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Abstract—Time- and frequency-domain theory of multiwire magnetic
transmission lines is presented for the first time. The familiar theory
of electric multiconductor transmission lines (MTL) is based on the
manipulation of two matrices, the longitudinal impedance and the
transverse admittance. However, for magnetic MTLs, the key matrices
are the transverse impedance and the longitudinal admittance. It
is shown how the latter matrices are defined and how they should
be used to determine the modal propagation constants and modal
characteristic wave admittances that characterize the various travelling
wave modes of magnetic MTLs. The theory is illustrated considering a
three-wire system with three-fold symmetry. Simulation results, in the
range 0.1GHz to 10 GHz, are presented, showing that the magnetic
MTL can exhibit superluminal phase velocity and zero attenuation
dispersion.

1. INTRODUCTION

Electric multiconductor transmission lines has been an important
research topic for many decades; pioneering work on the matrix theory
of MTL structures can be traced back to the late 1930s [1, 2]. With the
advent of powerful computing tools, the topic kept attracting a wealth
of attention until today [3–13]. The panorama is completely different
as far as multiwire magnetic transmission lines are concerned.

The concept of a magnetic transmission line (MGTL) can be
explained in quite simple terms. An MGTL is just the dual counterpart
of an electric transmission line (ELTL). While an ELTL can be seen
as an electric structure whose longitudinal conductors carry a time-
varying current and where a transverse electric voltage exists between
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conductors, an MGTL can be seen as a magnetic structure whose
longitudinal wires carry a time-varying magnetic flux and where a
transverse magnetic voltage exists between wires. The theory, the
fabrication, the technology, and the applications of MGTLs are, at
this stage, a novel, open area of investigation. If a literature search
on MGTLs is carried out, very scarce information will be found.
In addition to [14–16], references to MGTLs can only be found in
patent [17] dated of 1968 aimed at transients suppression in a power
transformer, and also in a recent patent [18] where future terahertz
applications of MGTL are speculated. The theoretical background for
two-wire homogeneous magnetic transmission-line analysis has been
set in [14], considering the quasi TEM approach. An application of
MGTL theory to the analysis of ideal transformers has been provided
in [15]. The evaluation of the per unit length magnetic reluctance of
magnetic wires has been presented in [16] for the case of cylindrical
Euler-Cauchy wires.

The contribution of the present paper to advancing the state of the
art on MGTL is the extension of the two-wire formalism in [14] to the
most general case of multiwire inhomogeneous systems. The multiwire
MTL theory is illustrated through numerical simulations concerning
a three-wire system with three-fold symmetry, where two degenerate
modes (odd and even modes) can be defined. The application
example takes into consideration the frequency-dependent character
of the complex magnetic permeability of the wires. A comparison is
established between the modal wave propagation parameters of the
multiwire MGTL and its dual counterpart of a multiconductor ELTL
with the same geometry.

2. FORMULATION OF MGTL PROPAGATION
EQUATIONS

A cross-sectional view of the multiwire MGTL structure is presented
in Figure 1. The N + 1 wires, running parallel to the z axis, are made
of a high-permeability material characterized by permeability µm. The
wires are immersed in an inhomogeneous nonmagnetic linear dielectric
medium, characterized by ε = ε(x, y) and µ = µ0. The magnetic fluxes
φk in the multiwire system are assumed sufficiently weak to preclude
nonlinearity phenomena.

As mentioned in [14], it must be emphasized that in the x, y
transverse plane, the magnetic field is a purely gradient field ∇×H =
0 (with open field lines, beginning and ending on different wires),
and that the electric displacement vector is a purely solenoidal field
∇ ·D = 0 (with closed field lines, embracing one or several wires). In
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Figure 1. MGTL system with
N + 1 wires. Magnetic voltages
uk and magnetic fluxes φk are
indicated.

