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Abstract—In multidimensional numerical simulations of optoelec-
tronic devices the rigorous Maxwell equations are solved in different
ways. However, numerically efficient incoherent propagation of light
inside the layers has not been resolved yet. In this paper we present
two time- and resource-efficient approaches for optical simulations of
incoherent layers embedded in multilayer structures: (a) phase match-
ing and (b) phase elimination approach. The approaches for simulat-
ing the incoherent propagation of light in thick layers are derived from
Maxwell equations. Both approaches can be applied to any layer in the
structure regardless of the position inside the structure and the number
of incoherent layers. In rigorous simulations, for low absorbing thick
layers scaling down the thickness and increasing extinction coefficient
of the layer proportionally is implemented to shorten computational
time. The simulation results are verified with the experiment on two
types of structures: a bare glass incoherent layer and an amorphous
silicon solar cell.

1. INTRODUCTION

Numerical simulations of optoelectronic devices using rigorous
approaches, like finite element method (FEM), finite difference time
domain (FDTD), finite integrating technique (FIT) or rigorous coupled
wave analysis (RCWA) [1–5] in two- or three-dimensional space are
getting more and more interest with the development of multiphysics
software and extensive computer hardware. However, in rigorous
optical simulations numerical solving of wave equation in frequency
or time domain takes into account only coherent propagation of
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electromagnetic waves (light). When simulating multilayer structures
including one or more thick layers (thickness much larger than effective
wavelength of light) one obtains dense large-amplitude interference
fringes in simulated wavelength-dependent spectral characteristics of
devices (e.g., reflectance, transmittance, absorptance), which are not
observed in optical measurements. Absence of interference fringes in
measured characteristics is linked to the following circumstances: the
illumination is not an ideal monochromatic plane wave (there is lack
in spatial and temporal coherence [6]); interfaces in the structure are
not ideally flat and plan parallel. In thick layers this leads to so-
called incoherent propagation of light if the thickness is larger than
the correlation length [6], In thin layers, where thicknesses are in the
range of light wavelengths, the propagation is still coherent, resulting
in broad interference fringes, which are observed in measured spectral
characteristics of thin-film solar cells [7, 8].

In case of thin-film silicon solar cells we often have very thick
front glass superstrate (1–5mm) as the carrier of the cell. Light
propagates through the glass before reaching the thin cell. In order
to avoid incoherent treatment of glass in rigorous simulations so
far, the glass layer was simply omitted in simulations [9–11] or
the glass, transparent conductive oxide, or Ethylene-vinyl acetate
foil in case of substrate configuration, was often taken as incident
medium [9, 12–15]. This, however, can lead to significant inaccuracy
and uncertainty of the results since absorption in glass is fully neglected
(in case of industrial glasses not always acceptable) and forward and
backward reflectance at the front air/glass interface is not considered
(in case of light scattering high incident angles of backward going
light can result in total reflection at air/glass interface increasing
light trapping), not to mention the incidence of light under oblique
angles. In FDTD simulations the incorporation of an incoherent light
source for different electromagnetic applications is possible [16, 17]
however the simulations of solar cells/opto-electronic devices in the
time domain may not be as accurate as in the frequency domain. In
frequency domain the wavelength-dependent material parameters and
solar illumination spectrum can be easily incorporated in simulations,
resulting in very accurate simulations over broad wavelength region by
splitting it to 5 or 10 nm step. Spectral averaging over the wavelength
region is not acceptable since the interference fringes from thin layers
should not be averaged. To average the interference fringes only in
thick layers we would need additional series of simulations around
specific wavelength(s), thus introducing large number of additional
time-consuming simulations.

