diagonal translation operator TL(k̂, rM) (known from the Fast
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Multipole Method [24]) according to

U(rM) = −j
ωµ

4π

{
TL

(
k̂, rM

)
P̄

(
k̂, r̂M

)
·
(
Ī− k̂k̂

)
· J̃

(
k̂
)
dk̂2, (2)

where P̄(k̂, r̂M) contains the far-field pattern of the probe for probe
correction and (Ī − k̂k̂) · J̃(k̂) are the equivalent plane wave sources.
The diagonal translation operator simply translates the propagating
plane waves from the AUT to incident plane waves at the observation
point rM as

TL

(
k̂, rM

)
= −j

k

4π

L∑

l=0

(−j)l (2l + 1) h(2)
l (krM) Pl

(
k̂ · r̂M

)
, (3)

where h(2)
l is the spherical Hankel function of second kind and Pl is

the Legendre polynomial. The multipole order L for the diagonal
translation operator is dependent on the size of the AUT and the
size of the probe [25]. Two orthogonal polarizations of the radiated
AUT field are commonly required. Therefore, two complex voltages are
introduced and the spectral integral over the Ewald sphere is evaluated
by numerical quadrature [24] with discrete representation according to

U1/2 (φm, θn, rM) = −j
ωµ

4π

∑

kφ

∑

kθ

TL(k̂, rM)W (kθ)

P1/2 (kφ, kθ, φm, θn) ·
(
Ī− k̂k̂

)
· J̃ (kφ, kθ) , (4)

where W (kθ) is a weighting factor for numerical quadrature and
m = 1, . . . ,M and n = 1, . . . , N denote the number of observation
points in φ- and θ-direction, respectively. For enhanced computational
complexity, near-field measurement points are grouped together to
form a hierarchical structure similar to the Multilevel Fast Multipole
Method (MLFMM) [26] as described in [17].

3. NEAR-FIELD ERROR ANALYSIS

The error behavior of FIAFTA is analyzed by developing a linear
system of equations

U′ = −j
ωµ

4π
‖C‖ · J̃′ (5)

using (4), where U′ is a vector containing the probe output for all
measurement points and J̃

′
contains the plane wave coefficients of

the AUT. The diagonal translation operator TL(k̂, rM), the weighting
factor W (kθ), and the probe correction coefficient P̄(k̂, r̂M) are
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combined to form the coupling matrix ‖C‖. The given set of linear
equations is solved using the Generalized Minimum Residual Solver
(GMRES) [27] in a least mean square sense (LMS) [28] as

‖C‖H U′ = −j
ωµ

4π
‖C‖H ‖C‖ J̃

′
, (6)

where ‖C‖H is the complex conjugate transpose of the coupling
matrix. Near-field errors are divided into five major categories based
on their influence on the probe output, probe correction coefficient,
and the translation operator. The other two categories include
computational errors due to inappropriate selection of parameters
during the transformation and miscellaneous errors like aliasing errors,
scan area truncation, etc..

The AUT used in the error analysis is synthetically modeled and
electric dipoles are used to model the AUT with proper magnitude
profile and geometrical arrangement as explained in [29]. It must be
emphasized here that the analysis itself is equally valid for practical
measurements. The only reason for using the synthetic approach is
to compare the estimated errors with that of the observed errors in
reference to the ideal far field. Also, the effect of each near-field error
on the transformed far field can be isolated. A medium gain horn (4λ)
is designed with source dipoles arranged in concentric circles. The
accumulative effect of all the source dipoles determines the electric
field

E (rM) = −j
ωµ

4π

iAUT∑

i=1

(
Ī +

1
k2
∇∇

)
· di

e−jk|rM−rd,i|
|rM − rd,i| (7)

at the measurement point rM by evaluating the Green’s function of
free space, where rd,i represents the source dipole positions, ω is the
angular frequency, k is the wavenumber of free space, Ī is the unit dyad,
and di represents the amplitude, phase, and polarization information
of the source dipoles. The near-field data and the ideal far field used
in the analysis are computed using (7).