H

H

H

k
φ (z)

k

k
φ (z + ∆z)

z

z + ∆z

Figure 2. Field lines of H
contribute to the transverse stray
flux leaving the kth wire.

what follows the wire labeled 0 is taken as the reference magnetic wire
(where the scalar magnetic potential is arbitrarily set to zero).

Time- and frequency-domain matrix equations, regarding the z-
dependence of the magnetic voltages and magnetic fluxes along a
magnetic MTL are determined in the next sections.

2.1. Time-domain Magnetic Flux Equation

Consider an infinitesimal segment of an MGTL of length ∆z (see
Figure 2). The closed surface containing the kth wire is traversed on
the right by φk(t, z + ∆z), is traversed on the left by φk(t, z), and its
lateral surface is traversed by stray field lines of transverse magnetic
field whose vector tips end on the remaining wires. The transverse
magnetic field in the dielectric medium is the sum of transverse
magnetic field individual contributions due to each magnetic wire,
H =

∑
i

Hi. The application of ∇ · B = 0 to Figure 2 yields the

result in (1) where, due to linearity, the stray flux φstray
k can be written

as a linear combination (superposition) of all the magnetic voltages
u1 . . . uN , yielding the result in (2), where gki are dimensionless real
coefficients that only depend on the geometry of the MTL, and where
each magnetic voltage [14, 19] is defined in (3), the open integration
path

−→
i0 belonging to the transverse plane. Note that in a transverse

plane, where H is a gradient field, the concept of magnetic voltage is
equivalent to magnetic scalar potential difference.

φk(t, z + ∆z)− φk(t, z) = −φstray
k (1)

φstray
k = µ0∆z

∑

i

gkiui(t, z) (2)
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ui(t, z) =
∫

−→
i0

Hi(t, z) · ds (for i = 1 to N) (3)

Substituting (2) into (1), making ∆z → 0, leads to the result
in (4), which can be written in matrix format as shown in (5), where
LT — termed the per unit length (pul) transverse inductance matrix
of the MGTL — is a square real matrix, and φ and U, in (5)–(6),
are column vectors gathering respectively the wire fluxes and wire
magnetic voltages.

lim
∆z→0

φstray
k

∆z
= − ∂

∂z
φk(t, z) =

∑

i

Lkiui(t, z) (4)

∂

∂z
φ = −LTU; (LT )ki = Lki = µ0gki (5)

φ = [φ1(t, z) . . . φk(t, z) . . . φN (t, z) ]T ,

U = [u1(t, z) . . . uk(t, z) . . . uN (t, z)]T
(6)

Introducing the time-derivative of the magnetic flux (or magnetic
flux time rate)

ϕ = [ϕ1(t, z) . . . ϕk(t, z) . . . ϕN (t, z)]T =
∂

∂t
φ (7)

Equation (5) transforms into

∂

∂z
ϕ = −LT

∂

∂t
U (8)

At this stage, several remarks are in order. The results in (5)
and (8) not only are unaffected by existing system losses, but also are
independent of the inhomogeneous character of the dielectric medium.
Moreover, the pul transverse inductance matrix LT of the MGTL is
not to be confused with the familiar pul longitudinal inductance matrix
LL of electric MTLs. Nonetheless, for ELTLs and MGTLs sharing
the same geometry, matrices LT and LL are intimately correlated
(see [14], about the role played by the geometrical factors g). The
relationship between matrices LT and LL is given in (9a), where 1
is the identity matrix of rank N . The result in (9a) is equivalent to
the one in (9b), where C0 is the familiar pul transverse capacitance
matrix of an ELTL with the same geometry but with the dielectric
medium replaced by a vacuum. From the preceding results, the general
properties of LT can be stated: it is a symmetric positive-define matrix
whose entries obey (9c) [20, 21]. Note that the entries of LT do not
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relate magnetic linkage fluxes with currents (longitudinal currents do
not exist in MGTL theory).

