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Abstract—This paper presents a novel synthesis technique for
microwave bandpass filters with frequency-dependent couplings. The
proposed method is based on the systematic extraction of a dispersive
coupling coefficient using an optimization technique based on the zeros
and poles of scattering parameters representing two coupled resonators.
The application of this method of synthesis is illustrated using two
examples involving four and five-pole generalized Chebyshev filters
implemented in substrate-integrated waveguide (SIW) technology. As
a dispersive inverter, a parallel shorted stub with an additional septum
was used. The septum lends greater flexibility to the dimensional
synthesis, in that it increases the allowable range of the coupling
coefficients. The measured and simulated results are in excellent
agreement, which confirms the validity of the proposed approach.

1. INTRODUCTION

The increase in the capacity and complexity of modern terrestrial and
satellite communications systems has led to a need for filters with
sharp cut-off characteristics and high out-of-band rejection. To meet
these requirements, filters exhibiting quasielliptic responses [1, 2] are
most commonly used. Classical design methods [3–5] synthesize such
responses using coupled-cavity filter topologies with constant direct
and cross-couplings between the resonators. However, aiming for high
selectivity, synthesis often results in coupling schemes that may be
difficult to implement.
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On the other hand, using cross-coupled resonators is not the only
way to introduce transmission zeros (TZs) into the filter characteristics.
In the last decade, it has been demonstrated that even directly coupled
resonators may exhibit responses with TZs if frequency-dependent
couplings are used [6, 7]. In particular, such couplings allow the
synthesis of quasielliptic responses in in-line topologies, assuring sharp
cut-off skirts with symmetric and asymmetric responses. However,
one of the main obstacles hindering the widespread application of such
filters is a lack of accurate synthesis techniques. In fact, almost all
successful designs of such filters have been achieved by extensive full-
wave optimization. This approach is very time consuming, even if
surrogate models [8] or GPU- accelerated solvers [9–12] are used. On
the other hand, an in-line topology is the simplest topology, and it
is well known that all-pole filters can be synthesized very accurately
using, e.g., Cohn’s synthesis [13]. An in-line arrangement of resonators
is very favorable, as such filters are easy to implement. It is hence
desirable to develop an accurate synthesis technique which is also
valid for in-line filters with quasielliptic responses implemented using
dispersive inverters.

In this paper, we propose a novel synthesis technique for
generalized Chebyshev filters with frequency-dependent couplings.
The method is an improved version of a technique developed recently
in our group, presented in [14]. In its original version, the synthesis
matches the scattering parameters of two coupled resonators with
those resulting from a coupling submatrix, assuming the frequency-
dependent coefficient. However, this method does not account for the
loading effect that results from the other resonators present in the filter.
As a result, the design is always detuned. The new method matches the
zeros and poles of the scattering parameters representing two coupled
resonators. To obtain the reference zeros and poles, a submatrix
representing the electrical behavior of two coupled resonators is
extracted from the final coupling matrix by deleting appropriate
rows and columns. Next, the values of the external couplings in
the submatrix are recalculated to take into account the loading
effect. We demonstrate the synthesis procedure with two examples.
The chosen examples involve four and five-pole in-line pseudoelliptic
generalized Chebyshev filters with two transmission zeros implemented
in SIW (substrate-integrated waveguide) technology. Direct couplings
are realized as inductive irises, while the dispersive couplings are
implemented via a shorted stub with an additional septum placed
perpendicularly or in parallel to the direction of propagation.

Substrate-integrated waveguide SIW technology [15–18] offers
easy fabrication, higher-quality factors than other planar circuits,
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repeatability, and a relatively low cost of production. Since SIW
operates as a rectangular waveguide, the easiest way of introducing
dispersive couplings is by means of shorted stubs. Examples of in-line
SIW filters with stubs may be found in the literature [19]. However, a
simple parallel shorted stub allows for transmission zeros near the filter
band, which limits the range of allowable responses. A modified stub
was shown in [14], where an additional septum was introduced to locate
the TZ farther from the passband. The parallel septum considered in
one of our examples has not been proposed in the literature to date.
The septa in the stubs are essential for obtaining better control over
the location of the transmission zeros.

