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Abstract—In this paper, reflection and transmission coefficients
at dielectric fractal-fractal interface are discussed. The ratio of
permittivity of the two dielectric fractal media is kept constant, while
the dimension is varied in order to get the desired results. Conventional
results are recovered for the integer dimensions. The proposed
expressions are useful to study the behavior of electromagnetic
waves for non-integer dimensions, multiple fractal interfaces and
waveguides. Moreover, it is also helpful to understand the variation
in the magnitudes of reflection and transmission coefficients with the
difference in dimensionality at interface of the two fractal media.

1. INTRODUCTION

The concept of fractional space is effectively used in many areas
of physics to describe the effective parameters of physical systems.
Mandelbrot introduced the concept of “Fractal” to describe complex
structures [1]. Highly complex structures can be modeled using
fractional space concept which cannot be described by Euclidean
geometry. Sometime they represent natural occurring phenomena
and geometries that are highly complex like roughness of ocean floor,
dust particles, snow and mountains etc., better than conventional
geometry. We can also find fractals in the field of integrated circuits,
weather prediction, image compression algorithms and antenna design.
An important property of fractals is that complex geometries can
be defined with very less number of parameters because all fractals
are self-similar and repeat themselves at different scales. These
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complex structures can be characterized by using fractional dimension
D, at both macroscopic and microscopic levels [2, 3]. Knowing the
importance of fractional space, it has been the subject of interest for
researchers for past two decades [4–9].

In order to get maximum benefit of these fractal models, it is
vital to simplify the theory of electromagnetics in fractional spaces. In
this respect, Martin et al. derived Ampere’s and Faraday’s laws for
non-integer dimensional space [10]. Similarly, solutions of Poisson’s
and Laplace equation for fractional space are presented in [11, 12].
Solution of electromagnetic wave propagation in fractional space was
presented by Zubair et al. and has given solutions for plane waves
in D-dimensional fractional space [13–18]. The antenna radiation in
fractional space is also investigated and presented by Mughal et al. [19].
Recently, Asad et al. have worked on interaction of electromagnetic
waves at dielectric-fractal interface [20], which gives basis to analyze
the behavior of these waves for multiple interfaces filled with fractal
media. Therefore, one is motivated to work on the behavior of
electromagnetic waves at dielectric interface of two fractal media.
This work will facilitate us to analyze the behavior of electromagnetic
waves for non-integer dimensions and the multiple fractal interfaces,
waveguides and also help to find out the desired magnitudes of
transmission and reflection coefficients with the difference in the
dimensionality of two media.

In this paper, the expressions of transmission and reflection
coefficients are derived for dielectric fractal-fractal interface. Classical
results are formulated from fractional results when integer dimension
space is considered. The transmission and reflection coefficients for
parallel polarization are discussed in Section 2. Section 3 covers the
transmission and reflection coefficients for perpendicular polarization.
Finally in Section 4, it is shown that exact classical results can
be recovered from proposed expressions when integer dimension is
considered. This approach is useful for other multiple interfaces filled
with fractal media as well.

2. PARALLEL POLARIZATION

To study the behavior of electromagnetic waves at an interface of
two dielectric-fractal media, consider two dielectric fractal media with
constitutive parameters (ε1, µ1, 1 < D1 ≤ 2) and (ε2, µ2, 1 < D2 ≤ 2),
both media exhibits quasi fractional space properties. The fractionality
exists only in z -axis of the fractional space and boundary is assumed
to be infinite. The time dependency exp(iωt) has been omitted
throughout the paper. For simplicity, we also assumed that the
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Figure 1. Parallel polarized wave at dielectric fractal-fractal interface.

permeability of the both media is same, i.e., µ1 = µ2 = µ0, where µ0 is
the permeability of free space. The geometry of the incident, reflected
and transmitted waves for parallel polarization is shown in Figure 1,
where the dielectric fractal-fractal interface is located at z = d. The
equations for incident, reflected and transmitted waves are as follows:

Ei = (âx cos θi − âz sin θi) E0 exp (−iβ1 sin θix)