LTLL = µ2
01 (9a)

LT =
µ0

ε0
C0 (9b)

(LT )kk ≥ 0, (LT )ki = (LT )ik ≤ 0,
∑

i

(LT )ki ≥ 0 (9c)

2.2. Time-domain Magnetic Voltage Equation

Consider an infinitesimal segment of an MGTL of length ∆z (see
Figure 3).

Consider a closed rectangular path s along the periphery of wires
k and 0 and through the inhomogeneous dielectric medium where
magnetic voltages uk(t, z) and uk(t, z+∆z) are defined. Since the open
rectangular surface Sk bounded by s is only crossed by displacement
currents, the application of ∇×H = ∂D/∂t leads to

∮

s

H · ds =
∫

Sk

∂D
∂t

· nSdS = − ∂

∂t

∫

Sk

DndS = − ∂

∂t
ψD

k (10a)

uk(t, z + ∆z)−uk(t, z)+(Rmk
φk+Rm0φ0)∆z=− ∂

∂t
ψD

k (10b)

Dn = ε(x, y)
∑

i

(Ei(ϕi)) · n; with n = −nS (10c)

In (10b), the terms Rmk
φk and Rm0φ0 denote the pul longitudinal

magnetic voltage drops along wires k and 0, Rmk
and Rm0 being the

pul magnetic reluctances of wires k and 0, respectively. In (10a), the
normal component of the displacement vector, Dn, is defined in (10c)

s

ku (z) k
u (z + ∆z)

k
φ 

Sk

D, E
n

S

0
φ

Figure 3. Application of the generalized Ampère law to an
infinitesimal segment of an MGTL of length ∆z.
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as the result of the superposition of transverse electric induction field
contributions due to ϕ1, . . . , ϕN , affected by the presence of the
dielectric medium (a linear medium). According to ∇ · B = 0, the
magnetic flux carried by the reference wire is given by

φ0(t, z) =
∑

i

φi(t, z) (11)

As a direct consequence of (10c), the flux of the electric
displacement vector across Sk can be written as a linear combination
of the wires’ magnetic fluxes time-rate

ψD
k = ∆z

∑

i

Ckiϕi(t, z) (12)

where the coefficients Cki have physical dimensions of F/m and
are termed pul longitudinal capacitances. Also, according to the
reciprocity principle: Cki = Cik.

Substituting (11)–(12) into (10b), making ∆z → 0, permits the
determination of ∂uk/∂z as given by (13). This result can be written
compactly in matrix notation as shown in (14)

∂uk(t, z)
∂z

= −
(

Rmk
φk + Rm0

∑

i

φi +
∂

∂t

∑

i

Ckiϕi

)
(13)

∂

∂z
U = −

(
Rm

∫
ϕdt + CL

∂

∂t
ϕ

)
(14)

where CL, the pul longitudinal capacitance matrix, gathers the Cki

coefficients mentioned in (12), and where the pul magnetic reluctance
matrix Rm is determined through

Rm =




Rm1 0 . . . 0
0 Rm2 . . . 0
...

...
. . .

...
0 0 . . . RmN


 + Rm0




1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


 (15)

Note that the real symmetric reluctance matrix is not connected
with system losses; it is related to internal magnetic energy storage
inside the magnetic wires.

The inhomogeneous character of the MGTL is reflected on the
CL matrix, whose entries depend on the geometry and on ε(x, y).
The longitudinal capacitance matrix is not to be confused with the
familiar transverse capacitance matrix CT of an ELTL, in fact, no
electric charges are at play in MGTL theory.
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2.3. Time-domain Ideal Homogeneous MGTL

Time-domain equations derived in Subsections 2.1 and 2.2 are
summarized in (16).