2. SYNTHESIS

Before describing the method of synthesis, we recall some fundamental
formulations concerning filter design. Figure 1 presents a general
model of multiple coupled resonators in the prototype domain. The
impedance matrix of the proposed model has the following form

Z = M0 + ωM1 − jR (1)

where M0, M1 are (N +2, N +2) matrices. In the classical approach,
when the couplings are frequency-independent, M1 is the identity
matrix. Introducing off-diagonal elements to M1, we obtain the
impedance matrix of a filter with dispersive couplings [20]. In this
case, the matrices M0 and M1 are responsible for the constant and
dispersive part of the coupling coefficients, respectively. In Eq. (1), R
is an (N +2, N +2) terminating matrix with all elements equal to zero,
except for R(1, 1) = R(N+2, N+2) = 1, while ω denotes the prototype
angular frequency. The scattering parameters of a two-port network

K13 K2n

K1n

RS RL

L1 L2 L3 Ln

K 01 K 12 K 23
K 34 Kn,n+1

Figure 1. General model of a multiply coupled resonator bandpass
filter.
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are related to the impedance matrix via the following equations [20]:

S11 =
F

E
= −1− 2j

det (M′
0 + ωM′

1 − jR′)
det (M0 + ωM1 − jR)

(2)

S21 =
P

εE
= 2j

det (M′′
0 + ωM′′

1 − jR′′)
det (M0 + ωM1 − jR)

. (3)

where matrices M′
0, M′

1, R′, are the upper principal submatrices
obtained by deleting the last row and column of the matrices M0, M1

and R, respectively. Matrices M′′
0, M′′

1, R′′ are created in a similar
fashion, except that this time the first row and the last column are
deleted. From Eqs. (2)–(3) it can be seen that the common poles of
S11 and S21 are generalized eigenvalues of a matrix pencil ([M0−jR0],
M1), while the zeros of S21 are the generalized eigenvalues of a matrix
pencil ([M′′

0 − jR′′],M′′
1), all multiplied by −j. Note that the zeros of

S11 cannot be simply identified with a proper pencil; instead, Eq. (2)
must be reformulated thus:

F + E

E
=

F ′

E
= −2j

det(M′
0 + ωM′

1 − jR′)
det(M0 + ωM1 − jR)

. (4)

It can be seen from the above expression, that the roots of the new
polynomial F ′ may be found as the generalized eigenvalues of a matrix
pencil ([M′

0 − jR′
0],M

′
1) and finally the zeros of S11 can be computed

as the roots of the polynomial −E +2F ′ (which equals F ). For a given
quasielliptic filtering function, the constant and dispersive parts of the
coupling matrix can be found using the procedure proposed in [20].
This step completes the process of extracting the zeros and poles of
the scattering polynomials representing a two-port network.

On the other hand, the values of the coupling coefficients resulting
from the prototype coupling matrix are related to the inverter values
via the following equations [13]:

KS1 =
√

α1FBWRS ·mS1
0 (5)

KNL =
√

αNFBWRL ·mNL
0 (6)

Ki,j = FBW
√

αiαj ·
(
mi,j

0 + ωmi,j
1

)
(7)

αj =
ω0

2
dXj(ω)

dω

∣∣∣
ω=ω0

(8)

FBW =
ω2 − ω1

ω0
(9)

where KS1, KNL, Ki,j denote the denormalized values of inverters
representing the couplings from source to the first resonator, from the
last resonator to load, and between resonators, respectively. FBW is



Progress In Electromagnetics Research, Vol. 137, 2013 39

the fractional bandwidth where ω2, ω1, ω0 denote the band edge and
center angular frequencies, respectively. The slope parameter of an
i-th resonator αi is given as a first derivative of the reactance of the
resonator multiplied by half of the resonant frequency. It can be clearly
seen that the external couplings are scaled in a different manner than
are the internal couplings. This observation is important, and will be
exploited later in the synthesis.

