
Progress In Electromagnetics Research C, Vol. 38, 241–257, 2013

IMPROVED METHOD OF NODE AND THRESHOLD
SELECTION IN WAVELET PACKET TRANSFORM FOR
UWB IMPULSE RADIO SIGNAL DENOISING

Abul K. M. Baki1, * and Nemai C. Karmakar2

1School of Engineering and Computer Science, Independent University,
Bangladesh (IUB), Block # B, Basundhara R/A, Dhaka-1229,
Bangladesh
2Department of Electrical & Computer Systems Engineering, Monash
University, Building 72, Clayton, VIC 3800, Australia

Abstract—Ultra wide band (UWB) impulse radio (IR) technology has
different applications in different sectors such as short range radios
and collision avoidance radar. A strong signal denoising method
is needed for UWB-IR signal detection. One of the challenges of
UWB-IR signal detection technique is the environmental interferences
and noises. Wavelet Packet Transform (WPT) based multi-resolution
analysis technique is suitable for this kind of signal denoising and
detection. The paper describes a better method of denoising and
detection technique of UWB-IR signal based on calculation of energies
of the coefficients of each WPT terminal-node and by using an
improved threshold calculation technique. The proposed technique is
investigated through both simulation and experimentation.

1. INTRODUCTION

Next generation wireless users will witness the use of Ultra Wide
Band (UWB) impulse radio (IR) technology with the increased
demand of bandwidth, power consumption and congestion of frequency
spectrum. The journey of impulse radio technology dates back
to 1880, with the experiment of German physicist Henrich Rudlof
Hertz, and the radio frequency (RF) transmission experiment in 1901,
conducted by Italian-born radio pioneer Guglielmo Marconi [1, 2].
The applications of UWB-IR technology are being observed in the
field of collision avoidance vehicular radar, flow measurement, medical
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imaging, military communications, radar imaging, short range radios,
surveillance, vibration measurement (non-contact) and many more.
UWB-IR signals are very short duration pulses (sub-nano seconds)
of very low duty cycle (on the order of 1/100 or 1/1000), low power
spectral density and wide instantaneous bandwidth. According to
Federal Communication Commission (FCC) the fractional bandwidth
BW [= (fH − fL)/fC ] of an IR signal should be ≥ 20%, or total
BW > 500MHz. Here fL and fH are the lower −10 dB and higher
−10 dB radiation points. The center frequency fC can be found
out from (fH + fL)/2. The short duration pulses of IR technology
can be modeled by Gaussian type function [3, 4]. UWB-IR signal
detection technique requires a very strong signal denoising technique
because of the environmental interferences and noises. The noises and
interferences may come from narrow band or wide band sources.

Wavelet Packet Transform (WPT), which has multi-resolution
signal decomposition and synthesis property, can be used for IR signal
denoising. By using this technique it is possible to decompose the
noisy signal into various frequency sub-bands and later reconstruct
it by choosing signals from some selected frequency bands. An
improved denoising method of IR signal, based on energy calculation
of the coefficients of the terminal nodes of WPT [4] and an improved
threshold selection method, is proposed in this paper. Estimation
of the energy content on each terminal node of WPT is a better
approach than the estimation of energy of each level of discrete wavelet
transform (DWT) for UWB-IR signal detection. DWT decomposes
only approximate information into each successive level. On the other
hand WPT decomposes both detailed and approximate information
into each successive level which is helpful in detecting UWB signal.

This paper describes the denoising method of simulated and
experimental UWB-IR signal. The experimental detection was
performed in an anechoic chamber and in a noisy environment. The
proposed WPT based denoising technique was applied to the received
noisy signal. A 3× 2 wide band smart antenna was used for the signal
detection. The proposed signal denoising method can also be applied
to ubiquitous health monitoring system and other wireless technology.

The paper is organized as follows. The model of UWB-IR signal
and noises those can corrupt the detection system are discussed in
Section 2. The concept of band selective smart antenna and its benefits
are described in Section 3. Concept of WPT, improved method of node
and mother wavelet selection is described in Section 4. An improved
method of threshold selection technique is also described in Section 4.
Experimental investigations of the proposed WPT based denoising
technique is described in Section 5. Finally the conclusion is made
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in Section 6.