(β1 cos θiz)n1H2
n1

(β1 cos θiz) (1)

Er = (âx cos θr + âz sin θr) E0Γ exp (−iβ1 sin θrx)

(β1 cos θrz)n1H1
n1

(β1 cos θrz) (2)

Et = (âx cos θt − âz sin θt) E0Texp (−iβ2 sin θtx)

(β2 cos θtz)n2H2
n2

(β2 cos θtz) (3)

Hi = ây
E0

η1
exp (−iβ1 sin θix)(β1 cos θiz)nh1H2

nh1
(β1 cos θiz) (4)

Hr = −ây
E0Γ
η1

exp (−iβ1 sin θrx)(β1 cos θrz)nh1H1
nh1

(β1 cos θrz) (5)

Ht = ây
E0T
η2

exp (−iβ2 sin θtx)(β2 cos θtz)nh2H2
nh2

(β2 cos θtz) (6)
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where β1 = ω
√

µ1ε1 and β2 = ω
√

µ2ε2 are wave numbers. The
wave impedance of both media are η1 =

√
µ1/ε1 and η2 =

√
µ2/ε2.

Subscript 1, 2 are used to represent first and second media. The
exponential function is used to describe wave propagation in x direction
and Hankel function of order n is used to represent wave propagation
in z direction. Backward traveling waves are represented by Hankel
function of first kind of order n and forward traveling waves are
represented by Hankel function of second kind of order n [15, 20]. The
value of ni = |3 − Di|/2 and nhi = |Di − 1|/2 for i = 1, 2, and D
is the dimension. Γ and T are unknown reflection and transmission
coefficients. The general solution of electromagnetic wave in fractional
space is valid only for far field. Hence value of d should be very
large. At the interface (z = d), tangential components of magnetic
and electric fields are continues, i.e.,

Eix(z = d) + Erx(z = d) = Etx(z = d) (7)

Hiy(z = d) + Hry(z = d) = Hty(z = d) (8)

The unknown coefficients can be find out by putting the equations
of electric and magnetic fields in above boundary conditions. By
putting (1)–(6) in (7)–(8), We get

E0 cos θi exp (−iβ1 sin θix)(β1 cos θid)n1H2
n1

(β1 cos θid)

+ΓE0 cos θr exp (−iβ1 sin θrx)(β1 cos θrd)n1H1
n1

(β1 cos θrd)

= TE0 cos θt exp (−iβ2 sin θtx)(β2 cos θtd)n2H2
n2

(β2 cos θtd) (9)

and
E0

η1
exp (−iβ1 sin θix)(β1 cos θid)nh1H2

nh1
(β1 cos θid)

+
ΓE0

η1
exp (−iβ1 sin θrx)(β1 cos θrd)nh1H1

nh1
(β1 cos θrd)

=
TE0

η2
exp (−iβ2 sin θtx)(β2 cos θtd)nh2H2

nh2
(β2 cos θtd) (10)

Equations (9) and (10) are the functions of x and z. The condition
of continuity must hold at the interface, for all x. The variation of
functions of x must be same on both sides of the interface. Hence,

β1 sin θi = β1 sin θr = β2 sin θt (11)

and we have two important relations as follows:

θi = θr (12)

β1 sin θi = β2 sin θt (13)



Progress In Electromagnetics Research M, Vol. 28, 2013 233

by inserting (12) and (13) in (9) and (10), we have the following two
relations,

cos θi(β1 cos θid)n1H2
n1

(β1 cos θid)

+Γ cos θi(β1 cos θid)n1H1
n1

(β1 cos θid)

= T cos θt(β2 cos θtd)n2H2
n2

(β2 cos θtd) (14)
1
η1

(β1 cos θid)nh1H2
nh1

(β1 cos θid)

+
1
η1

Γ(β1 cos θid)nh1H1
nh1

(β1 cos θid)

=
1
η2

T(β2 cos θtd)nh2H2
nh2

(β2 cos θtd) (15)

by solving the (14) and (15) simultaneously, we can determine the
required reflection and transmission coefficients as given below,

