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Abstract—In Part I of this work, analysis of uniform multi-conductor
transmission line networks is performed on travelling-wave basis, via
“quasi-TEM” approach. Narrowband interpretation of the modal
theory in the time domain and quantification of the multiple reflections
effect are both included. Theoretical demonstration and analytical
formulation are provided, along with guidelines towards computational
implementation. Any network formed of lossy, diagonalisable uniform
multi-conductor transmission lines of either distinct or degenerate
eigenvalues is covered. This work applies especially in the field of
Power-Line Communications, as High-Frequency transmission over the
power electric network is dominated by multipath propagation.

1. INTRODUCTION

Provision of communication and/or smart grid services over the Low
Voltage (LV) and Medium Voltage (MV) Distribution Network (DN)
by use of the High Frequency (HF) band and also other effects
of possible interest such as high-frequency transients resulting, e.g.,
from lightning or from inductive load switching, depend essentially
on the response of unmatched transmission-line (TL) networks.
The impedance mismatches found along the power electric network
provoke intense multipath fading in the area of MHz [1–9]. Due
to structural peculiarities, certain types of triple-pole (phase-neutral-
ground) cables follow the two-conductor uniform TL model [10–
16], whereas most tricels, as well as any multi-phase (two-phase,
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three-phase) cable, require a multiconductor transmission line (MTL)
model [17–27]. Therefore, a computationally realisable travelling-wave
analysis of MTL networks enabling in particular simulation of Power-
Line Communication (PLC) channels in the Time Domain (TD) would
be of considerable contribution. The principal transmission schemes
are Orthogonal Frequency-Division Multiplexing (OFDM) and Code-
Division Multiple Access (CDMA) [28–38], so that response to both
narrowband and wideband signalling would be desired.

Numerical transition from the Frequency Domain (FD) [39–44],
Finite Difference Time Domain (FDTD) analysis [45–52], and the
Method of Characteristics (MoC) [53–55] are all common ways of
obtaining the TD response of a MTL network. Other established
techniques involve discretisation [56, 57], FD solution followed by TD
transition [58–61], or polynomial/ rational function FD approximation
of MTLs followed by numerical transition to the TD [62–72]. In
all such methods, the MTL equations are numerically approximated
— in the TD, or FD, or both — so that (i) the TD solution is
only a computational result providing no connection with the channel
(network) topology, and (ii) it is not possible to isolate either the
several paths or the dominant path groups, or to trace back and identify
the path routes.

The TD interpretation of modal decomposition introduced in this
paper eliminates the above weaknesses (i) and (ii) inherent to all
aforementioned methods. Propagation of travelling-wave components
along uninterrupted uniform TL segments and reflection effects due
to impedance mismatches are the elemental phenomena, which have
already been partially addressed in previous articles, e.g., [73–81].
However, no generalised approach has up to now been presented
that would reveal the exact correspondence with the standard FD
analysis and provide a sound basis for time-response simulation,
and here is where novelty of this work lies in, i.e., that the MTL
network response and the performance parameters are determined
not as the result of any numerical FD-to-TD transformation or/and
numerical approximation of the MTL equations, but through analytical
elaboration of the multipath propagation process that is the actual
(physical) response mechanism, allowing thus (a) interlinking between
the actual propagating components or/and the dominant groups of
such components and the network topology, as well as (b) tracing back
along the route of every single such component. At this point, it should
be noted that the travelling-wave approach introduced herein is general
and considers all reflections induced by all medium discontinuities (i.e.,
terminations, serial connections of different lines, line junctions).

The present travelling-wave analysis is directly applicable in the
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case of narrowband signalling (e.g., OFDM), i.e., when the MTL
parameters, and therefore the network response as well, vary along the
band of transmission only marginally and can be considered constant,
so that upon any potential narrowband (either single- or multi-carrier)
transmission scheme it is unrestrictedly valid. Moreover, although not
in the scope of this work, treatment of wideband signalling, i.e., if
variation of MTL parameters and network’ response is considerable
and cannot be neglected, is in addition feasible by use of recipes
already established to approximate wideband channels via proper
expansion of narrowband techniques. This aspect is further discussed
in Subsection 3.1 of Part II, entitled “Bandwidth — Variation with
Frequency”.

In Section 2, the MTL reference model is presented. The modal
theory in the FD is briefly referred in Section 3. In Section 4, the
time-domain response is derived commencing from the single-mode
travelling wave demonstration and then extending to the general multi-
mode response through linear superposition. Verification through
coincidence with the FD analysis in terms of (i) identical form of
general solution and (ii) equivalent terminal conditions is demonstrated
in Section 5. In Section 6, guidelines for computational implementation
are suggested, and a concluding summation closes the paper in
Section 7.