2. UWB IMPULSE RADIO SIGNAL AND
INTERFERENCES

2.1. Nature of Impulse Radio Signal

The frequency spectrum of UWB-IR depends on the rise-time of the
pulse shape and falls within the frequency rang 650MHz ∼ 5GHz. It
is mentioned in Section 1 that the duration of IR signal is within the
sub-nano seconds and has a very wide instantaneous bandwidth. An
impulse radio pulse can be modeled by using the following Gaussian
function [4]:

y[i] = xiA
√

e2πfce
−2(xiπfc)2 (1)

A Gaussian modulated impulse radio signal can be represented
by:

ym[i] = Ae−m(i∗∆t−d)2 cos[2πfc (i ∗∆t− d)] (2)

In (1) and (2),

xi = i× (∆t− d), i = 0, 1, . . . , N − 1;
N = number of samples;
A = amplitude;
d = delay;
fc = center frequency (Hz);
∆t = sampling interval;
w = normalized bandwidth;

(a) (b)

Figure 1. (a) Impulse radio pulses of centre frequency 800MHz. (b)
Power spectrum of the pulse trains of Figure 1(a).
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b = attenuation;

m = 5π2w2f2
c

b∗ln(10) .

Though IR signal is wideband in nature, most of the energy of
a particular type of pulse is concentrated on or around a particular
frequency or narrow frequency bands. Figure 1(a) shows the time-
domain and Figure 1(b) shows the frequency-domain natures of IR
pulses of centre frequency 800 MHz. It can be seen from Figure 1(b)
that the energy contents of the pulse train are mainly concentrated at
and around its center frequency.

2.2. Interferences and Noises in Impulse Radio Signal
Detection

It was mentioned in Section 1 that the main sources of noises and
interferences in IR signal detection can come from narrow band or
wide band signals. They may come from narrow band communication
channels, mobile phones, TV broadcastings, background white noises,
corona in air, vehicles generated interferences and other wireless
networks.

The following types of interferences and noises can corrupt an
impulse radio signal:

i. Discrete spectral interferences from amplitude and frequency
modulated narrow band signals.

ii. Wideband repetitive pulses from other sources.
iii. Wideband random pulses from lightning or RF corona, or car

ignition.
iv. Wideband white and stochastic noises and ambient noises.

3. WIDE BAND ANTENNA FOR IMPULSE RADIO
SIGNAL DETECTION

It has been experimentally verified that the maximum transmis-
sion/reception can further be improved by adjusting the weighting
functions of the array elements [5, 6] of smart antenna [7, 8]. The
concepts of smart antenna are discussed in details in [9, 10]. A band
selective smart antenna with gain enhancement and wavelet based sig-
nal processing capabilities can cancel the interferences and noises and
enhances the effective SNR of the desired IR signal. The property of
the band selective smart antenna will reduce the effect of noises and
interferences and enhance the strength of the received signals. A 3× 2
element prototype smart antenna [9] was used to capture the IR signal.
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The measured return loss of a single element is shown and discussed
in [9]. The pulse-like interferences may have characteristics very sim-
ilar to IR signals and may have amplitude much larger than that of
IR signal. The selection of quiet band for signal detection through a
smart antenna and a WPT based method will enhance the separation
of other pulse-like and narrowband interferences from the signal. The
property of the used smart antenna will reduce the effect of noises and
interferences those are out of the frequency band of the antenna and
enhance the strength of the signal received within the frequency band.
It will be discussed later that the band of operation of the antenna
plays a significant role in selecting the mother wavelet for WPT.

4. WAVELET PACKET TRANSFORM

4.1. Theory of Wavelet Packet Transform

WPT decomposes the original signal into approximate (lower
frequency part) and detailed (higher frequency part) components using
complementary filters [11] in each successive level. In WPT, it is
possible to have the signals’ statistical information (e.g., standard
deviation, mean, cumulative energy etc.) from each of the terminal
nodes. Thus WPT predicts the noise and signal dominant nodes. In
real situations noise will dominate in some of the nodes and in other
nodes desired signal will dominate. After analyzing the statistical
information of each terminal node, nodes with dominant noise can
be avoided during signal reconstruction. Threshold parameters can be
applied to the coefficients of the selected nodes to enhance the SNR
further. The noise dominant nodes can be detected and blocked by
scanning the environment before signal detection. A particular node
in WPT represents a set of coefficients which corresponds to a certain
frequency band. Calculation process of WPT coefficients are described
in [12, 13]. The output coefficients of node (i, j) are obtained from the
output coefficients of its parent node (i− 1, j/2) and generally can be
expressed as [4, 14]:

w(n)i,j =
L−1∑

k=0

h(k)j%2w
(
n− 2i−1k

)
i−1, j

2
(3)

where,

i is the number of level (0 < i < J);
J is the number of maximum decomposition level;
j is the frequency band (0 ≤ j < 2i);
n = 2il, l is natural number, and
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w0,0 are the input samples.
Symbol ‘%’ represents modulus operation.

Figure 2 shows an example block diagram of WPT decomposition
tree up to decomposition level 3. In the block diagram 000, 001, 010,
etc. represent the paths of the nodes. For example, 101 means that
the signal is first passed through the high pass filter (HPF), and then
through low pass filter (LPF), after that again through HPF. On the
other hand, only paths 000 and 001 are available on the resolution level
3 of the Discrete wavelet Transform (DWT) since it decomposes only
approximate information into each successive level. As a result, it is
not possible to have signal information from node 010 up to node 111
in DWT denoising technique. H0 (ω) and H1 (ω) in Figure 2 are the
frequency responses of LPF and HPF, respectively.

Figure 2. Block diagram of level-3 binary tree decomposition of
wavelet packet transform (WPT).

4.2. Selecting an Optimal WPT Decomposition Tree

Most of the energy of a particular IR signal concentrates in a few nodes
of different decomposition level of WPT. The nodes (those correspond
to certain frequency bands) can be obtained by searching the optimal
decomposition tree of WPT. An optimal decomposition tree can be
searched with less number of nodes by using Shannon entropy criterion.
Shannon entropy searches for an optimum decomposition tree based
on the minimum entropy criterion, which is the smallest of the total
entropy of all terminal nodes at a certain level in all the possible tree
structures of WPT. Shannon entropy keeps the signal dominant nodes
and removes the undesired or noise dominant nodes. Shannon entropy
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(Esh) was calculated by using (4):

Esh =
∑n

i=1

[∣∣∣w(n)i,j

∣∣∣
2
log

[∣∣∣w(n)i,j

∣∣∣
2
]]

(4)

The calculated entropy of the WPT node coefficients varies over
different scales dependent on the characteristics of the signals under
investigation. Example of searching the optimal decomposition tree
will be discussed in Section 4.3. Energy content of the node coefficients
can be calculated [4] by using (5):

Ei,j =
n∑

k=1

∣∣∣w(n)i,j

∣∣∣
2 1
Ω

(5)

where,
w(n)i,j = coefficients of node (i, j) and can be found by using (3);
Ei,j is the energy content of node j of level i;
Ω is the impedance of the receiving system (normally 50 Ω);
Variance (σ2) of the node coefficients can be calculated by

using (6):

σ2 =
∑

(w(n)i,j − c̄)2

n− 1
(6)

where c̄ is the mean of the coefficients w(n)i,j .
In (6), each time the mean of the coefficients is needed to

be calculated for a new set of coefficients or samples which is not
computationally efficient. Higher memory space is also required for the
calculation of variance. Calculation of energy, based on (5), is easier
and faster than the calculation of variance. Therefore calculation of
energy contents of the node coefficients is a better approach.

4.3. Searching an Optimal Mother Wavelet

Though it is difficult to choose a mother wavelet for a particular
noisy signal, an optimal mother wavelet was investigated that better
suits an IR signal. Optimal mother wavelet can be determined from
the characteristics of pulse shape. One factor for the selection of
an optimal mother wavelet is the frequency bandwidth of the used
antenna [15]. In the proposed IR signal detection technique, the
bandwidth characteristic of the smart antenna will play a major role
in optimal wavelet selection [4]. Following are the two parameters
considered for optimal mother wavelet selection:
(i) The ratio of the energies of the selected nodes to those of total

nodes.
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(ii) Mean Squared Error (MSE) between the reconstructed and
original signals.