3.1. Computational Errors

It is conventionally assumed that the errors due to theoretical
approximations are negligible. However, there are various parameters
involved in the formulation of FIAFTA which determine the accuracy
of the transformed far-field. A careful selection of these parameters is
necessary in order to assume negligible errors in the transformed far
field. We will discuss major factors here along with their effect on the
transformed results.
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3.1.1. Number of Levels and Buffer Boxes

There are factors like the number of levels in the multilevel approach†
and the number of buffer boxes [30] which affect the transformed
pattern. The number of levels is chosen keeping in view the size
of the AUT and the probe. The optimum choice of the number of
levels varies from case to case, e.g., for planar scanning surfaces a
cubical box structure with minimum box size chosen according to
the size of the probe and maximum box size chosen according to
the minimum separation between the AUT and the probe gives the
optimum results. If the hierarchical structure is not chosen properly,
the multilevel approach might even result in consuming more time
instead of improving the computational time. The effect on the
accuracy, however, remains negligible. The buffer boxes are used to
maintain a certain distance between the minimum spheres enclosing
the AUT and the probe. The minimum spheres must not overlap in
order for the representation to converge. For a good accuracy a larger
separation between the AUT and the probe is recommended and is
achieved by increasing the number of buffer boxes.

3.1.2. Multipole Order of AUT and TL

The multipole order used to compute the translation operator effects
the accuracy of FIAFTA. A semi-empirical formula to compute the
multipole order LTL

[25] is

LTL
= kd/2 + 1.8d2/3

o (kd)1/3, (8)

where d = da + dp is the sum of diameters of the smallest spheres
enclosing the AUT and the probe antenna, respectively, while do =
log(1/γ) is the factor controlling the desired accuracy of the expansion.
In a similar fashion, the AUT multipole order is approximated as [7]

LAUT ' kda/2 + 10. (9)

The translation operator incorporates the effect of both the probe and
the AUT and requires larger spectral content. Therefore, the multipole
order of the translation operator is larger than the multipole order
of the AUT. The accuracy of the multipole expansion is controlled
by γ, i.e., choosing a very low value of γ, results in insufficient
spectral content for accurate representation of the radiation pattern.
On the other hand, very high values make the second order Hankel
† In the multilevel approach the computational complexity is reduced from O((ka)4) to
O((ka)2log(ka)2) by grouping measurement points in a hierarchical fashion. Translations
are then performed on the coarsest level and are processed through various levels until the
observation point is reached (see [17] for more details).
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function h(2)
l (krM) to approach infinity quickly and thus deteriorate

the resulting pattern. The maximum error level observed in the
transformed field of the horn antenna operating at 10GHz against
a varying multipole order and considering 3 buffer boxes is shown in
Fig. 1.

Similar analyses were carried out for a variety of antennas
(electrical size varying from 4λ to 64λ) and the empirically deduced
value of γ is found to be ' 10−4. The observed maximum error level
for the same value of γ for a horn antenna is ≤ −90 dB in both E and
H plane pattern cuts (see Fig. 1 for multipole order = 24).

3.1.3. Residuum of GMRES Solver

As already stated, FIAFTA is implemented in an iterative fashion using
a GMRES solver. The optimum selection of the relative residuum

r =
norm

(
‖C‖H ‖C‖ J̃

′
final − ‖C‖H U′

)

norm
(
‖C‖H U′

) (10)

of the GMRES solver is important both in terms of time and accuracy.
Therefore, once the unknown plane wave coefficients are determined,
the near-field error

ε = norm
(
J̃
′
final − ‖C‖H U′

)
(11)

is determined to compare the near field reproduced by plane wave
sources with the given near field. It has been found empirically
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Figure 3. Transformed E- and H-plane pattern cuts of horn antenna
operating at 10 GHz.

that when the near-field error is on the order of 10−3 or when the
difference between the residuum of the GMRES solver in consecutive
two iterations tends to remain the same, the far-field error level

Error level = 20 log10(abs (|Eref (θ, φ) | − |Etrans (θ, φ) |)) (12)

is well below < −70 dB. A similar criterion was applied for the
synthetic horn antenna using spherical measurements. At the 38th
iteration it satisfies the above described condition. Fig. 2 shows the
logarithmic decrease in the residuum of the GMRES solver versus the
number of iterations. As observed, the residuum decreases rapidly
in the beginning but after a certain number of iterations the rate of
convergence becomes very slow and the relative residuum stays almost
constant.