Γ‖ =
η2 cos θtCE − η1 cos θiAG

η1 cos θiBG + η2 cos θtCF
(16)

T‖ =
η2 cos θi(BE + AF )

η1 cos θiBG + η2 cos θtCF
(17)

where,
A = (β1 cos θid)n1H2

n1
(β1 cos θid) (18a)

B = (β1 cos θid)n1H1
n1

(β1 cos θid) (18b)

C = (β2 cos θtd)n2H2
n2

(β2 cos θtd) (18c)

E = (β1 cos θid)nh1H2
nh1

(β1 cos θid) (18d)

F = (β1 cos θid)nh1H1
nh1

(β1 cos θid) (18e)

G = (β2 cos θtd)nh2H2
nh2

(β2 cos θtd) (18f)

for parallel polarization, Brewster’s angel (θi = θb) can be find out by
setting (16) equal to zero,

Γ‖ =
η2 cos θtCE − η1 cos θbAG

η1 cos θbBG + η2 cos θtCF
= 0 (19)

or,

cos θb =
η2

η1

CE

AG
cos θt (20)

by using (13), (20) can be written as:

sin θb =

√
ε2AG/ε1CE − µ2CE/µ1AG

ε2AG/ε1CE − ε1CE/ε2AG
(21)
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since sine function cannot exceed unity, (21) exists only if:

ε2AG/ε1CE − µ2CE/µ1AG ≤ ε2AG/ε1CE − ε1CE/ε2AG (22)

for µ1 = µ2, (21) becomes,

sin θb =

√
ε2AG/ε1CE − CE/AG

ε2AG/ε1CE − ε1CE/ε2AG
(23)

θb = sin−1

√
ε2AG/ε1CE − CE/AG

ε2AG/ε1CE − ε1CE/ε2AG
(24)

for parallel polarization, the reflection coefficient reduces to zero at
Brewster’s angle θb given by (21) or (24).

3. PERPENDICULAR POLARIZATION

The geometry of the incident, reflected and transmitted waves for
perpendicular polarization is shown in Figure 2. The corresponding
equations are as follows:

Ei = âyE0 exp (−iβ1 sin θix)(β1 cos θiz)n1H2
n1

(β1 cos θiz) (25)

Er = âyE0Γ exp (−iβ1 sin θrx)(β1 cos θrz)n1H1
n1

(β1 cos θrz) (26)

Figure 2. Perpendicular polarized wave at dielectric fractal-fractal
interface.
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Et = âyE0Texp (−iβ2 sin θtx)(β2 cos θtz)n2H2
n2

(β2 cos θtz) (27)

Hi = (−âx cos θi + âz sin θi)
E0

η1
exp (−iβ1 sin θix)

(β1 cos θiz)nh1H2
nh1

(β1 cos θiz) (28)

Hr = (âx cos θr + âz sin θr)
E0Γ
η1

exp (−iβ1 sin θrx)

(β1 cos θrz)nh1H1
nh1

(β1 cos θrz) (29)

Ht = (−âx cos θt + âz sin θt)
E0T
η2

exp (−iβ2 sin θtx)

(β2 cos θtz)nh2 H2
nh2

(β2 cos θtz) (30)

by following same procedure of previous case of parallel polarization,
we can determine the required reflection and transmission coefficients
as given below,

Γ⊥ =
η2 cos θiCE − η1 cos θtAG

η1 cos θtBG + η2 cos θiCF
(31)

T⊥ =
η2 cos θi(BE + AF )

η1 cos θtBG + η2 cos θiCF
(32)

4. RESULTS AND SIMULATIONS

The coefficients of reflection and transmission derived in previous
sections are for non-integer dimension space. The classical results

Figure 3. Magnitude of reflection coefficients for parallel polarization
for non-integer dimension space.
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can be found by taking integer values of dimension i.e., D = 2. For
D = 2, the order of Hankel function will become n = 1/2. For far-field
approximation, the expression for Hankel function of first kind is, as
follow:

H1
1/2(z) =

√
2
πz

ej(z−π/2) (33)

Figure 4. Magnitude of transmission coefficients for parallel
polarization for non-integer dimension space.