The energy ratio is mainly dependent on the energy concentration
of a particular signal and frequency bands of the selected nodes. Two
different signals, IR signal-1 and IR signal-2, were considered in the
investigation. Figures 3(a) and 4(a) show the noisy IR signal-1 and
IR signal-2 respectively. Figure 3(b) shows the original as well as
the denoised IR signal-1. Similarly Figure 4(b) shows the original
as well as the denoised IR signal-2. Signal-1 was generated by using
Gaussian modulated sine wave equation. Signal-2 was generated by
using Gaussian mono pulse equation. The center frequencies of signal-
1 and signal-2 were chosen respectively as 950 MHz and 500 MHz.

The noisy radio signals were fed separately to the input of WPT
decomposition algorithm developed by using LabVIEW. The signals

(a) (b)

Figure 3. (a) IR signal-1 buried under noise. (b) Original and
denoised IR signal-1.

(a) (b)

Figure 4. (a) IR signal-2 buried under noise. (b) Original and
denoised IR signal-2.



Progress In Electromagnetics Research C, Vol. 38, 2013 249

were then reconstructed by taking the coefficients of the selected nodes
(nodes with maximum energy contents) of the decomposition tree.
Energy contents of IR signal-1 for all 32 nodes of decomposition level
5 are shown in Figure 5. Figure 5 shows that most of the energies are
passing through nodes (5, 2) and (5, 6). These two nodes were selected
for the reconstruction of IR signal-1. The ratio of the energies of the
selected nodes to those of total nodes and the MSE were calculated
for different Daubechies mother wavelets. The calculated normalized
values are shown in Figure 6. Daubechies mother wavelets were chosen,
since it was found that they show better performance than any other
wavelets for these signals. Calculation method of MSE is discussed
in [16]. Figure 6 shows that the maximum energy ratio and minimum
MSE in the simulation are achieved for mother wavelets db 6 ∼ db 11.
The sampling frequency, number of samples and WPT decomposition
level were respectively 12.5 GHz, 1024 and 5 for both the signals.
Figures 5 and 6 also show the experimental data of a signal, similar to
IR signal-1, which will be discussed later in Section 5.

In Figure 5 energy contents of all the 32 nodes’ coefficients
are shown, which is computationally inefficient. Instead an optimal
decomposition tree can be searched to achieve the same performance
but with less number of nodes by using (4). One such optimal WPT
decomposition tree for IR signal-1, based on the Shannon entropy, is
shown in Figure 7. In Figure 7, first indices in the braces indicate the
decomposition level i and the second indices indicate the number of
node j of level i. Figure 7 shows that the energies of only the terminal
nodes are needed to be compared instead of calculating those for all

Figure 5. Energy contents of
each node of WPT decomposition
level 5 for simulated IR signal-1
and captured IR signal-1 in an
anechoic chamber.

Figure 6. Normalized energy
ratio and mean square error
(MSE) for the simulated and
experimental noisy IR signal-
1 and for different Daubechies
wavelets.
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Figure 7. Optimal tree calcula-
tion for IR signal-1 by using Shan-
non entropy criteria. Most of the
IR signal-1 passes through nodes
(5, 2) and (5, 6).

Figure 8. Normalized energy ra-
tio and mean square error (MSE)
for the reconstructed IR signal-
2 and for different Daubechies
mother wavelets.

the 32 nodes of level 5 (as shown in Figure 5). Similar simulated
comparisons, as those have been described above, were also done for
IR signal-2. The calculated Energy ratio and MSE for different mother
wavelets are shown in Figure 8. In this case mother wavelet db 8 gave
the optimum performance among the compared wavelets. Therefore
mother wavelet db 8 was selected for further analysis of IR signal-2.

In some applications, such as atmospheric and oceanic datasets,
the power spectra of wavelet transformation are found to be biased
or distorted in favor of large scales or low frequencies; though some
wavelet applications do not have this bias issue [17]. The frequency is
narrower at larger scales of DWT and the peaks are sharper and may
have higher amplitude. The biasing phenomenon was not observed
across the optimal tree of the WPT nodes described above. Since
WPT has the same frequency bandwidths in each resolution which
is particularly suitable for non-stationary signals, it provides better
resolution regardless of high or low frequencies [18].

