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Abstract—In this paper, we adopt the Levenberg-Marquardt (LM)
algorithm to implement the nonlinear multivariable optimization for
azimuth/elevation angle-of-arrival (AOA) estimation based on the
Capon beamforming algorithm. The formulation is based on the fact
that the cost function of the Capon algorithm can be expressed in
a least-squares form. The performance in terms of the root mean
square error (RMSE) and the computational complexity is illustrated
via numerical results.

1. INTRODUCTION

There have been many studies on array signal processing [1–38]. Angle-
of-arrival (AOA) estimation [1–18] and beamforming [19–38] have been
main research topics of the array signal processing. Note that array
signal processing can also be applied to radar signal processing [39–43].

Capon beamforming algorithm [1], also called minimum variance
beamforming algorithm, has been one of many algorithms on the
determination of the AOA of incident signals using array antenna
structure.

Basically, Capon beamformer is better than Bartlett beamformer
in the viewpoint of resolution and interference rejection. The problem
with Capon beamformer is that its performance is highly dependent
on the preciseness of the knowledge of the AOA. Recently, there have
been many studies to improve the robustness of the Capon beamformer
to circumvent the problem induced by the differences between the true
AOA and the assumed AOA [44–48].
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Our interest in this paper is to adopt the LM algorithm
to implement nonlinear optimization for AOA estimation. We
give an explicit numerical formulation for the improvement of
azimuth/elevation AOA estimation for the uniform circular array
(UCA) structure based on the Capon beamforming algorithm. The
formulation for the Levenberg-Marquardt (LM) algorithm is based on
the cost function derived from the Capon beamforming algorithm. A
rigorous formulation of the LM-implementation of the Capon algorithm
is presented.

For N incident signals, the cost function of the maximum
likelihood (ML) algorithm [2, 3] is pN -dimensional, where p is the
number of parameters to be estimated for each incident signal. For the
estimation of azimuth angle, p = 1, the cost function is N -dimensional.
For the simultaneous estimation of azimuth and elevation, p = 2, the
cost function is 2N -dimensional. Therefore, for large value of N , the
optimization of pN -dimensional cost function by exhaustive grid search
is not feasible. That is why Newton-type algorithms including the LM
algorithm have been widely applied to the optimization of the cost
function of the ML algorithm [2, 3].

Note that, in the Capon beamforming algorithm [1], the cost
function is p-dimensional, which is independent of the actual number
of the incident signals N . When we are only concerned with the
estimation of the azimuth angle, the optimization of one-dimensional
cost function using exhaustive grid search even with small search step
is quite feasible. But, for simultaneous estimation of the azimuth
and the elevation, the computational complexity of two-dimensional
optimization by exhaustive grid search is much larger than that of one
dimensional optimization by exhaustive grid search, which justifies why
we apply the LM algorithm to the optimization of the two-dimensional
cost function of the Capon beamforming algorithm.

There has been much study on applying the Newton-type method
to the optimization of the cost function of the ML DOA algorithm [2, 3].
To the best of our knowledge, there has been no study on applying the
LM algorithm to the optimization of the cost function of the Capon
algorithm for simultaneous estimation of the azimuth angle and the
elevation angle.

2. LM-BASED IMPLEMENTATION OF THE CAPON
AOA ESTIMATION

Consider the case of a UCA with M antenna elements. N signals are
incident on the array and we are to estimate the azimuth angle and
the elevation angle of each incident signal. Note that, for simultaneous
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estimation of the azimuth and the elevation, the uniform linear array
(ULA) cannot be adopted since ULA-based algorithm cannot uniquely
estimate the azimuth and the elevation due to the ambiguity pertinent
to the ULA structure. Any array structure which is compatible with
the simultaneous estimation of the azimuth and the elevation can be
adopted.

In the Capon beamforming algorithm for AOA estimation, the
array output power is computed as the arrival angle varies, and the
local maxima in the output power distribution are considered to be
the true directions of arrival.