The transformed pattern cuts of the horn antenna using 6
hierarchical levels, 3 buffer boxes, and 10−4 accuracy of the multipole
expansion of the translation operator are shown in Fig. 3. In the
spherical setup, the AUT is looking in −y direction and the whole
spherical surface is considered. A near-field error ε of less than 10−4 is
observed and as can be seen, the difference between the ideal and the
transformed far field using FIAFTA is approaching −90 dB which can
be considered negligible. The average iteration time observed is 2.1 s
per iteration.

3.2. Errors Affecting Probe Output

The errors in this category are commonly known as instrumentation
errors and mainly involve inaccuracies due to the RF measurement
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system. These errors directly affect the magnitude and phase of the
probe output. The errors include receiver amplitude and phase non-
linearity, RF leakage and cross talk, random amplitude and phase error,
temperature effects etc.. The degree of inaccuracy in the magnitude4a
and the phase 4ψ is normally provided by the receiver manufacturers.
Therefore, the probe output can be written as

Uo/p(rM) = (a(rM) +4a(rM)) ej(ψ(rM)+4ψ(rM)), (13)
where rM is the measurement point. Since the exact error magnitude
is unknown, one can replace 4a and 4ψ by their respective standard
deviations σmag(rM) and σph(rM) according to

Uo/p(rM) = (a(rM) + σmag(rM)) ej(ψ(rM)+σph(rM)). (14)
The standard deviations σmag and σph can be defined according to
the corresponding instrumentation errors and its order of magnitude.
For instance, we select a random error in the magnitude arising due
to the noise addition by the receiver. A unique and effective way of
representing the standard deviation is by considering the SNR of the
measured signal as defined in [21]. The available absolute noise of the
receiver is taken into account and the empirically derived SNR based
standard deviation is given as

3σmag = 20log10

(
1 +

√
0.5

10
SNR
10

)
. (15)

An SNR of 60 dB produces an inaccuracy of ±0.006 dB at normalized
maximum pattern level (i.e., 0 dB) using (15). Similarly, at −30 dB
normalized pattern level the inaccuracy is ±0.2 dB. The SNR value at
the maximum pattern level can be varied according to the specification
of the given RF measurement setup.

The effect of any other instrumentation error can be introduced
in a similar way. Once the standard deviation of the amplitude and
the phase error is available, the error in the probe output Uerr can be
approximated from the available erroneous near-field data. The probe
output can then be represented as Uo = Uef + Uerr, where Uef is the
assumed error free near-field data. Using the linearity of the problem,
the probe output

U′
o = −j

ωµ

4π
‖C‖ · J̃′o (16)

can be modified as

U′
ef + U′

err = −j
ωµ

4π
‖C‖ ·

(
J̃
′
ef + J̃

′
err

)
. (17)

The error in the plane wave spectrum J̃
′
err is computed by solving

U′
err = −j

ωµ

4π
‖C‖ · J̃′err (18)
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and utilizing the amplitude and the phase error distributions of the
near field. The normalized error spectrum J̃

′n
err is obtained by utilizing

J̃
′
o as

J̃
′n
err =

J̃
′
err

max(|J̃′o|)
. (19)

Since the plane wave coefficients directly represent the far field of the
AUT, the estimated maximum and the mean error can be calculated
as

Eest
max = max

(
20log

(∣∣∣J̃′nerr
∣∣∣
))

, (20)

Eest
mean =

∑(
20log

(∣∣∣J̃′nerr
∣∣∣
))

no. of plane wave coefficients
. (21)

It is emphasized that the given procedure is equally valid for arbitrary
near-field measurements and only requires the commonly available
uncertainty in the measured probe output. The coupling matrix ‖C‖
takes care of the plane wave translations to the measurement points
of the arbitrary grid. Therefore, the estimated error in the plane wave
spectrum for the same inaccuracy in the probe output can differ for
different measurement surfaces.