In this paper, we present an approach how to treat incoherent
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propagation of light in a layer (thick or thin) in rigorous optical
simulations. The approach is based on applying layer thickness
adjustment(s) to manipulate with the phase of the reflected waves
in order to eliminate interference fringes originating from the
layer. Existing techniques, using Nyquist approximation, has been
reported for the case of one-dimensional semi-coherent modeling for
perpendicular incidence of light by [18] and later by [19] where four
corrected thickness of an incoherent layer were used, resulting in four
1-D simulations and their averaging. Our approach for the case of
rigorous two- and three-dimensional simulations is using (a) only one
and (b) two thicknesses of an incoherent layer, compared to existing
techniques. First the background theory and two models’ development
are presented. Then the models are employed in three-dimensional
FEM simulations. Examples of simulations of a single layer thick
glass and thick glass in a thin-film amorphous silicon solar cell are
demonstrated.

2. THEORY AND TWO APPROACHES

Our aim is to eliminate dense interference fringes as a consequence
of one or more thick layers in simulated structures, which should
be treated incoherently. In first step we will assume some idealized
conditions for the structures, later on we will extend the models to more
realistic structures. First, we assume all interfaces in a plan parallel
multilayer structure are flat. All the materials have isotropic optical
properties and there is only one layer which we treat incoherently and
has negligible absorption. Mathematically the incoherent approach can
be applied to any layer regardless to its thickness.

The interference fringes that we want to eliminate in our model
originate from interference effects in the layer i between the waves
reflected from the top (i1) and the bottom interface (i2) of the
incoherent layer (Figure 1). We assume a plane wave entering from
the incident medium under angle θ into the first layer with a complex
refractive index N1. We define complex refractive index as N = n−jκ,
where n in real refractive index and κ is extinction coefficient. Both
are wavelength (λ) dependent in general.

E1(r) = riEinc(r) = riE0e
jki−1r (1)

E2(r) = t+i rbt
−
i E0e

jki−1r−jki2d (2)

In (1) and (2) Einc is the sum of forward-going light waves (forward
means down in our case) with the same incident angle and is defined
at the top of the interface (i1). E0 is its electric field amplitude, ki

is a wave number in media (i), t+i , t−i and ri are Fresnel coefficients of
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Figure 1. Propagation of plane waves in an incoherent layer embedded
in multiple-layer structure.

transmittance and reflectance of interface (i1), rb is common reflectance
coefficient of the complete stack at the bottom side of the incoherent
layer (not only of the interface (i2) of the incoherent layer), di is the
thickness of the incoherent layer and r(x, y, z) is a position vector in
a space inside layer i− 1. The electric field E, representing the sum of
backward going waves is determined as:

E(r) = E1(r) + E2(r) = riE0e
jki−1r + t+i rbt

−
i E0e

jki−1r−jki2d (3)

The corresponding power density (intensity), according to the
Poynting theorem for the plane wave, is proportional to EE* (also
to HH*, however resulting in same rules about phases in equations
following the Equation (4)):

EE∗ =
(
riE0e

jki−1r + t+i rbt
−
i E0e

jki−1r−jki2d
)

·
(
riE0e

jki−1r + t+i rbt
−
i E0e

jki−1r−jki2d
)∗

=
∣∣r2
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∣∣ ∣∣E2
0
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i +jϕb+jϕ−i (4)

ϕi and ϕb are the phase shifts due to reflectance at the interface (i1)
and at the back interface (i2) including the bottom stack, respectively.
They are equal to the phase of reflectance coefficients ri and rb which
are complex numbers. The transmittance coefficients introduce phase
shift (ϕ+

i and ϕ−i ) only to the wave reflected from the bottom stack



Progress In Electromagnetics Research, Vol. 137, 2013 191

E2. ϕ+
i and ϕ−i are phase shifts for forward and backward propagating

waves at top interface (i1) of incoherent layer. The first two terms
in (4) (third line) are related to the propagating waves with no
interaction, while the last two terms (fourth and fifth line) are so-
called interference terms [3]. The sum of last two terms is always real,
applying the Euler’s formula the imaginary parts cancel out. From
the interference terms the maxima and minima of the intensity can be
calculated. The constructive interference of the backward-going waves
(E1, E2) is obtained if condition (5) is fulfilled:

2kid + ϕi − ϕ+
i − ϕb − ϕ−i = (2m + 1)π (5)