Let θ and φ represent azimuth and elevation, respectively, which
are the arrival angles of an interest [1]:

P (θ, φ) =
1

aH(θ, φ)R̂−1a(θ, φ)
≡ 1

F (θ, φ)
(1)

where F (θ, φ) is defined as

F (θ, φ) ≡ aH(θ, φ)R̂−1a(θ, φ), (2)

and R̂ denotes an estimate of a covariance matrix of an array antenna.
The array vector can be written as

a (θ, φ) = [exp(jψ1) exp(jψ2) . . . exp(jψM )]T (3)

where ψm for the UCA is defined as follows;

ψm (θ, φ) = 2π
r

λ
cosφ

[
cos

(
θ − 2π(m− 1)

M

)]
m = 1, . . . , M. (4)

Let a vector valued function f(θ, φ) be in the form of

f(θ, φ) = [ f1(θ, φ) f2(θ, φ) . . . f2M (θ, φ) ]T . (5)

To apply the LM algorithm to the optimization of the
Capon beamforming algorithm, we define f(θ, φ) so that ‖f(θ, φ)‖2

2
corresponds to the cost function of F (θ, φ) in (2). In that case, the
Capon beamforming algorithm can be formulated as

[
θ̂, φ̂

]
=arg min

θ,φ
F (θ, φ) = arg min

θ,φ
‖f(θ, φ)‖2

2 = arg min
θ,φ

2M∑

m=1

|fm(θ, φ)|2.

(6)
Let X be defined as

X =




X1(t1) . . . X1(tN )
...

. . .
...

XM (t1) . . . XM (tN )


 , (7)
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where Xm(tn), m = 1, . . . ,M, n = 1, . . . , N , refers to the incident
signal received at the m-th antenna at t = tn. Therefore, the m-th row
of X corresponds to the received signals at the m-th antenna element
at all time instants, and the n-th column of X corresponds to the
received signal at all M antenna elements at the time instant t = tn.

Based on the fact that the estimate of the covariance matrix is
given by

R̂ =
1
M

XXH, (8)

we show how to express the cost function in (2) in least-squares form.
Using (8) in (2), we have

F (θ, φ) = aH (θ, φ) R̂−1a (θ, φ) = MaH (θ, φ)
(
XXH

)−1
a (θ, φ)

= MaH (θ, φ)
(
XXH

)−1 (
XXH

) (
XXH

)−1
a (θ, φ)

= MaH (θ, φ)
(
XH

(
XXH

)−1
)H (

XH
(
XXH

)−1
)
a (θ, φ)

=
∥∥∥
√

MXH
(
XXH

)−1
a (θ, φ)

∥∥∥
2

2
. (9)

In (9), note that
√

MXH(XXH)−1a(θ, φ) is a column vector with
M entries. Let the m-th entry of

√
MXH(XXH)−1a(θ, φ) be denoted

by gm(θ, φ):

gm (θ, φ) =
(√

MXH
(
XXH

)−1
a (θ, φ)

)
m

=
√

M
N∑

n=1

N∑

i=1

{[
Re

((
XH

)
m,i

((
XXH

)−1
)

i,n

)

+jIm
((

XH
)
m,i

((
XXH

)−1
)

i,n

)]

× (cos (ψn (θ, φ)) + j sin (ψn (θ, φ)))}
m = 1, 2, . . . ,M. (10)

Note that, since a(θ, φ) is complex-valued, gm is also complex-
valued.

If we define g(θ, φ) as
g(θ, φ) = [ g1(θ, φ) . . . gM (θ, φ) ] , (11)

g(θ, φ) is a complex-valued vector function.
Using (11) along with the definition of gm(θ, φ) in (9), it can

be easily shown that the cost function of the Capon beamforming
algorithm can be written as

F (θ, φ) = ‖g(θ, φ)‖2
2 =

M∑

m=1

|gm(θ, φ)|2. (12)
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Let f2m−1(θ, φ) and f2m(θ, φ) in (5) be given by the real part and
the imaginary part of gm(θ, φ), respectively. From (10), we have, for
m = 1, 2, . . . ,M,

f2m−1(θ, φ) ≡ Re [gm (θ, φ)]