{
∂
∂zϕ = −LT

∂
∂tU

∂
∂zU = − (

Rm

∫
ϕdt + CL

∂
∂tϕ

) (16)

For ideal MGTLs (µm = ∞), Rm = 0 is obtained. Hence,
from (16), {

∂
∂zϕ = −LT

∂
∂tU

∂
∂zU = −CL

∂
∂tϕ

(17)

Combining the two equations in (17) leads to the wave equation

∂2

∂z2

{
ϕ(z, t)
U(z, t)

}
=

{
LTCL

CLLT

}
∂2

∂t2

{
ϕ(z, t)
U(z, t)

}
(18a)

Since the matrix products LTCL and CLLT are the transposed
of each other, both products must share the same set of eigenvalues;
these eigenvalues define the squared modal propagation velocities [21].
However, for ideal homogeneous transmission lines, the squared modal
propagation velocities degenerate into v2

w = 1/(µ0ε). Therefore, the
result in (18a) should translate into

∂2

∂z2

{
ϕ(z, t)
U(z, t)

}
= µ0ε

∂2

∂t2

{
ϕ(z, t)
U(z, t)

}
(18b)

from where follows the conclusion that the products LTCL and CLLT

are identical diagonal matrices — see (19a). In addition, taking (9b)
into account, we find

LTCL = CLLT = µ0ε1 (19a)
C0CL = CLC0 = εε01 → CL = ε

(
ε0C−1

0

)
(19b)

2.4. Physical Interpretation of the LT and CL Matrices

A simple example describing the evaluation of the entries of matrices
LT and CL, based on field calculations, is offered in Appendix A.

In the familiar case of an ELTL, the pul longitudinal inductance
matrix LL relates magnetic fluxes linked with system subcircuits
(circuits k-0), with system longitudinal currents. In the case of an
MGTL longitudinal currents are absent; the interpretation for the pul
transverse inductance matrix LT can be found in terms of magnetic
energy storage in the volume of the dielectric medium — due to the
presence of stray magnetic field lines between magnetic wires, which
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give rise to magnetic voltages. The pul magnetic energy stored is given
by the quadratic form

Wm =
∫

V

1
2
B ·HdV =

1
2
UTLTU

In the familiar case of an ELTL, the pul transverse capacitance
matrix CT relates conductor electric charges with system electric
voltages. In the case of an MGTL electric charges are absent; the
interpretation for the pul longitudinal capacitance matrix CL can be
found in terms of electric energy storage in the volume of the dielectric
medium — due to the presence of electric induction field lines encircling
the magnetic wires, created by time-varying magnetic fluxes flowing
longitudinally along the wires. The pul electric energy stored is given
by the quadratic form

We =
∫

V

1
2
D ·EdV =

1
2
ϕTCLϕ

2.5. Frequency-domain MGTL Equations

The time-domain equations in (16) are now applied to harmonic
regimes (ejωt). The analysis in the frequency domain allows for
the inclusion of system losses which, otherwise, cannot be easily
incorporated in time-domain equations [22].

Magnetic wires are immersed in an inhomogeneous nonmagnetic
linear lossy dielectric medium, characterized by a complex permittivity
ε̄ = ε̄(x, y) and µ = µ0. Consequently, the pul longitudinal capacitance
matrix introduced in (14) is replaced by a pul complex longitudinal
capacitance matrix, C̄L, whose imaginary part accounts for dielectric
losses.

Lossy magnetic wires are characterized by a complex permeability
µ̄m and complex permittivity ε̄m. Consequently, the pul magnetic
reluctance matrix introduced in (15) is replaced by a pul complex
magnetic reluctance matrix R̄m, whose computation involves skin
effect theory. Note that magnetic wire losses are accounted through
the imaginary part of R̄m, which is always positive [14, 16].

Therefore, the results in (16), can be written in phasorial form as{
d
dz ϕ̄ = −Z̄T Ū
d
dz Ū = −ȲLϕ̄

;
{

Z̄T = jωLT

ȲL = ḠL + jωC̄L
(20)

where ḠL, (units: S/m), is the pul complex longitudinal magnetic
conductance matrix:

ḠL =
R̄m

jω
(21)
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In (20), Z̄T is the pul transverse impedance matrix of the MGTL
(units: Ω/m), and ȲL is the pul longitudinal admittance matrix of the
MGTL (units: S/m).