The use of the synthetic approach allows us to compare the
estimated error with that of the observed error in the plane wave
spectrum. The reference plane wave spectrum J̃

′
ref using ideal near-

field data is compared with the erroneous plane wave spectrum J̃
′
o and

the “reference” maximum and mean error is computed as

Eref
max = max

(
20log

(
abs

(∣∣∣J̃′o
∣∣∣−

∣∣∣J̃′ref
∣∣∣
)))

(22)

Eref
mean =

∑(
20log

(
abs

(∣∣∣J̃′o
∣∣∣−

∣∣∣J̃′ref
∣∣∣
)))

no. of plane wave coefficients
. (23)

The directivity

DAUT = 10log




4π
∑
kφ

∑
kθ

J̃
′2
(kφ, kθ) W (kθ)


 (24)

of the AUT is also computed following the same methodology and
the estimated error in the directivity is computed using J̃

′n
err. The

reference error Dref
err in the directivity is obtained by subtracting Dref
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from Do. The normalized plane wave spectra were used to compute
the erroneous and the reference directivities. The W (kθ) factor in (24)
represents the weighting factor of the Gauss-Legendre quadrature used
for the discrete representation of the spectral integral [24].

To assess the performance of the proposed error model, we
superimpose randomly distributed magnitude errors (given by (15))
assuming 50 dB SNR at the normalized maximum pattern level and a
phase error with a standard deviation σph = 1◦ on the unperturbed
near-field data of a horn antenna. Another realization but using the
same standard deviation is used to compute the error in the plane
wave spectrum. The observed error in the plane wave spectrum using
perturbed near-field data and the estimated error using only the error
distribution in the probe output for spherical measurements are then
compared. The behavior is shown in Fig. 5. The analysis is extended
to cylindrical and planar near-field measurements as well and the
resulting error values are composed in Table 1. A square shaped planar

AUT
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Figure 4. Planar near-field measurement setup.
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Table 1. Far-field uncertainty [dB] in the transformed E- and H-
plane pattern cuts due to random amplitude errors for a horn antenna
operating at 10 GHz.

AUT

Random Errors

E-plane H-plane DAUT

mean err max err mean err max err error

est. ref. est. ref. est. ref. est. ref. est. ref.

Spherical −57 −56 −43 −43 −56 −57 −41 −42 0.01 0.01

Cylindrical −59 −59 −48 −49 −59 −60 −45 −45 0.01 0.01

Planar −69 −66 −48 −44 −70 −71 −49 −52 0.00 0.00

measurement surface (xz) at y = −0.4m is used to collect the near-
field data, as shown in Fig. 4. The length and the width of the planar
surface are 1.5m each which makes a valid angle of 60◦. Similarly,
the radius and the height of the cylindrical surface used is 0.4 m and
1m, respectively, with AUT looking in −y direction and makes a valid
angle of 48◦ in the E-plane pattern. A good agreement noticed in the
estimated and the observed uncertainty in the transformed pattern
clearly shows that if the magnitude of the near-field error is known,
one can estimate the uncertainty in the far field very accurately.

3.3. Errors Affecting the Probe Coefficients

Probe parameter errors include errors affecting the probe correction
coefficient P(.,.,.,.) in (4). The errors include probe pattern inaccuracy,
probe polarization ratio, probe gain, and probe alignment error. Any
such error directly affects the accuracy of the coupling matrix elements

Cφ/θ(kφp, kθq, φm, θn) = TL

(
k̂, rM

)
W (kθq)P (kφp, kθq, φm, θn) (25)

and in turn deteriorates the transformed radiation pattern. The
number of integration points p = 1, . . . , P and q = 1, . . . , Q in φ-
and θ-direction, respectively, are used in the above equation. Using an
analogous procedure as described in the previous section, we split the
erroneous probe correction coefficient into an error free Pef(.,.,.,.) and
a probe error part Perr(.,.,.,.) according to