=
√

MRe
((

XH
)
m,i

((
XXH

)−1
)

i,n
a (θ, φ)

)

=
√

M
N∑

n=1

N∑

i=1

(
Re

((
XH

)
m,i

((
XXH

)−1
)
i,n

)
cos(ψn(θ, φ))

−Im
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
sin (ψn (θ, φ))

)
(13)

f2m(θ, φ) = Im[gm(θ, φ)]=
√

M Im
((

XH
)
m,i

((
XXH

)−1
)
i,n

a (θ, φ)
)

=
√

M
N∑

n=1

N∑

i=1

(
Re

((
XH

)
m,i

((
XXH

)−1
)
i,n

)
sin(ψn(θ, φ))

+Im
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
cos (ψn (θ, φ))

)
(14)

where, for example, (XH)m,i denotes the entry of the m-th row and
the i-th column of a matrix XH. Similarly, ((XXH)−1)i,n is the entry
of the i-th row and the n-th column of a matrix (XXH)−1.

From the definition of f2m−1(θ, φ) and f2m(θ, φ), it is clear that
the following is true:

|gm(θ, φ)|2 =
(
f2m−1(θ, φ)

)2 + (f2m(θ, φ))2 , m = 1, . . . , M. (15)

From (12) and (15), the cost function can also be written in terms
of fm(θ, φ) as follows:

F (θ, φ) =
M∑

m=1

|gm(θ, φ)|2 =
2M∑

m=1

(fm(θ, φ))2. (16)

The Jacobian matrix corresponding to the matrix f(θ, φ) in (5) is
defined as

J(θ, φ) =




∂f1

∂θ
∂f1

∂φ
...

...
∂f2M

∂θ
∂f2M

∂φ


 . (17)

The explicit expressions of the entries of the matrix J(θ, φ) are,
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for m = 1, . . . , M,

∂f2m−1

∂θ
=
√

M
N∑

n=1

N∑

i=1

2π
r

λ
cosφ sin

(
θ − 2π(n− 1)

N

)

×
(

Re
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
sin (ψn (θ, φ))

+Im
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
cos (ψn (θ, φ))

)
(18)

∂f2m−1

∂φ
=
√

M
N∑

n=1

N∑

i=1

2π
r

λ
sinφ cos

(
θ − 2π(n− 1)

N

)

×
(

Re
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
sin (ψn (θ, φ))

+Im
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
cos (ψn (θ, φ))

)
(19)

∂f2m

∂θ
=
√

M
N∑

n=1

N∑

i=1

(−)2π
r

λ
sinφ cos

(
θ − 2π(n− 1)

N

)

×
(

Re
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
cos (ψn (θ, φ))

−Im
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
sin (ψn (θ, φ))

)
(20)

∂f2m

∂φ
=
√

M

N∑

n=1

N∑

i=1

(−)2π
r

λ
sinφ cos

(
θ − 2π(n− 1)

N

)

×
(

Re
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
cos (ψn (θ, φ))

−Im
((

XH
)
m,i

((
XXH

)−1
)

i,n

)
sin (ψn (θ, φ))

)
. (21)

Finally, the update [θLM φLM] in the LM algorithm is obtained
from [4, 5] [

JTJ + µI
]
[θLM φLM]T = −JTf , (22)

where J and f are defined in (17) and (5), respectively.
In Fig. 1, we outline the LM algorithm where k denotes the number

of the iterations [4].
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L (θLM, φLM) in Fig. 1 is defined as [4, 5]

L (θLM, φLM) = F (θ, φ) + [ θLM φLM ]J (θ, φ)T f (θ, φ)

+
1
2

[θLM φLM ]J (θ, φ)T J (θ, φ) [θLM φLM ]T . (23)

Due to µ > 0, the coefficient matrix is positive definite, which
makes [θLM φLM]T be a descent direction. When µ is very large, we
get

[ θLM φLM ]T ' − 1
µJTf (24)

which is a short step in the steepest descent direction. Therefore, we
choose large µ when the current estimates are assumed to be very far
from the solution. This is good if the current iterate is far from the
solution. If µ is very small, then the updates of the LM method are
approximately equal to the updates of the Newton method, which is a
good step in the final stages of the iteration [4].