The well-known [19–21], frequency-domain multiconductor ELTL
equations are reminded bellow. For comparison purposes, they should
be confronted with (20).

{
d
dz Ī = −ȲT V̄
d
dz V̄ = −Z̄LĪ

;
{

ȲT = GT + jωC̄T

Z̄L = R̄L + jωLL
(22)

2.6. Analogy between Electric and Magnetic MTLs

Table 1 briefly summarizes the correspondence between field vectors,
variables, and matrices, concerning electric and magnetic MTLs.

Also, for comparison purposes, the structural form of equivalent
T circuits corresponding to magnetic and electric MTLs of elemental
length ∆z, (case N = 1), is offered in Figure 4.

The circuit in Figure 4(b) behaves as a low-pass filter, whereas
the circuit in Figure 4(a) behaves, essentially, as a high-pass filter.
This result suggests that MGTLs are expected to perform better at
high frequencies than at low frequencies. Nonetheless, the reader
should be aware that wire magnetic reluctance R̄m(ω), involved in
the determination of ḠL, may have quite complicated frequency
behavior [16], something not happening to electric conductor internal
impedance R̄L(ω).

Table 1. Analogy between electric and magnetic MTLs.

MTL Fields Variables Matrices
Electric J E H B V̄ Ī Z̄L ȲT

Magnetic ∂B
∂t H −E −∂D

∂t Ū ϕ̄ ȲL Z̄T

(a) (b)

ϕ (z) ϕ (z + ∆z)

u (z) u (z + ∆z)

2G  ∆zL

2C  ∆zL

2G  ∆zL

2C  ∆zL

L  ∆zT

v (z) v (z + ∆z)

i (z) i (z + ∆z)R  ∆zL

1

2 L  ∆zL R  ∆zL
L  ∆zL

G  ∆zT C  ∆z
T

1

2

1

2

1

2

Figure 4. Equivalent circuits. (a) MGTL. (b) ELTL.
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3. SOLUTION OF MGTL PROPAGATION EQUATIONS

The solution of the coupled equations in (20) can be obtained by
employing a modal analysis technique, similar to the one utilized in the
study of electric MTLs. Such a technique is well-known [19–21] and,
therefore, only a brief summary is presented here. In what follows, and
in order to alleviate the notation, we will drop the over-bar symbols
denoting complex quantities.

Let T and W represent the transformation matrices that
transform natural quantities into modal quantities, the latter being
identified by hat symbols

ϕ = Tϕ̂, U = WÛ (23)
The complex modal propagation constants γ1 . . . γk . . . γN of the

N travelling modes are determined upon the diagonalization of the
product matrices ZTYL, or YLZT , i.e.,{

T−1(ZTYL)T
W−1(YLZT )W

}
= γ2 = diag

{
γ2

1 . . . γ2
k . . . γ2

N

}
(24a)

The columns of T = {t1 . . . tk . . . tN} are the eigenvectors
of ZTYL, and the columns of W = {w1 . . . wk . . . wN} are the
eigenvectors of YLZT , that is{

ZTYL

YLZT

}{
tk

wk

}
= γ2

k

{
tk

wk

}
(24b)

Since ZTYL and YLZT are the transposed of each other, one
can always choose W−1 = TT [21]. Per unit length transverse modal
impedances and longitudinal modal admittances are evaluated through

ẐT = T−1ZTW, ŶL = W−1YLT (25)

The diagonal modal characteristic wave admittance matrix Ŷw =
diag{Ŷw1 . . . Ŷwk

. . . ŶwN } is obtained through [19–21],

Ŷw =
(
ŶLẐ−1

T

)1/2
=

(
TTZ−1

T T
)
γ =

(
TTYLT

)
γ−1 (26)