Once the coupling matrix of the filter has been found using
the procedure described in [20], the dimensional synthesis can begin.
To this end, we have recently proposed a method [14] involving
frequency-dependent inverter, based on the extraction of the coupling
submatrix of coupled resonators with the assumption that external
couplings are sufficiently small to avoid any frequency shift. Next,
the designer performs dimensional synthesis based on tuning the
geometrical parameters to match the scattering parameters obtained
from the numerical simulation with those resulting from the extracted
submatrix. Such an approach gives relatively good results, but does
suffer from the assumption that the external couplings are relatively
small. This assumption leads to the detuning of the resonators,
since the loading effect due to the other resonators present in the
filter is omitted. This issue can be overcome when the true values
of the external inverters are taken into account. Let us consider
an in-line filter of an arbitrary order N with a frequency-dependent
coupling placed between the first and the second resonator. The overall
impedance matrix has the following form

Z =




−j mS1
0 0 0 0 0

mS1
0 m11

0 + ω m12
0 + ωm12

1 0 . . . 0

0 m12
0 + ωm12

1 m22
0 + ω m23

0

... 0

0 0 m23
0

. . . 0

0
... 0 mNN

0 + ω mNL
0

0 0 0 0 mNL
0 −j




.

Now, to extract the impedance submatrix Z12 describing the electrical
behavior of two resonators coupled through the frequency-dependent
inverter, all rows and columns from the fifth to the last must be
removed. This results in the following matrix

Z12 =




−j mS1
0 0 0

mS1
0 m11

0 + ω m12
0 + ωm12

1 0
0 m12

0 + ωm12
1 m22

0 + ω m23
0

0 0 m23
0 −j


 .

Referring to the technique presented in [14], at this stage of our



40 Leszczynska, Szydlowski, and Mrozowski

previous synthesis procedure, mS1
0 and m23

0 should be set to small
values such as 0.02. However, as explained above, this will cause the
loading effect to become negligible, affecting the overall filter response.
To overcome this, the values resulting from the impedance submatrix
Z12 cannot be used as is. This follows directly from Formulas (5)–(7).
Since the value of the denormalized external coupling seen by the load
must be equal to the denormalized value of the internal coupling, m23

0
must be recalculated using the following formula:

m23′
0 =

√
α2α3FBW√
α2FBW RL

m23
0 . (10)

This should then be substituted for m23
0 in the impedance matrix

Z12. Setting Rl = Z0, and assuming that the filter consists of half-
wavelength resonators, we can evaluate the slope parameter [13]. In
this case, Eq. (10) takes on the following form:

m23′
0 =

√
π

2
FBW λ ·m23

0 (11)

where FBW λ is the fractional bandwidth based on guided wavelengths.
When the submatrix corresponding to two resonators coupled through
a dispersive coupling is extracted and modified according to (11),
we can proceed to the dimensional synthesis. Rather than matching
the scattering parameters directly, we apply the zero-pole technique
proposed in [21] adapted for a single coupling. In this new variant,
the reference poles for a pair of resonators are evaluated by solving the
generalized eigenvalue problems, formulated for polynomials of S11 and
S21 (see Eqs. (2)–(3)) where M0 and M1 are 4×4 coupling submatrices
obtained using the procedure outlined above. With the reference
zeros and poles extracted from the new impedance submatrix, the
dimensional synthesis problem may be formulated as an optimization
routine with the following error function

∆E = (λ0 − λ)H (λ0 − λ) (12)
where λ0 is a reference set of zeros and poles extracted as generalized
eigenvalues from the target submatrix, and λ is a vector of the
corresponding zeros and poles obtained at each iteration from the
rational representation of the scattering parameter of the physical
structure computed by a full-wave simulator. To obtain the rational
model, a vector-fitting technique [22] can be used.

If multiple frequency-dependent couplings exist in the circuit, they
can be synthesized in a similar way. However, it should be pointed
out that coupled pairs of resonators need to be separated by at least
one constant coupling. This restriction can be removed (e.g., by
considering three cascaded resonators instead of two), but this will
not be discussed in the present paper.
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3. FILTER DESIGNS

To verify the method outlined in the previous section, two bandpass
filters with quasielliptic characteristics have been designed. The filters
have been fabricated on a Taconic RF-35 substrate, which has a relative
dielectric constant equal to 3.47 and a thickness of 0.737 mm. A
standard low-cost PCB process was used to manufacture both circuits.
All metalized vias have the same diameter of 1 mm, and the spacing
between their centers is equal to 1.5 mm.