Figure 1. Flow chart of the Levenberg-Marquardt algorithm [4].
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τ can be chosen to be a small value of τ = 10−6 if the initial
estimate, [θ0, φ0], is assumed to be close to the solution. Otherwise, τ
is chosen to be larger value of τ = 10−3 [4].

The stopping criterion reflects that, at a global minimizer, JTf
is given by JTf

(
θfinal, φfinal

)
= 0. Therefore, practically, the criterion

can be ∥∥∥J(θ, φ)Tf(θ, φ)
∥∥∥
∞
≤ ε1, (25)

where ε1 is a small positive number. Another stopping criterion is
‖[θLM φLM]‖ ≤ ε2 ([θ φ] + ε2), which is true when the update in
[θ, φ] is small.

3. NUMERICAL RESULTS

In this section, the validity of the proposed scheme is illustrated
via numerical results. In the numerical results, the UCA with five
elements is employed, and the extension to other array structure is
straightforward. Therefore, f (θ, φ) is obtained from (13) and (14),
and J (θ, φ) is given by (18)–(21), where ψn (θ, φ) is in (4). The radius
of the UCA is equal to 0.679λ.

The parameters used for the results shown in Fig. 2 are specified.
Both ε1 and ε2 in Fig. 1 are chosen to be 10−5. The maximum number
of the iteration which corresponds to kmax in Fig. 1 is 100.

τ is set to be 1.0. Note that θ0 and φ0 in Fig. 1 is the estimates
obtained from the Capon algorithm with the coarse exhaustive search.
Therefore, J(θ = θ0, φ = φ0) is dependent on the values of θ0 and φ0,
so is the value of µ.

The RMSE (root mean square error) and operation time in Fig. 2
is obtained from Q = 100 repetitions. θ

(true)
1 and φ

(true)
1 denote the

true azimuth angle and the true elevation angle of the first incident
signal, respectively. Similarly, those of the second incident signal are
represented by θ

(true)
2 and φ

(true)
2 , respectively.

The RMSE’s of the estimate of the azimuth and that of the
elevation are calculated as, for i = 1, 2,

RMSE(θi) =




Q∑
q=1

(
θ
(true)
i − θ̂

(q)
i

)2

Q




1/2

(26)
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RMSE(φi) =




Q∑
q=1

(
φ

(true)
i − φ̂

(q)
i

)2

Q




1/2

(27)

where θ̂
(q)
i and φ̂

(q)
i denote the estimates of the azimuth angle and the

elevation angle of the i-th signal corresponding to the q-th trial out of
Q repetitions.

The execution time as well as the RMSE is illustrated to
quantitatively describe the computational complexity of each scheme.
The matlab function ‘etime’ is used to measure the execution time of
each scheme.

In Fig. 2, for two incident signals, we compared the performance of
the standard Capon algorithm of coarse exhaustive grid search followed
by the LM optimization with that of the standard Capon algorithm of
fine exhaustive grid search. The purpose is to illustrate the fact that
the proposed scheme still works for more than one incident signal.

[∆θcoarse,∆φcoarse] and
[
∆θfine, ∆φfine

]
denote the search step of

the coarse exhaustive grid search and the fine exhaustive grid search,
respectively.

In Fig. 2(a), we set [∆θfine, ∆φfine]=[2◦, 2◦], and [∆θcoarse, ∆φcoarse]
= [4◦, 4◦]. The corresponding parameters for Fig. 2(b) are given
by [∆θfine, ∆φfine] = [2◦, 2◦], and [∆θcoarse,∆φcoarse] = [7◦, 7◦], and
those for Fig. 2(c) are specified as [∆θfine,∆φfine] = [4◦, 4◦], and
[∆θcoarse, ∆φcoarse] = [7◦, 7◦]. We arbitrarily choose ∆θcoarse =
∆φcoarse and ∆θfine = ∆φfine.