This can happen if the thickness is

d =
(2m + 1)π − ϕi + ϕ+

i + ϕb + ϕ−i
2ki

, for m = 0,±1,±2, . . . (6)

The destructive interference is present if

2kid + ϕi − ϕ+
i − ϕb − ϕ−i = 2mπ (7)

and the corresponding thickness

d =
2mπ − ϕi + ϕ+

i + ϕb + ϕ−i
2ki

, for m = 0,±1,±2, . . . (8)

For incoherent propagation of light the sum of interference terms
in (4) has to be cancelled out [6].

|ri|
∣∣t+i

∣∣ |rb|
∣∣t−i

∣∣ ∣∣E2
0

∣∣ ejk2d+jϕi−jϕ+
i −jϕb−jϕ−i

+ |ri|
∣∣t+i

∣∣ |rb|
∣∣t−i

∣∣ ∣∣E2
0

∣∣ e−jk2d−jϕi+jϕ+
i +jϕb+jϕ−i = 0 (9)

In the following we show two different approaches of calculating
incoherent propagation of light in a layer, first one we assign to
phase matching approach and the second one is an approach based
on eliminating the phase.

2.1. Phase Matching Approach

The idea behind this approach is to determine a proper adjustment
of the thickness d of the incoherent layer that the sum of interference
terms is zero, (16). This new single thickness is different for each
light wavelength, however we preserve only one simulation run for one
(or more) incoherent layers. This approach is applicable if we know
the reflectance coefficient rb of the entire stack of layers after each
incoherent layer. In case of flat interfaces this can be pre-calculated
analytically, e.g., using transfer matrix method [20].
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Due to simplicity reasons we are showing the model for 2-D domain
with the propagation in xy-direction. With one coordinate extension
the model is simply applicable to 3-D space. Equations (1) and (2)
can be in 2-D space written as

E1(x, y) = E1 = riE0e
jki−1xx−jki−1yy

E2(x, y) = E2 = t+i t−i rbE0e
jki−1xx−jki−1yy−jkix2d

(10)

where kix and kiy are the wavenumbers in the layer i in direction x
and y, respectively.

kix = ki cos(θi) = Nik0 cos(θi) =
2π

λ
Ni cos(θi) (11)

Ni is the complex and wavelength dependent refractive index and θi

the angle of propagation in the layer i. λ is wavelength of light in free
space. Equation (9) is simplified to

|ri|
∣∣t+i

∣∣ |rb|
∣∣t−i

∣∣ ∣∣E2
0

∣∣ 2 cos(kix2d + ϕi − ϕ+
i − ϕb − ϕ−i ) = 0 (12)

The Equation (12) is reduced to zero when the argument in cosines
function is zero, resulting in

kix2d + ϕi − ϕ+
i − ϕb − ϕ−i =

π

2
+ mπ for m = 0,±1,±2,±3, . . . (13)

and the corresponding thickness

d′=Re

[
π
2 +mπ−ϕ1+ϕ+

i + ϕb+ϕ−i
2π
λ Ni cos(θi) · 2

]
=Re

[ λ
8Ni cos(θi)

+ mλ
4Ni cos(θi)

+ (ϕ+
i +ϕb+ϕ−i −ϕ1)λ
4πNi cos(θi)

]

for m=0,±1,±2,±3, . . .

(14)

The new, adjusted thickness (d′) needs to be determined according
to Equation (14) for each wavelength. Parameter m should be selected
in a way that d′ is as close as possible to original d. Since the layers
which we want to treat as incoherent are usually very thick with respect
to the wavelength (d À λ), shifting the thickness for some small ∆
does not introduce noticeable error to the wave propagating through
the incoherent layer and the absorption error is negligible.

d′ = d + ∆, ∆ ¿ d (15)

Only one simulation per wavelength is needed, however d′ needs to
be calculated in advance. This approach is not applicable whenever we
have more complex structure beneath the incoherent layer (e.g., stack
with textured interfaces as in the case of thin-film solar cells) and the
rb cannot be calculated analytically. Therefore we have developed the
second approach.
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2.2. Phase Elimination Approach