By making use of the above results, we can write the phasors ϕ(z)
and U(z) in the form of a superposition of modes




ϕ(z) =
N∑

k=1

tk

(
e−γkzϕ̂k(i) + e+γkzϕ̂k(r)

)

U(z) =
N∑

k=1

wkŶwk

(
e−γkzϕ̂k(i) − e+γkzϕ̂k(r)

) (27)

where the modal magnetic flux rate phasors ϕ̂k(i) and ϕ̂k(r), of the
incident and reflected waves at z = 0, are determined from enforced
boundary conditions.
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Figure 5. Cross section of a 3-wire system with three-fold symmetry.

4. APPLICATION EXAMPLE

A simple MGTL configuration consisting of three equidistant circular
cylindrical magnetic wires (Figure 5) is used to illustrate the
application of the theory developed in the preceding sections. In a
cross sectional view, the wires occupy the vertices of an equilateral
triangle. The distance between wires is d, and the radius of each wire
is r.

The medium where the wires are immersed is the air (ε0, µ0).
All the magnetic wires are characterized by µ̄m = µ′(ω)− jµ′′(ω) and
jωε̄m = σm + jωεrε0. Given the geometry of the system, the familiar
electrostatic transverse capacitance matrix C0 and its inverse can be
written as in (28a), where cp = ε0g denotes the pul partial capacitance
between any wire pair, where g is a geometrical factor [23, 24], given
by (28b)

C0 = cp

[
2 −1
−1 2

]
, C−1

0 =
1

3cp

[
2 1
1 2

]
(28a)

g ≈ π/arccosh(υ), υ = d/(2r) (28b)

Note: The result in (28b) is a good approximation (error smaller
than 2%) for υ > 2.5 [24]. Results concerning the computation of cp

(for any value of υ) are reported in [24], where an electrostatic harmonic
expansion method was employed to accurately account for proximity
effects.

From (9b) and (19b), the pul transverse inductance matrix LT

and the pul longitudinal capacitance matrix CL are evaluated through

LT = µ0g

[
2 −1
−1 2

]
, CL =

ε0

3g

[
2 1
1 2

]
(29)
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From (15), the pul magnetic reluctance matrix of the system is
given by (30a), where R̄m(ω) is the frequency-dependent pul complex
reluctance of each magnetic wire [14, 16], which is given by (30b),
where Fprox is a correction factor related to proximity effects [25], given
by (30c), and κ̄ is a dimensionless frequency-dependent parameter [14],
given by (30d).

R̄m = R̄m(ω)
[

2 1
1 2

]
(30a)

R̄m(ω)≈ 1
πr2µDC

κ̄
J0(κ̄)
2J1(κ̄)

Fprox (30b)

Fprox = υ/
√

υ2 − 1 (30c)

κ̄(ω)= rω
√

µ̄m(ω)ε̄m(ω) (30d)

For the geometry under analysis, the 2× 2 product matrix Z̄T ȲL

transforms into a diagonal scalar matrix:

Z̄T ȲL = LT R̄m − ω2LT C̄L =
(
3µ0gR̄m − ω2µ0ε0

)
1 (31)

Since Z̄T ȲL is already in diagonal form, any nonsingular modal
transformation matrix can be utilized. Here, a modal transformation
leading to a decomposition into familiar even and odd modes is chosen,
that is

T = T−1 = TT =
1√
2

[
1 1
1 −1

]
(32)

Mode 1, with t1 ∝ [ 1 1 ]T , is the even mode, whereas mode 2,
with t2 ∝ [1 −1]T , is the odd mode. Figure 6 illustrates electric and
magnetic field lines observed at a transverse plane of the line, for both
traveling modes.