2. THE MTL REFERENCE MODEL

Referring to the (ν + 1)-conductor MTL configuration of Fig. 1, the
symmetric per-unit-length resistance, inductance, capacitance, and

Figure 1. The MTL model.
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conductance (ν × ν) matrices are respectively:

[R]kk′ =̂
{

rk + r0, k = k′
r0, k 6= k′

}
= [R]k′k , k, k′ = 1, . . . , ν, (1a)

[L]kk′ =̂ lkk′ = [L]k′k , k, k′ = 1, . . . , ν, (1b)

[C]kk′ =̂





ν∑
k′′=1

ckk′′ , k = k′

−ckk′ , k 6= k′



 = [C]k′k , k, k′ = 1, . . . , ν, (1c)

[G]kk′ =̂





ν∑
k′′=1

gkk′′ , k = k′

−gkk′ , k 6= k′



 = [G]k′k , k, k′ = 1, . . . , ν. (1d)

At every point z0 of structural discontinuity — termination, serial
connection of different lines, or line junction — the line voltage and
current vectors

V(z, t)=̂ [ V1(z, t) . . . Vν(z, t) ]T

I(z, t)=̂ [ I1(z, t) . . . Iν(z, t) ]T

}
(2a)

are subject to the voltage and current continuity conditions

V(z−0 , t) = V
(
z+
0 , t

)
, I(z−0 , t) = I

(
z+
0 , t

)
(2b)

where superscripts (−) and (+) denote respectively longitudinal
positioning infinitesimally before and after z0. In the case of line
junction, as shown in Fig. 2, the voltage vector V(z+

0 , t) is common to
all departure lines, whereas the resultant current vector I(z+

0 , t) equals
the sum of the current vectors of all departure lines.
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Figure 2. Junction of (n + 1) transmission lines.
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3. REFERENCE THEORY IN THE FREQUENCY
DOMAIN

3.1. Frequency-domain Fundamentals

Pursuant to the FD approach, harmonic line voltages Vk(z, t) and
currents Ik(z, t), k = 1, . . . ,ν, are assumed, and respective phasor
vectors are:

V̂(z)=̂
[
V̂1(z) . . . V̂ν(z)

]T
, Î(z)=̂

[
Î1(z) . . . Îν(z)

]T
(3)

The per-unit-length impedance and admittance matrices are then
formed as:

Ẑ=̂R + j2πfL, Ŷ=̂G + j2πfC (4a)

and the Input Admittance Matrix (IAM) Ŷin(z) at any longitudinal
position z is defined by:

Î(z) = Ŷin(z)V̂(z) (4b)

The continuity conditions (2b) are applied to the phasors as:

V̂
(
z−

)
= V̂

(
z+

)
, Î

(
z−

)
= Î

(
z+

)
(4c)

In MTL telecommunication networks, excitation is normally
applied in the form of a finite-output-impedance voltage source, and
no short-circuit termination is expected. Therefore, lumped transverse
termination is herein represented by the coupling of a voltage source

VGkk′ (t) = Re
{

V̂Gkk′e
j2πft

}
, V̂Gkk′ ∈ C (5a)

with output impedance ẐGkk′ ∈ C and output admittance

Ŷkk′=̂Ẑ−1
Gkk′

(5b)

between every k-th and k′-th conductor pair (reference conductor:
k, k′ = 0), and the line termination interaction is expressed through
the termination admittance matrix:

[
Ŷ0,L

]
kk′

=





ν∑
k′=0
k′ 6=k

Ŷkk′ , k = k′

−Ŷkk′ , k 6= k′





=
[
Ŷ0,L

]T

k′k
, k, k′ = 1, . . . , ν (5c)

where subscripts “0” and “L” denote line’s origin and end, respectively.
If no source is coupled between the conductors k and k′, V̂Gkk′ = 0
is set. An open circuit between the k-th and k′-th conductor gives
Ŷkk′ ≡ 0. No short circuit is expected, as already explained. From
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the continuity conditions (4c), the excitation/termination conditions
at line’s origin (z = 0) and end (z = l) become:

Îk(0)= Ŷk0

[
V̂Gk0

− V̂k(0)
]
−

ν∑

k′=1
k′ 6=k

[
V̂k(0)− V̂Gkk′ − V̂k′(0)

]
Ŷkk′ ,

Îk(l)= Ŷk0

[
V̂k(l)− V̂Gk0

]
+

ν∑

k′=1
k′ 6=k

[
V̂k(l)− V̂Gkk′ − V̂k′(l)

]
Ŷkk′

(5d)

3.2. Ordinary Modes of Propagation

3.2.1. Decomposition

Performing the modal decomposition (see [82] or equivalently [83]), the
similarity transformation:

V̂(z) = T̂V V̂m(z), V̂m(z)=̂
[

V̂m1(z) . . . V̂mν(z)
]
,

Î(z) = T̂I Îm(z), Îm(z)=̂
[

Îm1(z) . . . Îmν(z)
] (6a)

is applied and the diagonal matrix:

γ̂2=̂diag
[
γ̂2

1 , . . . , γ̂2
ν

]
= T̂−1

V ẐŶT̂V = T̂−1
I ŶẐT̂I (6b)

of the common eigenvalues γ̂2
ξ , ξ = 1, . . . , ν, of the (ẐŶ) and (ŶẐ)

matrices is formed, with the voltage and current transformation
matrices chosen to satisfy:

T̂I =
(
T̂−1

V

)T
(6c)

providing

(d/dz) V̂m(z) = −ẑÎm(z), ẑ=̂T̂−1
V ẐT̂I = diag [ẑ1, ..., ẑν ] ,

(d/dz) Îm(z) = −ŷV̂m(z), ŷ=̂T̂−1
I ŶT̂V = diag [ŷ1 , ... , ŷν ]

(6d)

3.2.2. Modal Solution

The ξ-th “ordinary mode of propagation”, or simply “mode”, consists
of the modal voltage and current quantities:

Vmξ(z, t) =̂Re
{

V̂mξ(z)ej2πft
}

,

Imξ(z, t) =̂Re
{

Îmξ(z)ej2πft
}

, ξ= 1, . . . , ν
(6e)
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and the propagation constant

γ̂ξ = âξ + jβ̂ξ ∈ C (6f)

with âξ ∈ < the attenuation constant and β̂ξ ∈ < the phase constant
of the mode.

The general FD solution in modal terms is

V̂m(z) = e−γ̂zV̂+
m︸ ︷︷ ︸

V̂+
m(z)

+ eγ̂zV̂−
m︸ ︷︷ ︸

V̂−
m(z)

, V̂±
m =

[
V̂ ±

m1 . . . V̂ ±
mν

]
(7a)

Îm(z) = e−γ̂z Î+
m︸ ︷︷ ︸

Î+m(z)

− eγ̂z Î−m︸ ︷︷ ︸
Î−m(z)

, Î±m =
[

Î±m1 . . . Î±mν

]
(7b)

e±γ̂z =̂ diag
[

e±γ̂1z . . . e±γ̂νz
]

(7c)

with V̂+
m(z), Î+

m(z) the phasor vectors of the forward or positively
evolving stationary modal voltage and current wave components
respectively, and V̂−

m(z), Î−m(z) the phasor vectors of the backward
or negatively evolving ones. The modal admittance matrix defined by:

Î±m = ŶmV̂±
m, Î±mξ = ŶmξV̂

±
mξ, ξ = 1, . . . , ν (8a)

is diagonal as:

Ŷm= ẑ−1γ̂ = diag
[

Ŷm1 . . . Ŷmν

]
, Ŷmξ =̂

γ̂ξ

ẑξ
, ξ=1, . . . , ν (8b)

with Ŷmξ the characteristic admittance of the ξ-th mode.

3.2.3. Line Quantities and Parameters

In terms of the stationary modal components, the forward or positively
evolving and backward or negatively evolving phasor vectors of the
actual line quantities become

V̂(z) = V̂+(z) + V̂−(z), V̂±(z)=̂T̂V e∓γ̂zV̂±
m,

Î(z) = Î+(z)− Î−(z), Î±(z)=̂T̂Ie
∓γ̂z Î±m

(9)

The Characteristic Admittance Matrix (CAM) Ŷc of the line is
defined by:

Î±(z) = ŶcV̂±(z), Ŷc = T̂IŶmT̂−1
V (10)

and the voltage reflection coefficient matrix or simply Reflection
Coefficient Matrix (RCM) ρ(z) is defined at any longitudinal position
z via

V̂−(z)= ρ̂(z)V̂+(z), ρ̂(z)=
[
Ŷc + Ŷin(z)

]−1[
Ŷc − Ŷin(z)

]
(11)
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The FD solution for the line voltages and currents is uniquely
determined via (6a) combining (i) the general modal solution
(7), (ii) interdependence between modal voltages and currents
imposed by (6d), and (iii) the applicable continuity (4c) or
excitation/termination (5d) conditions.

3.2.4. Matching

The terminal IAM matrix of a TL of length l terminated at the end
(z = l) at admittance matrix ŶL is by definition:

Ŷin(l) = ŶL (12)

If the line is “matched”, i.e., terminated at the end at its characteristic
admittance matrix, the backward evolving line and modal electric
quantities are cancelled, as:

ŶL =Ŷc⇔Ŷin(z) = Ŷc⇔




V̂−(z) = Î−(z) = 0ν ,z ∈ [0, l]
V̂−

m = Î−m = 0ν

ρ̂(z) = 0ν



 (13)

3.2.5. Feasibility of Modal Decomposition

The decoupling is frequency-independent if the transformation
matrices result by default constant, as:

T̂V = TV ∀f, T̂I = TI∀f (14)

which is feasible over the following TL structures [84]:

1) Perfect conductors inside homogeneous dielectric.
2) Perfect conductors inside transversely non-homogeneous dielec-

tric.
3) Cyclic symmetric configurations, defined by cyclic symmetric per-

unit-length admittance and impedance matrices as:

[M]kk′ = M|k−k′|+1

Mk±ν = Mk

Mν+2−k = Mk



 ,

ν + k → k
ν + k′ → k′

}
, M = Ŷ, Ẑ (15)

In the case of good conductors inside homogeneous dielectric,
frequency-independent decoupling can also be feasible. However, there
exist MTL structures (fortunately rare) of good conductors inside
homogeneous dielectric where modal decomposition fails, i.e., non-
singular transformation matrices cannot be found. This matter is
concisely enlightened in [83]. Certain non-diagonalisable situations
are described in [85], whereas in [83], the general non-diagonalisable
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MTL case is presented leading to the generalised modal theory, where
the similarity transformations T̂−1

V ẐŶT̂V and T̂−1
I ŶẐT̂I are not

diagonal, but quasi-diagonal block matrices in the so-called Jordan
form. The present travelling-wave TD analysis applies only if modal
decomposition is feasible in the diagonal form of (6b).

4. TIME-DOMAIN RESPONSE DERIVATION

4.1. Single-mode Propagation

4.1.1. Reference Scheme in the Frequency Domain

4.1.1.1 Matched-line Configuration

For a (ν + 1)-conductor TL of length l excited at the origin
(z = 0) by a voltage source VGkk′ (t) of non-zero output impedance
ẐGkk′ = (Ŷkk′)−1 between every k-th and k′-th conductor pair, as
in (5a) and (5b), and matched at the end according to (13), it is
obtained:

V̂(z) = V̂+(z), Î(z) = Î+(z) (16)
and from (10) and (16), the terminal conditions (5d) become:

Î+
k (0)= Ŷk0

[
V̂Gk0

−V̂ +
k (0)

]
−

ν∑

k′=1
k′ 6=k

[
V̂ +

k (0)−V̂Gkk′−V̂ +
k′ (0)

]
Ŷkk′ ,

Î+
k (0)=

ν∑

k′=1

[
Ŷc

]
kk′

V̂ +
k′ (0)

(17)

so that the forward-evolving standing wave components of the line
electric quantities at the origin (z = 0) get:

V̂+(0)=T̂V V̂+
m ⇔ V̂ +

k (0) =
ν∑

ξ=1

[
T̂V

]
kξ

V̂ +
mξ,

Î+
k (0)=T̂IÎ+

m ⇔ Î+k (0) =
ν∑

ξ=1

[
T̂I

]
kξ

Î+
mξ, k = 1, . . . , ν

(18)

4.1.1.2 Single-mode Excitation

Since the eigenvectors:

t̂V ξ =̂
[ [

T̂V

]
1ξ

. . .
[
T̂V

]
νξ

]T

,

t̂Iξ =̂
[[

T̂I

]
1ξ

. . .
[
T̂I

]
νξ

]T

, ξ = 1, . . . , ν

(19)
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of matrices (ẐŶ) and (ŶẐ) respectively are linearly independent (as
the line is assumed diagonalisable), it is feasible to excite a single
arbitrary ξ-th mode as:

V̂ +
mξ′=0∀ξ′ ∈ {1, . . . ,ν\ξ} ⇔ V̂+

m =
[
0 . . . 0 V̂ +

mξ 0 . . . 0
]

(20a)

by selecting:
V̂+(0) = V̂+

ξ (0)=̂t̂V ξV̂
+
mξ (20b)

as (i) a total of (ν − 1) conditions:

t̂V ξ=
[
T̂V

]
1ξ

[
1

([
T̂V

]
2ξ

/[
T̂V

]
1ξ

)
. . .

([
T̂V

]
νξ

/[
T̂V

]
1ξ

)]T

(20c)

are applied to every ξ′ ∈ {1, . . . ,ν}, and (ii) up to ν! independent
voltage sources may be coupled at the origin between the several
conductor pairs, up to ν of which between the excitation conductors
and the reference.

Since only the ξ-th mode is excited, from (16), (7), (9) and (8),
the phasors of the line electric quantities become:

V̂(z)= V̂+
ξ (z)=̂t̂V ξV̂

+
mξ(z), V̂k(z)= V̂ +

kξ(z)=̂
[
T̂V

]
kξ

V̂ +
mξ(z),

V̂ +
mξ(z) =̂ V̂ +

mξe
−γ̂ξz, k=1, . . . , ν

(21a)

Î(z)= Î+
ξ (z)=̂t̂Iξ Î

+
mξ(z), Î(z) = Î+

kξ(z)=̂
[
T̂I

]
kξ

Î+
mξ(z),

Î+
mξ(z) =̂ Î+

mξe
−γ̂ξz, k = 1, . . . , ν

(21b)

4.1.1.3 Single-mode Response

Supposing excitation to take place at the origin (z = 0), the modal
transfer function (TF) Ĥξ(z) of every ξ-th mode is herein defined at
any longitudinal position z as:

Ĥξ(z)=̂e−γ̂ξz =
V̂ +

mξ(z)

V̂ +
mξ(0)

=
Î+
mξ(z)

Î+
mξ(0)

, ξ = 1, . . . ,ν (22a)

so that single ξ-th mode excitation gives:

V̂ +
kξ(z)

V̂ +
kξ(0)

=
Î+
kξ(z)

Î+
kξ(0)

= Ĥξ(z), k = 1, . . . , ν (22b)



Progress In Electromagnetics Research B, Vol. 52, 2013 263

4.1.2. Time-domain Transition

4.1.2.1 Line Excitation and Matching
A (ν + 1)-conductor TL of length l is considered, excited at the origin
by a voltage source:

VGkk′ (t)=̂Re
{

_

V Gkk′ (t)
}

,

_

V Gkk′ (t) = ṼGkk′ (t)e
j2πfct−→

←−F
[
ṼGkk′ (t)

]
f−fc

(23a)

of non-zero output impedance ẐGkk′ = (Ŷkk′)−1 between every k-th and
k′-th conductor pair, with a narrowband complex envelope ṼGkk′ (t) of
bandwidth WGkk′ as:

F
[
ṼGkk′ (t)

]
= 0, |f | > (

WGkk′
/
2
)

(23b)

so that:

Ŷ0,L, T̂V,I , Ŷin(z), Ŷc,m, γ̂ = constant,

f ∈
(

fc −
WGkk′

2
, fc +

WGkk′

2

) (24)

where the “∩” sign indicates a pre-envelope quantity, and the “F”
operator denotes the Fourier transform.

Due to the narrowband spectral invariability of (24), the line
voltages become:

Vk(0, t) = Re
[
Ṽk(0, t)ej2πfct

]
(25a)

and the termination conditions at the origin become:

Ik(0, t)=Re
[

_

I k(0, t)
]
,

_

I k(0, t)= Ĩk(0, t)ej2πfct−→←−F
[
Ĩk(0, t)

]
f−fc

Ĩk(0, t)= Ŷk0

[
ṼGk0

(t)− Ṽk(0, t)
]

−
ν∑

k′=1
k′ 6=k

[
Ṽk(0, t)− ṼGkk′ (t)− Ṽk′(0, t)

]
Ŷkk′





(25b)

Supposing that (i) the line is matched, and (ii) no excitation is
applied at line’s end, from (25), (24), and (17), the line voltages and
currents interrelate at the origin exactly as in the case of harmonic
matched-line excitation, i.e.,

Ĩk(0, t) =
ν∑

k′=1

[
Ŷc

]
kk′

Ṽk′(0, t) (26)
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4.1.2.2 Single-mode Excitation

Imposing over the whole complex-envelope set ṼGkk′ (t) of the excitation
voltages (23) identical conditions as between respective phasors of the
excitation voltages (5a)–(5b) for the satisfaction of (20b), it is obtained
from (24):

Vk(0, t) = Vkξ(0, t)=̂Re
{

Ṽkξ(0, t)ej2πfct
}

,

Ṽkξ(0, t)=̂
[
T̂V

]
kξ

Ṽ +
mξ(t), k = 1, . . . , ν

(27a)

Ik(0, t) = Ikξ(0, t) =̂Re
{

Ĩkξ(0, t)ej2πfct
}

,

Ĩkξ(0, t)=̂
[
T̂I

]
kξ

Ĩ+
mξ(t), k = 1, . . . , ν

(27b)

Ĩ+
mξ(t) = ŶmξṼ

+
mξ(t) (27c)

A single, ξ-th mode is thus exclusively excited at the origin, i.e.,
the relation between line voltages and currents is identical as if only
harmonic evolution of the ξ-th mode was present.

4.1.2.3 Demonstration of Modal Propagation

Being from (24) the line and modal characteristic parameters constant
along the bandwidth WGkk′ of every excitation voltage VGkk′ (t) defined
in (23), upon exclusive ξ-th mode excitation at the origin (z = 0) as
in (27), each one of the excited line voltages Vk(0, t), k = 1, . . . , ν,
defined in (27) is along the line subject to the ξ-th mode TF of (22)
for f = fc, as

Vk(z, t) = Vkξ(z, t)=̂Re
{

Ṽkξ(z, t)ej2πfct
}

,

Ṽkξ(z, t) = e−γ̂ξzṼkξ

(
0, t− z

2πfc/β̂ξ

)
, k = 1, . . . , ν

(28a)

Similarly, the line currents become

Ik(z, t) = Ikξ(z, t)=̂Re
{

Ĩkξ(z, t)ej2πfct
}

,

Ĩkξ(z, t) = e−γ̂ξz Ĩkξ

(
0, t− z

2πfc/β̂ξ

)
, k = 1, . . . , ν

(28b)

Therefore, the narrowband excitation (27) applied at the origin
propagates along the line forming voltage and current travelling waves,
which cover distance z within time ( z

2πfc/β̂ξ
), attenuated by the factor

e−âξz, and having the complex envelope shifted by (−β̂ξz).
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4.1.3. Travelling-wave Quantification

4.1.3.1 Modal Parameters

The propagation velocity vξ of the ξ-th mode is defined as the ratio of
the angular velocity or cyclic frequency ω to the phase constant of the
mode, as

vξ=̂ω
/

β̂ξ, ω=̂2πfc (29)

and represents along the line the travelling velocity of the electric
quantities excited pursuant to (27).