The interference term in Equation (4) can vanish indirectly by
eliminating the phase shift introducing not only one but two adjusted
thicknesses (resulting in two instead of one simulation per wavelength).
The first simulation can be done at original thickness d, while the
second simulation is calculated at thickness d′′ which is obtained from
canceling out the left side of Equation (12) which is non-zero in this
case

cos(kix2d+ϕi−ϕ+
i −ϕb−ϕ−i ) =−cos(kix2d′+ϕi−ϕ+

i −ϕb−ϕ−i )

= cos(kix2d′+ϕi−ϕ+
i −ϕb−ϕ−i ±mπ) for m = ±1,±2, . . .

d′′ = d± Re
[

mπ

2kix

]
= d± Re

[
mλ

4Ni cos(θi)

] (16)

Also here it is desired to take the closest thickness d′′ to original
thickness to minimize the absorption error, thus m = 1. The average
of intensities of two simulations at thickness d and d′′ gives the same
results as phase matching therefore incoherent propagation of light
inside the specific layer is taken into account. The second thickness
d′′ needs to be determined per wavelength. In following sections we
will describe approximations that are needed if the model is applied to
more realistic structures.

2.3. Including Very Thick Incoherent Layer in Rigorous
Simulation

Very thick layers (in range of millimeters) are difficult to be included
in rigorous simulations despite using adaptive meshing that some
software packages offer. If the extinction coefficient of the incoherent
layer (κi) is much smaller compared to the real part (ni) of complex
refractive index at wavelength of interest (e.g., 10000 ∗ κi ¿ ni; at
d = 1mm), we propose to include such incoherent layer in rigorous
simulation in the following way. One scales down the thickness
from millimeter to micrometer range (acceptable thickness for efficient
rigorous simulation) and at the same time scales up the extinction
coefficient of the material for the same factor. With this the absorption
within the layer is preserved as shown in (17). However, with this
we change the ratio between the wavelength in the layer and layer
thickness, which in case of incoherent treatment of the layer is not
important. According to Equations (4) and (8) the attenuation of the
field in one pass for the incoherent propagation of light in the thick
layer with original thickness d is proportional to

eRe(−jkid) = eRe(−jNik0d) = e−κik0d (17)
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Since the incoherent propagation of light is not related to
constructive and destructive interferences and attenuation is related
only to (17), the scaling down the thickness of incoherent layer can
be beneficial in order to reduce the number of elements of the model.
In order to scale down the thickness of the layer we have to keep the
Equation (17) constant. The new extinction coefficient κ∗i at changed
thickness d∗ is

e−κik0d = e−κ∗
′

i k0d∗ ⇒ κ∗i =
κid

d∗
(18)

If the condition κ∗i ¿ ni is fulfilled, the influence of the change
in κ has negligible effect on reflectances and transmittances at the top
and bottom interface of the incoherent layer.

2.4. Rough Surfaces

According to scalar scattering theory [21–24] the reflectance or
transmittance at rough interface can be divided to the specular part
and diffused part. Since diffused part of the light has usually a random
nature (assuming randomly nano-rough interfaces), the phases of
scattered light at different angles are random and thus the interference
term is canceled for diffused light. However, the specular part of
the light still remains the properties of a plane wave. Thus, both
presented approaches can be used to eliminate the interference terms
of specular part, where reflectance and transmittance are corrected
Fresnel coefficients for specular light [25, 26].

3. RESULTS — APPLICATION OF THE MODELS

In this section, we apply the presented models to Subsection 3.1 a thick
glass layer in air and Subsection 3.2 to a complete thin-film silicon solar
cell. COMSOL Multiphysics R© simulator, which is based on FEM, was
used in our simulations [27]. Measured complex refractive indexes of
layers were employed [26].

3.1. Single Glass Layer

The actual thickness of the microscope glass layer (Assistent) used in
our experiment is 1mm. Following Subsection 2.4 we scaled down the
thickness to d∗ = d/1000 = 1µm. κ′ was scaled up at all discrete
wavelengths for the same factor (1000). In the wavelength region
λ = 300–900 nm where we run simulations it holds κ∗ ¿ nglass.