3.1. Fourth-order E-plane in-line SIW Filter

The first example of the technique outlined in the previous section
is an in-line fourth-order generalized Chebyshev filter centered at
f0 = 5.395GHz, with bandwidth equal to 225 MHz. The filter has
a 20 dB return loss and two transmission zeros located on either side
of the passband at fz1 = 5.14GHz and fz2 = 5.747GHz. The filter is
composed of four directly connected resonant cavities with frequency-
dependent coupling placed between the first and the second resonator,
and also between the third and the fourth. The external septa are
offset from the center of the filter by three millimeters. To obtain the
overall impedance matrix, the approach presented in [20] was used.
For this particular case, it has the following form:

Z

=




−j 0.9411 0 0 0 0

0.9411 0.6866+ω 0.9440+0.4037ω 0 0 0

0 0.9440+0.4037ω 0.4180+ω 0.6284 0 0

0 0 0.6284 −0.3446+ω −0.9321+0.3067ω 0

0 0 0 −0.9321+0.3067ω −0.5475+ω 0.9791

0 0 0 0 0.9791 −j




.

Next, the submatrices representing the resonators coupled through
dispersive inverters must be extracted. First, the submatrix
responsible for the coupled resonators 1 and 2 is considered. To obtain
this, all rows and columns from the fifth to the sixth are deleted,
resulting in:

Z12 =




0 0.9411 0 0
0.9411 0.6866 + ω 0.9440 + 0.4037ω 0

0 0.9440 + 0.4037ω 0.4180 + ω 0.2121
0 0 0.2121 0


 .

Note that value of the constant coupling between resonators 2 and 3
was recalculated using the formula (11), yielding m′

23 = 0.2121. The
matrix representing coupled resonators 3 and 4 is obtained in a similar
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way, except that this time the first two rows and columns are deleted
from matrix Z. After the renormalization of the external coupling
according to (11), the submatrix becomes

Z34 =




0 0.2121 0 0
0.2121 −0.3446 + ω −0.9321 + 0.3067ω 0

0 −0.9321 + 0.3067ω −0.5475 + ω 0.9791
0 0 0.9791 0


 .

With the impedance submatrices of the coupled resonators now
determined, the reference zeros and poles may be extracted, by finding
the eigenvalues of the generalized eigenproblems introduced above. For
the first coupled pair, the reference values are as follows:

rE12 = [−0.7286 + 0.5249j,−0.3833− 0.9338j],
rF12 = [−0.3585− 0.9005j,−0.6459 + 0.4916j],
rP12 = [−2.3382j]

while for the second pair, they read

rE34 = [−0.6872− 0.5585j,−0.4207 + 0.9121j],
rF34 = [0.3909 + 0.8790j, 0.6176− 0.5254j],
rP34 = [3.0392j].

The final step is dimensional synthesis. In general, the direct couplings
are implemented as inductive E-plane irises, while the frequency-
dependent couplings can be implemented as shorted stubs. Such
implementations are described well in the literature [19]. For this
application, a shorted stub with a septum placed in parallel to the
direction of propagation is employed. Such a modification makes the
dimensional synthesis more flexible in terms of the allowable range of
coupling coefficients, and to the best knowledge of the authors, has not
been proposed to date.

Figures 2 and 3 show a comparison between the simulated and
the ideal scattering parameters of the coupled pairs of resonators
1–2 and 3–4, respectively. Within a few iterations of a zero-pole
algorithm [19], an almost perfect match was achieved. The initial filter
response after assembling the synthesized pairs is presented in Figure 4.
It can be observed that the transmission zeros are placed at the desired
frequencies, and the filter band is as specified. The only discrepancy
concerns the return loss level, which was degraded to approximately
11 dB from the assumed 20 dB. Such initial filter design is an excellent
starting point for final tuning. For this particular case, only four
iterations of the zero-pole procedure [21] were needed to complete
the design. The filter layout and the corresponding dimensions are
presented in Figure 6 and Table 1, respectively. Additionally, in order
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Figure 2. Synthesis of dispersive
coupling between first and second
resonators.
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Figure 3. Synthesis of dispersive
coupling between third and fourth
resonators.
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Figure 4. Comparison between
the synthesized and the ideal filter
response.
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the synthesis shown in [14] and
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Figure 6. Layout of filter.