The two modes share the same propagation constant:

γ̄ = α +
jω

v
=

jω

c

√
1− 3gR̄m(ω)

ω2ε0
(33a)

α≈
√

µ0

ε0

3g

2ω
Im

(
R̄m(ω)

)
,

v

c
≈ 1 +

3g

2ε0ω2
Re

(
R̄m(ω)

)
(33b)

In (33), α and v denote the pul attenuation constant and the
phase velocity of both modes, whereas c denotes the free-space velocity.
Physical insight on how α and v depend on the frequency is provided
by the results in (33b), which are a simplification of (33a), valid when

ω2 À 3g|R̄m|/ε0 (34)
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Figure 6. Field lines of E and H. (a) Even mode. (b) Odd mode.

The different modal characteristic wave admittances are obtained
from (26), yielding Ŷw1 = γ̄/(jωµ0g) and Ŷw2 = Ŷw1/3. Numerical
simulation results concerning the frequency dependence of the modal
propagation constant are presented here. The following data have been
considered:

Geometry
{

r = 0.5 mm
d = 5mm ; υ = 5 (35)

Magnetic wires, made of ferrite, are assigned the following
parameters [16]:

µ̄m ≈ µ0 +
µDC

1 + (f/f×)2
− j

µDC

1 + (f/f×)2

(
f

f×

)
(36a)

µDC = 104µ0, f× = 0.2MHz (36b)
εr = 10, σm = 5× 10−3 S/m (36c)

Figure 7 shows the pul magnetic reluctance of the wires, obtained
from (30), in the range 0.1 to 10 GHz (our analysis window). The
parameters in (36c) are assumed to remain practically invariant in
the frequency range considered. Frequencies above 10 GHz were not
explored to ensure that distance d remains a small fraction of the
wavelength (d < λ/10) in order to keep using the quasi TEM-approach.

The attenuation constant α(ω) and the normalized phase velocity
v(ω)/c, shared by both modes, were evaluated and plotted against
frequency in the range 0.1 GHz to 10 GHz — see Figure 8. The
dashed lines correspond to the approximation given by (33b). For the
data being considered, the attenuation constant reveals a practically
constant minimum value of about 0.03 dB/m at frequencies around
1GHz. Contrary to the attenuation constant, the normalized phase
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velocity (which is higher than unity — superluminal velocity) is seen
to monotonically decrease with the frequency, converging to 1.

The fact that v(ω) exceeds c should not be a concern. As it is well-
known, the phase velocity does not have intrinsic physical meaning,
contrarily to the group velocity or velocity of energy travel (equivalent
concepts in the case of normal dispersion, dv/dω < 0) [25].

For comparison purposes, the propagation constant of a three-wire
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Figure 7. Per unit length magnetic reluctance against frequency.
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Figure 8. MGTL propagation constant. The upper subplot refers to
the modal attenuation constant against frequency, whereas the bottom
subplot refers to the normalized phase velocity against frequency. The
dashed lines correspond to the approximation in (33b).
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Figure 9. ELTL propagation constant. The upper subplot refers to
the modal attenuation constant against frequency, whereas the bottom
subplot refers to the normalized phase velocity against frequency.

ELTL with the same geometry (Figure 5) was also evaluated, taking
skin effect phenomena into account [19]. Instead of magnetic wires,
electric conductors are considered now. Simulation results, depicted
in Figure 9, were obtained considering that conductors are made of
aluminium (σ = 3.5× 107 S/m).

The discussion of the advantages or disadvantages of MGTLs
versus electric transmission lines makes little sense unless concrete
design goals are set. However, for the frequency window that has
been considered, the comparison between the propagation constants
of the magnetic and electric MTL shown in Figures 8 and 9 provides
some clues. If the design goal is to ensure a zero, or almost zero,
attenuation dispersion system (dα/dω) the MGTL system is the
preferred candidate. Likewise, if a superluminal phase velocity is
the design goal, the MGTL system is, again, the preferred candidate.
Conversely, if small velocity dispersion (dv/dω), or subluminal phase
velocity, are the design goals, the ELTL system is the preferred
candidate.