4.4. Improved Method of Threshold Selection

One of the major steps of denoising is the estimation of WPT
coefficients through threshold value selection. There are several
threshold selection techniques. In Universal threshold selection rule,
the threshold is:

Thrsh = σ̄
√

2 · log(n) (7)

where n is the total number of samples in the signal, and σ̄ is the noise
level estimated from the median filtering of the first detailed coefficients
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and can be expressed [12] as:

σ̄ = MAD (cd 1) /0.6745 (8)

MAD(cd 1) is the median absolute deviation of detailed coefficients
of level 1.

The rescaling factor 0.6745, used in (8), makes the equation well
suited for zero mean Gaussian white noise model [19]. It is mentioned
earlier that, in (7) the standard deviation of noise level is estimated
from the detailed coefficients of level 1. Another method of automatic
threshold selection rule for wavelet denoising, based on the level
dependent median value and number of coefficients, is described in [16].
The denoising method proposed in this paper uses a few terminal nodes
of WPT. As a result, only the noises and interferences of the terminal
nodes are needed to be considered and (7) can be modified as:

Thrsh = σ̄t

√
2 · log(nt) (9)

where, nt is the number of coefficients of the terminal nodes, and

σ̄t = MADt/0.6745 (10)

where, MADt is the median absolute deviation of the coefficients of
the terminal nodes with only noises and interferences.

It was mentioned in Section 4.3 that Figures 3(a) and 4(a)
show respectively the simulated noisy IR signal-1 and IR signal-
2. The proposed threshold technique was applied to these noisy
signals. Figures 3(b) and 4(b) show the denoised IR signals along
with the original noise-free IR signals. The denoised signals were
obtained from the noisy signals by applying the methods described
in Sections 4.2 ∼ 4.3 and the threshold selection technique described
earlier in this section. The average input SNR of the IR signal-1 was
−8.87 dB and that of IR signal-2 was −5 dB. In each case, total 100
simulations were run. After denoising, average increase of SNR for IR
signal-1 was 4.86 dB and that of IR signal-2 was 9 dB. The calculation
process of the SNR is described in [4]. Figures 3 and 4 show that
the proposed WPT based denoising method successfully recovered the
IR signals from the corrupted ones. In real situations, noises and
interferences of an environment, which will be discussed in Section 5,
can be estimated before the signal detection.

5. EXPERIMENTAL RESULTS ON IMPULSE RADIO
SIGNAL

Experimentations on IR signals were conducted by using an impulse
signal generator, which can generate signal at 1GHz. The rise time
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and fall time of the signal source was 300 picoseconds and 100 ns
respectively. Impulsive signals from the signal generator were captured
by a 3×2 phased array antenna both inside and outside of an anechoic
chamber. Since the intensity of the radiated signal is very low, it
is difficult to capture this kind of signal with conventional antennas.
A dipole antenna was used as a transmitting antenna. A digital
oscilloscope of 50 GHz sampling frequency was connected with the 3×2
element antenna for signal detection. The sampling frequency of the
captured signal was 6.25 GHz and the sample length was 5000. Energy
contents of the captured signal for all 32 nodes of decomposition level
5 are shown in Figure 5 along with the simulated data. Experimental
data of Figure 5 shows that most of the captured signal is also
passing through nodes (5, 2) and (5, 6) of WPT tree. It has
already been mentioned that most of the simulated IR signal-1 passes
through nodes (5, 2) and (5, 6). Daubechies wavelet db 6 gave the
optimum performance for the experimental data (Figure 6). Therefore
Daubechies wavelet 6 (db 6) was selected for the reconstruction of
this signal based on simulation and experimental investigations. DWT
based denoising methods were also investigated but the performance
of the method was not better. The reasons are explained hereafter. In
DWT based methods, it is not possible to capture signals from both
nodes (5, 2) and (5, 6). If DWT have had applied to this signal then it
would have been possible to get these signals (along with some noises
and interferences) from nodes (3, 0) and (3, 1) of Figure 7. Figures 5
and 7 show that the maximum signal energy is passing through WPT
node (5, 6). But in case of DWT, nodes (3, 0) and (3, 1) include the
noises and interferences of nodes (4, 0), (4, 2), (5, 3) and (5, 7) of WPT
tree. In the proposed WPT based method, it is possible to block these
noise dominant nodes.