In the upper figures of Figs. 2(a)–2(c), the results with legend
‘CA Sig.1’ and ‘CA Sig.2’ refer to the RMSE of the first incident
signal and that of the second incident signal, respectively, of the
standard Capon algorithm implemented with the fine exhaustive
search with

[
∆θ = ∆θfine, ∆φ = ∆φfine

]
. The results with ‘CA+LM

Sig.1’ and ‘CA+LM Sig.2’ refer to the RMSE of the first signal and
the second signal, respectively, of the Capon algorithm with coarse
exhaustive search with [∆θ = ∆θcoarse, ∆φ = ∆φcoarse] followed by the
LM optimization.

In the lower figures of Figs. 2(a)–2(c), the results with legend
strings of ‘CA’ and ‘CA+LM’ refer to the time required for the numer-
ical simulation of the standard Capon algorithm with fine exhaustive
search with

[
∆θ = ∆θfine, ∆φ = ∆φfine

]
and the Capon algorithm with

coarse exhaustive search with [∆θ = ∆θcoarse, ∆φ = ∆φcoarse] followed
by the LM algorithm, respectively.

In evaluating the performance of the proposed scheme, two criteria
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Figure 2. Comparison of the standard Capon algorithm with
fine exhaustive grid search with that of the Capon algorithm with
coarse exhaustive grid search followed by the LM optimization.
(a)

[
∆θfine, ∆φfine

]
= [2◦, 2◦] , [∆θcoarse, ∆φcoarse] = [4◦, 4◦].

(b)
[
∆θfine,∆φfine

]
= [2◦, 2◦] , [∆θcoarse,∆φcoarse] = [7◦, 7◦].

(c)
[
∆θfine, ∆φfine

]
= [4◦, 4◦] , [∆θcoarse, ∆φcoarse] = [7◦, 7◦]
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of the RMSE and the operation time are used. RMSE is used as
a measure of the estimation accuracy, and the operation time is a
measure of the computational burden. We compare the RMSE and
the operation time of the proposed scheme with those of the standard
Capon algorithm to illustrate how much improvement our proposed
scheme shows over the standard Capon algorithm.

In the upper figures of Fig. 2, we confirm that the RMSE’s
of the proposed scheme are smaller than those of the standard
implementation of the Capon algorithm, which confirms that the
proposed scheme is better than the standard Capon algorithm in terms
of the estimation accuracy. Note that the RMSE’s of the proposed
scheme are much smaller than those of the standard Capon algorithm
for high SNR.

What we illustrate in the lower figures of Fig. 2 is that the
proposed scheme is better than the standard Capon algorithm in
terms of the computational burden as well as the RMSE. In the lower
figures of Fig. 2, we confirm that the execution times of the proposed
scheme are smaller than those of the standard Capon algorithm, which
illustrates that the proposed scheme is superior to the standard Capon
algorithm in terms of the computational burden.

Note that y-axis of all the figures in Fig. 2 is in log-scale, not
in linear scale to more clearly quantify the RMSE and the execution
time. We can see in Fig. 2 that the LM implementation of the Capon
algorithm is superior to the standard Capon algorithm for all three
cases in terms of the RMSE and the computational complexity.

4. CONCLUSION

In this paper, we propose to apply the LM formulation to the
optimization of the cost function of the Capon beamforming algorithm.
We have compared the performance of the LM implementation of the
Capon algorithm with that of the standard Capon algorithm in terms
of the estimation accuracy and the computational complexity.

We consider the array structure of the UCA to be able to uniquely
estimate the azimuth and elevation simultaneously, but it is quite
straightforward to extend the proposed scheme to an arbitrary array
structure by simply modifying the array vector consistently with the
specific array structure as long as the adopted array structure is able
to uniquely estimate both the azimuth angle and the elevation angle.
In addition, the proposed scheme can also be applied to the other
AOA estimation algorithm by simply modifying the cost function
consistently with the adopted AOA estimation algorithm. In numerical
results, we demonstrate the validity of the proposed scheme in terms
of the estimation accuracy and the computational complexity.
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