Figure 5. Magnitude of reflection coefficients for perpendicular
polarization for non-integer dimension space.
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and the expression of the Hankel function of second kind is,

H2
1/2(z) =

√
2
πz

e−j(z−π/2) (34)

by inserting (33) and (34) in (16), (17) and (24),

Γ‖ =
η2 cos θt − η1 cos θi

η1 cos θi + η2 cos θt
(35)

Figure 6. Magnitude of transmission coefficients for perpendicular
polarization for non-integer dimension space.

Figure 7. Magnitude of reflection coefficients for parallel polarization
for integer dimension space.
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T‖ =
2η2 cos θi

η1 cos θi + η2 cos θt
(36)

θb = sin−1

√
ε2

ε1 + ε2
(37)

Figure 8. Magnitude of transmission coefficients for parallel
polarization for integer dimension space.

Figure 9. Magnitude of reflection coefficients for perpendicular
polarization for integer dimension space.
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Similarly, by inserting (33) and (34) in (31) and (32) the reflection
and transmission coefficients for perpendicular polarization are as
following:

Γ⊥ =
η2 cos θi − η1 cos θt

η2 cos θi + η1 cos θt
(38)

T⊥ =
2η2 cos θi

η2 cos θi + η1 cos θt
(39)

Figure 10. Magnitude of transmission coefficients for perpendicular
polarization for integer dimension space.

Figure 11. Magnitude of transmission coefficients for parallel
polarization for varying dimension D1 and D2.
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which are the same as that given by Balanis [21]. The transmission and
reflection coefficients for both parallel and perpendicular polarization
are plotted against varying incident angles. Figure 3 is the plot of
reflection coefficients for parallel polarization against varying angle
of incidence with non-integer dimension. The plot of transmission
coefficients for parallel polarization against varying angle of incidence
with non-integer dimension is shown in Figure 4. Same is done for

Figure 12. Magnitude of transmission coefficients for perpendicular
polarization for varying dimension D1 and D2.

Figure 13. Magnitude of transmission coefficients for parallel
polarization for varying dimension D1.
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perpendicular polarization and their plots are shown in Figure 5 and
Figure 6. All plots are calculated for fix ratio of permittivities of
both fractal media. Classical results are recovered and plotted for
comparison. Plots of transmission and reflection coefficients for both
parallel and perpendicular polarization with integer dimension are
shown in Figure 7 through Figure 10. These are exactly same as given

Figure 14. Magnitude of transmission coefficients for perpendicular
polarization for varying dimension D1.

Figure 15. Change in magnitude of reflection coefficient and
Brewster’s angle for parallel polarization for varying dimension, D1.
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Figure 16. Change in magnitude of reflection coefficient and
Brewster’s angle for parallel polarization for varying dimension, D2.

by Balanis for the same fix ratio of permittivities of both media [21].
Furthermore, it was also investigated that the magnitudes of

transmission and reflection coefficients changes with the variation of
the difference in dimensionality of the two fractal media. Hence using
this important feature of fractals, dimension D can be used as a third
parameter in order to find out required magnitude of transmission and
reflection coefficients shown in Figure 11 through Figure 14. Figure 15
and Figure 16 show the change in magnitude of reflection coefficient
and Brewster’s angle with change in dimension.

5. CONCLUSION

Reflection and transmission coefficients at dielectric fractal-fractal
interface are derived in this paper. The effect of fractional dimension
on the magnitude of reflection and transmission coefficients for
different ratio of permittivity of the two dielectric fractal media
was investigated. Conventional results are recovered for the integer
dimensions. The proposed expressions are useful to study the
behavior of electromagnetic waves for non-integer dimension, multiple
fractal interfaces and waveguides. Moreover, this work is also
helpful to understand the variation in the magnitudes of reflection
and transmission coefficients with the difference in dimensionality at
interface of the two fractal media.
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