During the experiment, environmental interferences and noises
were captured before capturing the signal. Some signals from other
communication channels were visible at 891, 952, 1820 and 2149 MHz
frequencies. Later the captured noises and interferences were fed to
the input of the WPT algorithm and the signals were reconstructed
by taking only the coefficients from nodes (5, 2) and (5, 6). At this
stage no threshold value was applied to the coefficients of these two
nodes during the reconstruction in order to find out the natures of
noises and interferences through these two nodes. Figure 9 shows the
time-frequency (TF) plot of the reconstructed noises and interferences
where the interferences of 891 and 952 MHz frequencies along with
some noises exist. Since these interferences and noises fall within
the bandwidth of the captured IR signal-1, it is necessary to cancel
out the effect of these disturbances from these two nodes. It will be
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shown later in this section that these kinds of in band interferences and
noises can be reduced by applying the threshold technique discussed
in Section 4.4. Next, the IR signal-1 was captured in the same
noisy environment. Some simulated noise was further added to
the captured signal to investigate the effectiveness of the developed
denoising algorithm, particularly when the signal of interest is buried
under noises. Figure 10 shows the captured signal along with the
added noises. The SNR of this signal with artificially added noise was
−7.24 dB.

Appropriate Daubechies mother wavelet was again sought for this
noisy signal and the signal was reconstructed by taking the coefficients
of terminal nodes (5, 2) and (5, 6) of the optimal WPT tree. The
threshold technique described in Section 4.4 was applied to the selected
coefficients of the two mentioned nodes during reconstruction of the
signal. Figure 11 shows the TF plot of the reconstructed signal which
shows that the proposed WPT algorithm can successfully recover a
UWB-IR signal which is buried under in band noises and interferences.
Figure 12 shows the time domain plots of originally captured IR signal-
1 (in the anechoic chamber) and the denoised IR signal-1.

The comparison of the simulated and experimental results
(Figure 6) strongly supports that the selection of an optimal wavelet
(in this case db 6) is dependent on the nature of the signal and the
frequency bandwidth of the receiving antenna. The TF plots shown
in the paper are constructed by using Short Time Fourier Transform
(STFT). It is noteworthy to mention here that the TF plots shown in
this paper are only for the representation and comparison purposes.
The proposed WPT based multi-resolution analysis technique is
stronger than any other kind of fixed-resolution TF distribution.

Figure 9. Time-frequency plot
of reconstructed interferences and
noises passing through nodes (5,
2) and (5, 6) of the WPT
decomposition tree.

Figure 10. Captured IR signal-
1 corrupted with environmental
and artificially added noises and
interferences.
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Figure 11. Time frequency (TF)
plot of denoised IR signal-1.

Figure 12. Initially captured IR
signal-1 in an anechoic chamber
and denoised signal from a noisy
environment.

Therefore it is sufficient to implement only WPT based denoising
technique without adding STFT method.

6. CONCLUSION

The detection of an ultra wide band (UWB) impulse radio (IR) signal
from a noisy environment is a difficult task, particularly when the
signal is buried under noises and interferences. An improved method
of WPT nodes selection, based on calculation of the energy contents
of the nodes’ coefficients, is proposed in the paper. Energy-analysis
based WPT denoising of IR signal is better than the variance based
method of DWT. The DWT method decomposes only the approximate
information which is not a better approach for UWB signals. An
improved method of threshold selection technique is also investigated
and proposed in the paper. Most of the energies of a particular IR
signal are concentrated in a few terminal nodes of WPT. Different
mother wavelets were compared to find out an optimal mother wavelet.
The search for an optimal mother wavelet for a particular type of
IR signal was done based on the energy ratios of the nodes and the
MSE. The used wideband receiving antenna has the band selective,
and gain enhancement capabilities. This kind of antenna is helpful
for capturing the IR signal of certain frequency bands that reduces
the noises and interferences of other frequency bands. The frequency
band of the used antenna also played a major role in optimal wavelet
selection. Experimentations on IR signals were performed in an
anechoic chamber and in a noisy environment. The simulated IR
signal-1 and the experimental IR signal-1 were identical. It is shown
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in this paper through simulation, measurement and analysis that the
proposed WPT based denoising method is an efficient tool for UWB-IR
signal denoising and detection. The proposed WPT based detection
system can successfully detect the impulse signal which is buried under
noises. The method can also remove or reduce the effect of interferences
and noises those fall within the same frequency band as that of an IR
signal.
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