Cφ/θ(kφp, kθq, φm, θn) = TL(k̂, rM)W (kθq) (Pef (kφ, kθ, φm, θn)
+Perr (kφp, kθq, φm, θn)) . (26)
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Accordingly, the coupling matrix elements can also be divided into two
parts

Cef(kφp, kθq, φm, θn) + Cerr(kφp, kθq, φm, θn) = TL(k̂, rM)W (kθq)
(Pef (kφ, kθ, φm, θn) + Perr (kφp, kθq, φm, θn)) (27)

and the probe output is modified as

U′
o = −j

ωµ

4π
(‖C‖ef + ‖C‖err) · J̃

′
o. (28)

A known uncertainty in the probe alignment, probe pattern
inaccuracies and other probe errors allow us to compute ‖C‖err which
in combination with the plane wave spectrum J̃

′
o, gives the uncertainty

in the probe output

U′
err = −j

ωµ

4π
‖C‖err · J̃

′
o. (29)

Once the uncertainty in the probe output is obtained, the error in the
plane wave spectrum J̃

′
err can be computed using

U′
err = −j

ωµ

4π
‖C‖ · J̃′err. (30)

The directivity, estimated mean, and maximum errors can then be
computed using (18), (19), and (22).

To examine the effectiveness of the given procedure, we introduce
randomly generated magnitude errors in the probe pattern used for
the probe correction of the horn antenna. The erroneous plane
wave spectrum J̃

′
o is determined using the perturbed probe pattern.

The uncertainty in J̃
′
o is approximated by using another randomly

generated error distribution‡ and following the above mentioned
procedure. The observed and the estimated errors in the transformed
E- and H-plane cuts for spherical measurements are shown in Fig. 6.
The transformed pattern shows stability against magnitude errors
in the probe pattern and good agreement in the observed and the
estimated errors is seen. Table 2 summarizes the estimated and the
reference error values for spherical, cylindrical, and planar scanning
surfaces.

3.4. Errors Affecting the Translation Operators

The positioning system used in the near-field measurement system can
mark the position of a measurement point with an accuracy of several
‡ The standard deviation used to generate the error distribution, however, is the same and
uses 50 dB SNR at the normalized maximum pattern level.
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Table 2. Far-field uncertainty [dB] in the transformed E- and H-plane
pattern cuts due to probe pattern error for a horn antenna operating
at 10 GHz.

AUT

Probe Pattern Error

E-plane H-plane DAUT

mean err max err mean err max err error

est. ref. est. ref. est. ref. est. ref. est. ref.

Spherical −100 −100 −71 −71 −98 −99 −85 −86 0.00 0.00

Cylindrical −85 −87 −66 −67 −90 −90 −66 −66 0.00 0.00

Planar −105 −104 −64 −66 −101 −99 −62 −63 0.00 0.00
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Figure 6. Transformed E- and H-plane pattern cuts of a horn antenna
using near-field data contaminated with probe pattern errors.

tens of micrometers. No matter how small the position error is, it
results in an inaccurate translation of the plane wave spectrum and
introduces uncertainty in the transformed pattern. The relative error
in the x, y, and z coordinates, i.e., δx, δy, and δz of the probe position
can be determined using optical measurements or it can be obtained
from specifications of the positioner used in the measurements. We
make use of the position inaccuracy to determine the uncertainty in
the transformed pattern. An erroneous measurement point

rM + δrM = (x + δx)âx + (y + δy)ây + (z + δz)âz (31)
is a combination of the actual measurement point rM and the
inaccuracy δrM. Consequently, the modified translation operator is



212 Qureshi, Schmidt, and Eibert

rewritten as

TL

(
k̂, rM + δrM

)
= −j

k

4π

L∑

l=0

(−j)l (2l + 1)

h(2)
l (k (rM + δrM)) Pl

(
k̂ · (rM + δr̂M)

)
.(32)

It is worth mentioning here that one cannot use the error in the probe
position δrM directly to compute the error in the translation operator.
The inaccuracy in the translation operator

δTLerr = TL

(
k̂, rM +4rM

)
− TL

(
k̂, rM

)
(33)

is used to compute the erroneous coupling matrix elements

Cerr(kφp, kθq, φm, θn) = δTLerrW (kθq)P (kφp, kθq, φm, θn). (34)

The error in the probe output

U′
err = −j

ωµ

4π
‖C‖err · J̃

′
o (35)

and the error in the plane wave spectrum

U′
err = −j

ωµ

4π
‖C‖ · J̃′err (36)

are used along with (18), (19), and (22) to compute the estimated
mean and maximum errors.