The wavelength λξ of the ξ-th mode is defined as the ratio of the
modal propagation velocity to the excitation frequency

λξ=̂vξ/fc (30)

and represents the travel distance of the electric quantities excited
pursuant to (27), along which the angle of the ej2πfct harmonic term
is shifted by (2π).

The propagation delay τξ(∆l) of the ξ-th mode along length ∆l is
defined as the ratio of the covered length to the propagation velocity

τξ(∆l)=̂∆l/vξ (31)

and represents the time during which the electric quantities excited
pursuant to (27) cover (arrive at) distance ∆l towards the travelling
direction.

4.1.3.2 Travelling Quantities — Characteristic Matrices

All the travelling components defined in (28) are positively or forward
travelling paths as:

V +
kξ(z, t)=̂Re

{
e−γ̂ξz

[
T̂V

]
kξ

Ṽ +
mξ [t− τξ(z)] ej2πfct

}
,

I+
kξ(z, t)=̂Re

{
e−γ̂ξz

[
T̂I

]
kξ

Ĩ+
mξ [t−τξ(z)] ej2πfct

}
, k=1, . . . , ν

(32a)

and the corresponding vectorial paths are:

V+
ξ (z, t)=̂

[
V +

1ξ (z, t) . . . V +
ν ξ(z, t)

]T
,

I+
ξ (z, t)=̂

[
I+
1ξ(z, t) . . . I+

ν ξ(z, t)
]T

(32b)

Defining the time-variant travelling phasors of the line voltage and
current paths as:

Ṽ +
kξ(z, t) =̂ e−γ̂ξz

[
T̂V

]
kξ

Ṽ +
mξ [t−τξ(z)]=e−γ̂ξzṼ +

kξ [0, t−τξ(z)]

Ĩ+
kξ(z, t) =̂ e−γ̂ξz

[
T̂I

]
kξ

Ĩ+
mξ [t−τξ(z)]=e−γ̂ξz Ĩ+

kξ [0, t− τξ(z)]



, k=1, . . . , ν (33a)
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and the corresponding vectorial phasors as:

Ṽ+
ξ (z, t)=̂

[
Ṽ +

1ξ (z, t) . . . Ṽ +
ν ξ(z, t)

]T
,

Ĩ+ξ (z, t)=̂
[

Ĩ+1ξ(z, t) . . . Ĩ+νξ(z, t)
]T

(33b)

which travel along the line as:

Ṽ+
ξ (z, t) = e−γ̂ξz Ṽ+

ξ [0, t− τξ(z)] = e−γ̂ξz t̂V ξṼ
+
mξ [t− τξ(z)] ,

Ĩ+ξ (z, t) = e−γ̂ξz Ĩ+ξ [0, t− τξ(z)] = e−γ̂ξz t̂Iξ Ĩ
+
mξ [t− τξ(z)]

(33c)

it is obtained:

V+
ξ (z,t)=Re

{
Ṽ+

ξ (z, t)ej2πfct
}

, I+
ξ (z, t)=Re

{
Ĩ+ξ (z, t)ej2πfct

}
(34)

The Travelling Admittance Matrix (TAM) Ỹc is defined by:

Ĩ+
ξ (z, t) = ỸcṼ+

ξ (z, t) (35a)

and from (10), (27c), and (33c), it equals the CAM as:

Ỹc = Ŷc (35b)

Analogously to the FD, the voltage and current modal travelling
components, or equivalently modal paths are defined as

V +
mξ(z, t)=̂Re

{
Ṽ +

mξ(z, t)ej2πfct
}

,

Ṽ +
mξ(z, t)=̂e−γ̂ξzṼ +

mξ [t− τξ(z)]
(36a)

and

I+
mξ(z, t)=̂Re

{
Ĩ+
mξ(z, t)ej2πfct

}
, Ĩ+

mξ(z)=̂e−γ̂ξz Ĩ+
mξ [t−τξ(z)] (36b)

respectively, where Ṽ +
mξ(z, t), Ĩ+

mξ(z, t) are the phasors, and Ṽ +
mξ(t),

Ĩ+
mξ(t) the modal travelling excitation phasors.