Real and imaginary part of the measured complex refractive index
of glass used in simulations is shown in Table 1 for selected wavelengths.
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Table 1. Complex refractive index of the microscope glass.

Wavelength [nm] nglass κglass

350 1.558 6.787× 10−7

360 1.556 2.032× 10−7

370 1.552 3.616× 10−8

385 1.549 1.586× 10−8

400 1.545 0

500 1.529 0

600 1.520 0

700 1.516 0

900 1.519 0

Figure 2. Comparison of measured (symbols) and simulated
reflectance and transmittance obtained by coherent calculation (black
line), phase matching approach (blue line) and phase elimination
approach (red line).

The COMSOL model of glass layer surrounded by air was
built in 3-D (although it is 1-D problem). The reflectance and
transmittance from glass layer was measured with PerkinElmer
Lambda 950 spectrophotometer in the range between 300 nm to 900 nm
with the wavelength step of 10 nm. The default setting for slit width
in the instrument is narrow enough to obtain coherent propagation
in thin layers and incoherent propagation of light in thick layers in
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our case of glass layer. Simulations were carried out in the same
wavelength range and with the same wavelength step. Figure 2, shows
good agreement between the measured values and calculated curves
for reflectance and transmittance for both incoherent approaches. The
values were calculated first by the phase matching approach (blue
line) where the phases were determined analytically from the Fresnel
equations assuming perpendicular incidence of light θ = 0, thus

ϕi = π ϕb = ϕ+
i = ϕ−i = 0 (19)

From (14) the actual thickness can be chosen from

d′(λ) =
λ

8nglass (λ)
+

mλ

4nglass (λ)
− λ

4nglass (λ)
(20)

The m was selected for each wavelength in such a manner that the
new thickness was close to scaled original thickness (1µm), e.g., m = 21
at λ = 300 nm, d′ = 976.3 nm and m = 7 at λ = 900 nm, d′ = 962.6 nm.
The second approach used was the phase elimination approach (red
dashed line, Figure 2) and it requires 2 thicknesses. The first thickness
was fixed to 1µm and the second thickness d′′ was calculated according
to Equation (16) to

d′′ = 1 µm +
λ

4nglass
(21)

(at λ = 300 nm d′′ = 1047.6 nm and at λ = 900 nm d′′ = 1148.1 nm).
In both cases the κ∗glass was modified according to (18). For both
approaches very good agreement in reflectance and transmittance is
obtained compared to measured values. Additionally to the incoherent
propagation of light, the coherent propagation of light was simulated
for 1 mm thick glass layer (black line). Due to large wavelength step
of 10 nm high density of the interferences is not reproduced well in its
full extend. However, the coherent simulation shows many interference
fringes as expected according to (4) [6].

3.2. Single-junction a-Si:H Solar Cell

To show the use of presented approaches in real photovoltaic
structures, we applied the second approach to single-junction thin-film
hydrogenated amorphous silicon (a-Si:H) solar cell (Figure 3). The
structure of the simulated cell is shown in Figure 3, the top contact
(looking from incidence of light) is consisted of 650 nm thick SnO2:F
transparent conductive oxide layer (commercially available Asahi U
type), with the random pyramid like nano-roughness structure at the
bottom interface. The a-Si:H cell is built on top of the rough SnO2:F
layer, with the 10 nm doped p-layer followed by 300 nm thick intrinsic
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Figure 3. Simulated structure of single-junction a-Si:H Solar cell.

a-Si:H layer and 20 nm thick doped n-layer of amorphous silicon and
finalized with a back contact made of silver (Ag). Ag layer thickness
in simulations was 50 nm followed by absorbing boundary condition,
since this combination is equivalent to a thick Ag layer. The solar cell
quantum efficiency was measured using Xe lamp with monochromator
in the range between 400 and 800 nm and with the step of 10 nm. The
width of entrance and exist slits of monochromator should not be too
wide in order to obtain coherent propagation of light in thin layers.