The behavior of FIAFTA against probe positioning errors
is analyzed by adding randomly distributed errors in the probe
coordinates. A realistic standard deviation in the probe coordinates
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Figure 7. Transformed E- and H-plane pattern cuts for the horn
antenna incorporating probe position inaccuracies.



Progress In Electromagnetics Research B, Vol. 48, 2013 213

Table 3. Far-field uncertainties [dB] in the transformed E- and H-
plane pattern cuts due to probe position errors for the horn antenna
operating at 10 GHz.

AUT

Probe Position Error

E-plane H-plane DAUT

mean err max err mean err max err err

est. ref. est. ref. est. ref. est. ref. est. ref.

Spherical −61 −54 −43 −42 −64 −64 −43 −43 0.01 0.02

Cylindrical −70 −68 −49 −53 −58 −59 −36 −43 0.00 0.00

Planar −70 −70 −52 −48 −70 −74 −53 −52 0.01 0.00

σx = σy = σz = 50µm is chosen and the resulting error in
the transformed pattern is compared with the estimated mean and
maximum errors. The transformed E- and H-plane pattern cuts of
the horn antenna with the observed and estimated errors for spherical
measurements are shown in Fig. 7. The analysis is also extended for
the cylindrical and planar scanning surfaces and the error values are
summarized in Table 3. Again a good agreement in the estimated and
the reference error values is seen.

The schematic summarizing the analysis for the instrumentation,
probe parameter, and the probe positioning errors is shown in Fig. 8.
By following the mentioned steps one can estimate the maximum and
the mean uncertainty in the transformed far-field pattern.

3.5. General Errors

The errors falling in this category do not directly affect the probe
output, probe coefficient, or the translation operator but have an
inherent effect on the near-field measurements. In the following, we
discuss these errors with their effect on the transformed pattern along
with any correction technique available.

3.5.1. Scan Area Truncation

Scan area truncation is one of the unavoidable sources of error in planar
and cylindrical near-field measurements. The inability to measure
the near field on a surface with infinite extent results in limiting
the radiation behavior of the AUT to a certain reliable region. The
assumption of zero near field outside the scan area incorporates errors
within the valid region as well. However, the behavior of FIAFTA
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Figure 8. Schematic of the near-field measurement error analysis.

against scan area truncation is found more robust [20] as compared
to the traditional transformation techniques. The better performance
comes from the fact that, unlike other plane wave based approaches,
FIAFTA uses the entire Ewald sphere for the representation of the
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plane wave sources. Also, FIAFTA first transforms the measured data
to the source plane to determine the coefficients for equivalent sources
from which the far field is ascertained. The use of complete Ewald
sphere and the fact that FIAFTA does not transform the measured
data in the first step helps in reducing the truncation error [31]
and avoids ripples in the far-field pattern. The ripples can also be
eliminated by using direct non-redundant NFFF transformation in a
cylindrical scanning geometry proposed by D’Agostino et al. in [32].
The overall effect of scan area truncation can be assumed negligible
if the truncation level at the edges of the scan plane is ≤ −40 dB.
Since FIAFTA can handle measurements on arbitrary grids, the valid
angle of the radiation pattern can be significantly increased by utilizing
adaptive sampling in planar and cylindrical measurements [33, 34].