At this point, it should be noted that the concept of a time-variant
phasor quantity carries in fact the meaning of a complex-envelope,
which is obvious from the above definitions. However, for the sake
of (i) term consistency, and (ii) term analogy with the FD approach,
the term “phasor” is herein adopted to denote both the FD phasor
parameter, and the aforementioned TD components.
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4.2. Aggregate Response

4.2.1. Superposition of Modal Excitations

4.2.1.1 Superposition of Modal Quantities Excited at Origin

If the single-mode excitation conditions set in (27) for the complex
envelopes ṼGkk′ (t) of the excitation voltages applied according to (23)
are not satisfied, the whole set of line’s modes are in the general case
excited, as

V +
k0(0, t) =

ν∑

ξ=1

V +
kξ0(0, t), V +

kξ 0(0, t) = Re
{

Ṽ +
kξ0(0, t)ej2πfct

}
,

Ṽ +
kξ0(0, t) =

[
T̂V

]
kξ

Ṽ +
mξ0(t),

{
k = 1, . . . , ν
ξ = 1, . . . ,ν

} (37a)

I+
k0(0, t) =

ν∑

ξ=1

I+
kξ0(0, t), I+

kξ0(0, t) = Re
{

Ĩ+
kξ0(0, t)e

j2πfct
}

,

Ĩ+
kξ0(0, t) =

[
T̂I

]
kξ

Ĩ+
mξ0(t),

{
k = 1, . . . , ν
ξ = 1, . . . ,ν

} (37b)

Ĩ+
mξ(t) = ŶmξṼ

+
mξ(t) (37c)

where subscript “0” denotes the initial line voltages and currents
excited at the origin — V +

k0(0, t) and I+
k0(0, t) respectively, k = 1, . . . , ν

— as well as the consequent positively travelling paths — as such
“travelling” concept is defined in Sub-section (4.1.2.3) hereof — arisen
as soon as the excitation voltages of (23) are applied. These positively
travelling paths are the modal voltages V +

kξ0(0, t) and currents I+
kξ0(0, t),

k = 1, . . . , ν, ξ = 1, . . . , ν, which constitute the components of the
voltage V +

k0(0, t) and the current I+
k0(0, t) excited respectively at the

line’s origin between every k-th conductor and the reference (conductor
“0”), and which start right upon excitation to travel (propagate) along
the line covering distance z within time ( z

2πfc/β̂ξ
), attenuated by the

factor e−âξz, and having their complex envelope shifted by (−β̂ξz).
The time-variant voltage and current travelling excitation phasors

are respectively defined as

Ṽ +
k0(0, t)=̂

ν∑

ξ=1

Ṽ +
kξ0(0, t), Ĩ+

k0(0, t)=̂
ν∑

ξ=1

Ĩ+
kξ 0(0, t) (38a)
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and the vectorial travelling excitation phasors as

Ṽ+
0 (0, t) =̂

[
Ṽ +

10(0, t) . . . Ṽ +
ν 0(0, t)

]T
=

ν∑

ξ=1

Ṽ+
ξ0(0, t)=̂T̂V Ṽ+

m0(t),

Ĩ+
0 (0, t) =̂

[
Ĩ+
10(0, t) . . . Ĩ+

ν0(0, t)
]T

=
ν∑

ξ=1

Ĩ+
ξ0(0, t)=̂T̂I Ĩ+

m0(t)

(38b)

where

Ṽ+
m0(t) =̂

[
Ṽ +

m10(t) . . . Ṽ +
mν0(t)

]T
,

Ĩ+
m0 =̂

[
Ĩ+
m10(t) . . . Ĩ+

mν0(t)
]T

(38c)

the modal vectorial travelling excitation phasors.

4.2.1.2 Excitation Terminal Conditions at Origin

From (25b), (26), and (37), excitation at line’s origin satisfies the
following terminal conditions:

Ĩ+
k0(0, t) = Ŷk0

[
V̂Gk0

(t)− Ṽ +
k0(0, t)

]

−
ν∑

k′=1
k′ 6=k

[
Ṽ +

k0(0, t)− V̂Gkκ
(t)− Ṽ +

k′0(0, t)
]

Ŷkk′ (39a)

Ĩ+
k0(0, t) =

ν∑

k′=1

[
Ŷc

]
kk′

Ṽ +
k′0(0, t) (39b)

no matter whether the end is matched or not, since no excitation effect
appears and no related reaction arises at the end before arrival of the
initial paths generated at the origin.

4.2.1.3 Travelling Quantities — Superposition

By virtue of (i) linear independency between the eigenvectors defined
in (19), and (ii) linearity of the TL under consideration, all the several
excited paths travel independently along the line, as:

V+
ξ0(z, t) = Re

{
Ṽ+

ξ0(z, t)ej2πfct
}

,

Ṽ+
ξ0(z, t) = e−γ̂ξzṼ+

ξ0 [0, t− τξ(z)] , ξ = 1, . . . , ν
(40a)

I+
ξ0(z, t) = Re

{
Ĩ+
ξ0(z, t)ej2πfct

}
,

Ĩ+
ξ0(z, t) = e−γ̂ξz Ĩ+

ξ0 [0, t− τξ(z)] , ξ = 1, . . . , ν
(40b)
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Ĩ+
ξ0(z, t) = ỸcṼ+

ξ0(z, t), ξ = 1, . . . , ν (40c)

each one with the propagation velocity vξ and the propagation constant
γ̂ξ of its respective ξ-th mode.