Due to light scattering at random rough interfaces it is practical
only to apply the second approach based on phase elimination (2.2).
It is very hard to determine the exact phase values needed in phase
matching approach, thus we have used the phase eliminating approach
to perform simulations.

The two modified and scaled down thicknesses of glass layer used
in simulations were 500 nm (factor 2000) and the second thickness was

d′′ = 500 nm− λ

4nglass(λ)
(22)

The results were calculated by taking the average of absorptance
of both simulations.

The simulation was done between wavelengths 400 and 800 nm
with the wavelength step size of 10 nm, Figure 4. In a-Si:H solar
cells, the measured quantum efficiency can be directly compared to the
absorptance in i-layer, considering ideal extraction of charge carriers
from the i-layer and neglecting the contribution from defect-rich p- and
n-layer [8]. Good agreement is obtained between measured quantum
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Figure 4. Comparison of measured (symbols) Quantum efficiency of
a-Si:H solar cell and simulated Quantum efficiency by phase elimination
approach (blue line) and with coherent calculation of 10µm thick glass
(black line).

efficiency (symbols) and simulated absorptance in i-layer obtained by
the phase elimination approach (blue line). Additionally, solar cell
with the coherent propagation of light was simulated for 10µm thick
glass layer (black line). The coherent simulation shows the expected
interference fringes. Due to the high glass thickness (1 mm) we could
not perform the simulation of the complete thick glass layer. The
10µm thick glass layer shows only few interferences and for a thicker
layer more interferences are expected as in the case presented in
Subsection 3.1.

4. DISCUSSION

Both presented approaches, the phase eliminating (2.1) and phase
matching approach (2.2), works very well for more incoherent layers.
The procedure is the same as described before. At the phase matching
approach (2.1) we have to calculate the phase difference for all
incoherent layers, adjust all thicknesses and then carry out only one
simulation per wavelength. However, finding the phase can be difficult,
thus in this cases the phase eliminating approach (2.2) can be used.
For this approach all incoherent layers have to be simulated two times
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in order to eliminate the interference fringes. In the case of more
than one incoherent layer all possible combinations have to be taken
into account, thus the number of needed simulations is 2m where m is
number of incoherent layers. This is still much less than the approaches
published so far where 4m simulations are needed.

Both models are sensitive to numerical phase error that is
present in rigorous numerical simulations. Phase error per wavelength
is dependent on discretization and element order [28]. For finer
discretization the phase error is lower. In order to keep the
discretization size of the incoherent layer in reasonable large size we
have to thin down very thick incoherent layer(s). The thicker layers
of few wavelengths have higher phase error compared to thinner layers
with the same discretization size. Also the first approach of phase
matching is more sensible to this discretization error compared to
phase eliminating approach. The possible reason for this is the phase
eliminating approach is comparing two layers that are close together
with the thicknesses (14), and the phase error is more or less the
function of the difference. While in the phase matching approach the
phase error is related to the whole thickness of incoherent layer. The
phase eliminating approach is partly eliminating also the phase error
due to discretization for the common part of the thickness, but only
when the discretization is similar for both thicknesses. In simulation
of incoherent glass layer we had to take finer discretization step for
phase matching approach to achieve comparable results to the phase
eliminating approach with larger discretization step. The discretization
step in incoherent layer was around 3 times finer for phase matching
approach, results are not shown here.

5. CONCLUSION

In the presented work, we have showed two very efficient approaches
to take into account the incoherent layers in the rigorous coherent
simulations. The phase matching approach needs only one simulation
run, however analytical determination of the required phase might be
too challenging. Thus, the second approach of phase elimination is
much more appropriate. Two simulation runs for one incoherent layers
per wavelength are needed. However, the thicknesses determination
is straightforward. Both approaches are much more efficient to the
existing method using Nyquist approximation. The models were tested
on two different structures, one on a glass layer and the second one on
the realistic structure of thin-film silicon solar cell. In both cases very
good agreement between measurements and simulations is observed.
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