3.5.2. Data Point Spacing

The spacing between sample points on the near-field scanning surface
greatly affects the accuracy of the transformed far field. λ/2 sample
spacing is commonly adopted along the length of the cylinder in the
standard cylindrical and in the planar measurements due to FFT
usage. Sample spacings coarser than λ/2 result in aliasing errors [5].
However, no such limitation applies to FIAFTA and the sample spacing
is computed in relation with the number of unknowns required to solve
the linear system of equations. The required spacing in θ and φ is

4φ = π/(α1LAUT) (37)
4θ = π/

(
α2LAUT − 1§

)
(38)

where α1 and α2 are the proportionality constants with empirical values
slightly greater than 1‖ and LAUT = kda/2+10 is the antenna multipole
number with da as the diameter of the minimum sphere enclosing the
antenna. Once the spacing in θ and φ is determined, the samples
are efficiently distributed on the spherical surface and can then be
mapped to planar [35], cylindrical, or any arbitrary surface. As long
as the given sampling criteria are satisfied, negligible errors in the
transformed pattern are observed.

3.5.3. Multiple Reflections

It is common practice to place the scan plane near the AUT so
that the valid angle can be efficiently increased. Nonetheless, it
§ To include samples at the poles, a constant value “1” is subtracted from the number of
measurement points in θ.
‖ The optimum value of α1 and α2 depends on the noise conditions and other systematic
errors.
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results in strong interactions between the AUT and the probe and the
resulting multiple reflections deteriorate the measured data especially
for planar measurements. Yaghjian tried to establish the upper bound
due to multiple reflection errors [4] which predicts very large errors.
Estimating multiple reflection errors is extremely difficult as it varies
according to the choice of the probe and the separation between
the AUT and the probe. A commonly employed method to reduce
multiple reflection errors is to perform a set of measurements on several
measurement planes separated by λ/2 [5]. This practice, however,
increases the measurement time significantly. The ability of FIAFTA
to handle measurement data on arbitrary grids enables us to efficiently
reduce the effect of multiple reflection errors by taking measurements
on two partial planes [23]. The central near-field data is collected on a
plane at a large distance while another plane at smaller distance is used
to collect the near field from the boundary regions. In this way, one
can reduce the effect of multiple reflection errors while keeping a larger
valid angle and with less time consumption. The concept is validated
in [23] for planar measurements and is equally applicable for cylindrical
measurements (see Fig. 9). The length L1 of the outer cylinder can be
determined in a similar fashion as described in [23] and is given as

L1 =
1
r
(xr1(a− 1) + ar) (39)

where r1 and r are the radius of the outer and the inner cylinder,
respectively.

AUT  

 L
1

 

θ
  

 
 

a
 

Lxa 

 

S 

S 
1 

v1

θv θv1−

θv

Figure 9. Schematic of near-field measurements on two partial
cylindrical surfaces for reduced multiple reflection errors.
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3.5.4. Room Scattering

The near-field probe receives direct as well as multipath signals
scattered from different objects. The effect on the measured near
field is more pronounced if the measurements are performed in a
semi-anechoic chamber. However, FIAFTA has the ability to alienate
the contributions of the multipath signals by attributing the echo
contributions to scattering centres with or without the knowledge of the
location of echo sources [36]. The modified linear system of equations
is

U′ = −j
ωµ

4π
‖C‖AUT · J̃− j

ωµ

4π

NSC∑

i=1

‖C‖SCi · J̃SCi (40)

where ‖C‖SCi represents the coupling matrix for the i -th scattering
center and NSC is the number of scattering centres employed.
Significant improvement have been reported in comparison to the case
where no echo suppression is applied [36]. The NFFF transformations
based on the nonredundant representation of electromagnetic field also
allow to cut away the echo contributions outside the antenna spatial
bandwidth, due to the low pass filtering properties of the employed
interpolation functions, as stated in [37].

4. CONCLUSION

Arbitrary near-field errors have been analyzed for the Fast Irregular
Antenna Field Transformation Algorithm (FIAFTA). The mean and
the maximum errors in the transformed far field were estimated by
deriving appropriate equations. The major sources of errors have been
discussed and it was shown that the error model is equally suitable
for all kind of antennas and is valid for arbitrary scanning geometries.
Good agreement has been observed in the estimated and the observed
errors in the transformed field of a synthetically modelled horn like
antenna.
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