to show the potential and accuracy of the proposed technique, we
have contrasted the results of the new synthesis technique with the
results obtained using the method presented in [14]. Figure 5 shows
a comparison between the assumed filter response and the response
obtained after the synthesis performed according to [14]. As can
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Table 1. Dimensions for the E-plane substrate-integrated waveguide
filter with quasielliptic characteristics.

Parameter xsynthesis xoptimization Parameter xsynthesis xoptimization

l1 8.8546 8.1423 d4 3.8100 3.1043

l2 9.9955 9.3072 d5 1.4569 1.4189

l3 7.5460 7.0907 stubl1 18.8640 17.6257

l4 6.8906 6.3348 stubl2 24.7285 23.3637

d1 1.2461 1.3495 stubw1 18.8330 19.5235

d2 5.4225 4.7517 stubw1 18.8330 19.5235

d3 6.5209 5.7292
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Figure 7. Comparison of simulated and measured filter responses (the
inset shows a photograph of the circuit).

be seen, only the positions of the transmission zeros are synthesized
properly. It is also obvious that none of the specified parameters of
the filter band are met. This implies that taking the loading effect
into account is crucial for successful dimensional synthesis of the pair
of coupled resonators.

A comparison between the measured component and the ideal
characteristics is presented in Figure 7. As can be seen, the filter
return loss performance has been degraded to approximately 15 dB,
which is still a satisfactory result. This effect is mainly due to the
imperfections of the fabrication process, which lead to detuning of
the resonators. The transmission zeros are located almost at the
desired frequencies, which ensures the assumed rejection level. The
filter insertion loss level is around 3.4 dB, and is mainly the result of
dielectric loss and poor metalization of the via-holes. Nevertheless,
the measured characteristics are in good agreement with the simulated
data. A photograph of the fabricated device is shown in the inset in
Figure 7.
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3.2. Fifth-order H-plane in-line SIW Filter Design

The second example is an in-line fifth-order filter centered at f0 =
5.1GHz with bandwidth equal to 300MHz. The filter has a 20 dB
return loss and two transmission zeros located on the upper side of
the passband at fz1 = 5.353GHz and fz2 = 5.49GHz. The filter
consists of five directly connected resonator cavities with a frequency-
dependent coupling placed between the first and second resonators and
between fourth and fifth resonators, and is presented in Figure 8. In
this example, the frequency-dependent coupling is realized as a shorted
stub with vertical septum. As in the previous case, the septum allows
better control over the position of the transmission zeros. Similarly to
the previous case, the design starts with the synthesis of the coupling
matrix. After a few iterations of the synthesis algorithm [20], the
following impedance matrix was achieved

Z =




j 0.8455 0 0 0

0.8455 −0.8417+ω 0.9191−0.5527ω 0 0

0 0.9191−0.5527ω −0.4770+ω 0.5562 0

0 0 0.5562 0.1271+ω 0.6072

0 0 0 0.6072 −0.2724+ω

0 0 0 0 0.8811−0.3486ω

0 0 0 0 0

0 0

0 0

0 0

0 0

0.8811−0.3486ω 0

−0.5454+ω 0.9508

0.9508 j




Next, the submatrices representing the coupled resonators need to be
evaluated. In this case, the coupling matrix that describes the behavior

w1 w2 w3 w4

d1
d2

l 1 l2 l3 l 4 l 5

stub w1 stubw2

stub l1 stub l2

Figure 8. The layout of the fifth-order SIW H-plane filter.
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of the subcircuit composed of coupled resonators 1 and 2 is obtained
by deleting the fifth to the seventh column and row of the coupling
matrix Z. As a result, the matrix Z12 is obtained.