5. CONCLUSION

A novel theoretical development on magnetic transmission line
analysis aimed at the generalization of former research work on two-
wire homogeneous MGTLs to multiwire inhomogeneous systems was
presented. Contrary to electric MTLs, it was shown that the analysis of
magnetic MTLs involves the consideration of pul transverse inductance
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and impedance matrices, as well as pul longitudinal capacitance
and admittance matrices. Modal propagation constants and modal
characteristic wave admittances concerning magnetic MTLs were
derived by making use of matrix modal analysis techniques.

An example of a multiwire magnetic transmission line, consisting
of three identical equidistant cylindrical wires, was considered in
order to illustrate the application of the developed theory, the
frequency-dependence of wires’ complex permeability being taken
into account. The geometry under analysis was described by two
degenerate propagation modes (even and odd modes) whose wave
propagation parameters were evaluated as a function of the frequency
(from 0.1 to 10GHz). These wave parameters were compared with the
corresponding ones concerning a multiconductor electric transmission
line with the same geometry. Results showed that the MGTL has
a superluminal phase velocity and zero, or almost zero, attenuation
dispersion in a wide frequency band.

APPENDIX A. EXAMPLE OF THE CALCULATION OF
CL AND LT MATRICES

Similarly to ELTLs, the analytical determination of the pul
capacitances and inductances of MGTLs is only possible for very simple
geometries. For general geometries, numerical or hybrid computational
methods are usually required. A simple example concerning the
calculation of the CL and LT matrices of an inhomogeneous ideal
MGTL is offered here — see the MTL geometry depicted in Figure A1.

The cylindrical wires 1 and 2, positioned at (x = x1, y = 0, and
x = x2, y = 0, respectively) carry z-oriented magnetic fluxes φ1 and
φ2, the corresponding magnetic voltages (k-0) are u1 and u2. The
inhomogeneous dielectric medium is characterized by ε = εa for y < 0,
and ε = εb for y > 0. For simplification purposes the thin wires
assumption is considered (negligibly small radii).

2r

1

x

y

ε  ; y < 0  

x

x2ε =
ε  ; y > 0  

a

b
2r

1

2

(0)

Figure A1. Two cylindrical magnetic wires parallel to a magnetic
plane.
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- Calculation of CL

From ∇ × E = −∂B/∂t, D = εE, and from the continuity
condition of the normal component of the D vector across the interface
y = 0, the D vector can easily be determined in the y = 0 plane as a
function of ϕk = ∂φk/∂t, with k = 1, 2:

D = D(x)~ey; D(x) =
εef

π

2∑

k=1

(
xk

x2
k − x2

ϕk

)
(A1)

where the effective permittivity is given by

εef = 2
εaεb

εa + εb
(A2)

According to (12), considering a magnetic MTL of unitary length,
we have {

ψD
1 = C11ϕ1 + C12ϕ2

ψD
2 = C21ϕ1 + C22ϕ2

(A3)

where the electric displacement fluxes ψD
j are determined by

integrating D(x) along x:

ψD
j =

εef

2π

2∑

k=1




xj−rj∫

0

2xk

x2
k − x2

dx


ϕk (A4)

From (A3) and (A4), we obtain

CL =
εef

2π


 ln

(
2x1
r1

)
ln

(
x2+x1
|x2−x1|

)

ln
(

x2+x1
|x2−x1|

)
ln

(
2x2
r2

)

 (A5)

- Calculation of LT

If the inhomogeneous dielectric medium is replaced by a vacuum,
we see from (19a) that

LT = µ0ε0 (CL)−1
ε=ε0

(A6)

Then, from (A5), we get

LT =
2πµ0

∆


 ln

(
2x2
r2

)
− ln

(
x2+x1
|x2−x1|

)

− ln
(

x2+x1
|x2−x1|

)
ln

(
2x1
r1

)

 (A7)

where ∆ = ln(2x2
r2

) ln(2x1
r1

)− ln2( x2+x1
|x2−x1|).
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