Z12 =




0 0.8455 0 0
0.8455 −0.8417 + ω −0.9191 + 0.5527ω 0

0 −0.9191 + 0.5527ω −0.4770 + ω 0.2340
0 0 0.2340 0


 .

The value of the external couplings between resonators 2 and 3
was computed using Eq. (11). The matrix representing the coupled
resonators 4 and 5 was obtained in a similar way. The first three
columns and rows of the matrix Z were deleted, to give matrix Z45

Z45 =




0 0.2554 0 0
0.2554 −0.2724 + ω −0.8811 + 0.3486ω 0

0 −0.8811 + 0.3486ω −0.5454 + ω 0.9508
0 0 0.9508 0


 .

The reference zeros and poles for the first coupled pair are as follows:

rE12 = [−0.7804− 0.4792i,−0.3277 + 0.9153i]
rF12 = [−0.3096 + 0.8744i,−0.6408− 0.4383i]
rP12 = [1.6630i].

For the fourth and fifth coupled resonators, the reference values of
zeros and poles are as follows:

rE45 = [−0.6870− 0.5978i,−0.4164 + 0.8293i]
rF45 = [0.3802 + 0.7809i, 0.5746− 0.5494i]
rP45 = [2.5274i]

The final step is the dimensional synthesis. In this example, the
direct couplings are implemented as inductive H-plane irises, while
the dispersive couplings are implemented as shorted stubs with vertical
septa. A comparison between the simulated and the ideal scattering
parameters of the coupled pairs of resonators 1–2, 4–5 is presented in
Figures 9 and 10 respectively. After a few iterations, a satisfactory
result was achieved.

The final thing to do is to determine the length of the third
resonator loaded by the second and the third coupling iris. This can
be done as in Cohn’s synthesis. When the widths of the loading irises
are known, a corresponding reflection phase may be calculated. Next,
this phase is incorporated in the calculation of the resonant length, as
in [13].

The initial filter response once the synthesized resonators have
been assembled is presented in Figure 11. It can be seen that the filter
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Figure 12. Simulated and mea-
sured fifth-order filter responses.

passband, as well as the return loss level, are nearly as expected. The
return loss performance is degraded to approximately 16 dB at worst.
Both transmission zeros are at the desired frequencies. The final tuning
was made in Ansoft HFSS v.13 using a zero-pole goal function [21].
Only one iteration was needed to achieve a good result. A comparison
between the dimensions obtained from the synthesis and the results of
the final optimization is presented in Table 2. A comparison between
the measured component and the ideal characteristics is shown in
Figure 12. The filter bandwidth and the center frequency are nearly as
designed. As can be seen, the filter return loss performance has been
degraded to approximately 17.5 dB, which is a satisfactory result. The
transmission characteristics show two transmission zeros in the upper
stopband. The second of these is in the noise level, which is why it is
not as clearly visible as the first one. The level of in-band insertion
loss is approximately equal to 3 dB, and may be caused by the effect
of losses, including those associated with the dielectric substrate, the
finite conductivity of the top and bottom metalization layers, and the
low quality of the metalization of the via holes.
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Table 2. Dimensions for the H-plane substrate-integrated waveguide
filter with quasielliptic characteristics.

(Parameter) (xsynthesis) (xoptimization) (Parameter) (xsynthesis) (xoptimization)

l1 5.7198 8.1537 w4 13.9027 14.2683

l2 8.3741 11.2183 stubl1 25.1000 18.7145

l3 20.4400 20.4395 stubl2 21.4471 19.7149

l4 10.6620 11.9188 stubw1 15.9396 21.1481

l5 7.5302 8.2740 stubw2 16.8034 19.8094

w1 13.5271 13.8560 d1 9.3672 10.9097

w2 8.7067 8.7993 d2 5.5932 6.8697

w3 8.9593 9.0152

4. CONCLUSIONS

In this paper, a novel synthesis technique for coupled-resonator
bandpass filters with frequency-dependent couplings has been proposed
and validated. The method is based on the synthesis of two
coupled resonators connected through a dispersive inverter, achieved
by matching zeros and poles with the generalized eigenvalues of
suitably defined matrix pencils, and taking into account loading effects
resulting from external couplings.
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