4.2.2. Medium Discontinuity — Terminal Conditions

4.2.2.1 Line-multitude Continuity

4.2.2.1.1 Formulation

Incidence of a vectorial path (incident path) — modal by definition,
since, in the general case, each mode travels at its own propagation
velocity — against a longitudinal structural-discontinuity point z0 —
where by definition TAM discontinuity is as well observed — causes
paths travelling away from the discontinuity to be raised, and in
particular (i) the “transmitted” paths, propagating in line with the
direction of incidence, and (ii) the “reflected” ones, opposite to the
incident path. Let Ṽiξ(t) and Ĩiξ(t) be the ξ-th — mode (with no
loss of generality) voltage and current respectively incident vectorial
phasors, Ṽt(t) and Ĩt(t) the travelling-excitation vectorial phasors of
the transmitted paths at the point of discontinuity, and Ṽr(t) and Ĩr(t)
the travelling-excitation vectorial phasors of the reflected ones.

Due to (i) the infinitesimal longitudinal dimension of the medium-
discontinuity point, and (ii) the consequent instantaneous generation of
transmitted and reflected paths, the terminal conditions (2b) become:

Ṽiξ(t) + Ṽr(t) = Ṽt(t), Ĩiξ(t′)− Ĩr(t) = Ĩt(t) (41a)

and satisfy (41b), where Ỹci, Ỹct are respectively the TAM matrices
right before and after the point of discontinuity:

Ĩiξ(t) = ỸciṼi(t), Ĩr(t) = ỸciṼr(t), Ĩt(t) = ỸctṼt(t) (41b)

4.2.2.1.2 Characteristic Matrices

In the general case of incidence upon a terminated junction as in
Fig. 2, i.e., a longitudinally infinitesimal TL point where three (3)
or more TL sections intersect and passive lumped elements are as well
connected in between one or more pairs of the TL conductors, covering
thus also the simple cases of TL termination and TL junction, the
infinitesimal longitudinal dimension of the junction point makes from
(35b) the resultant TAM matrix right after the medium discontinuity
equal to the sum of the TAM matrices of all lumped and distributed
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terminations, as:

Ỹct = Ŷ0 +
n∑

i=1

Ŷc i (42)

The above expression stems directly from the TAM matrix
definition, but is still quoted to assure full comprehension of the
developed approach.

4.2.2.1.3 Line Discontinuity Matrices

The travelling voltage reflection coefficient matrix, or simply the
travelling reflection coefficient matrix (TRCM) ρ̃, is defined from:

Ṽr = ρ̃Ṽiξ (43a)

The travelling voltage transmission coefficient matrix, or simply
the travelling transmission coefficient matrix (TTCM) t̃, is defined
from:

Ṽt = t̃Ṽiξ (43b)

Combination of (41) and (43) provides:

ρ̃ =
(
Ỹci + Ỹct

)−1 (
Ỹci − Ỹct

)
= ρ̃T (44a)

t̃ = 1ν + ρ̃ = 2
(
Ỹci + Ỹct

)−1
Ỹci = t̃T (44b)

where the TAM matrices are supposed to be symmetric.

4.2.2.1.4 Modal Discontinuity Matrices

Since the TAM matrices from one to the other side of the medium
discontinuity are not identical, in the general case, incidence causes
generation of the whole set of line’s modes, as:

Ṽr(t) = T̂V iṼrm(t), Ĩr(t) = T̂IiĨrm(t),[
Ĩrm(t)

]
ξ′

=
[
Ŷrm

]
ξ′

[
Ṽrm(t)

]
ξ′

, ξ′ = 1, . . . , ν
(45)

along the line of incidence, and

Ṽt(t) = T̂V tiṼtmi(t), Ĩti(t) = T̂I tiĨtmi(t),[
Ĩtmi(t)

]
ξ′

=
[
Ŷtmi

]
ξ′

[
Ṽtmi(t)

]
ξ′

, ξ′ = 1, . . . , ν
(46)

along the i-th departure line as in Fig. 2, where T̂V i and T̂Ii are
respectively the voltage and current transformation matrices before
the point of discontinuity, and T̂V ti , T̂Iti the homologous matrices of
the i-th departure line.
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The modal travelling voltage reflection coefficient or simply the
modal travelling reflection coefficient (MTRC) [ρ̃mi]ξ′ξ from the ξ-th
mode to the ξ′-th one is defined upon the medium discontinuity from:

[
Ṽrm(t)

]
ξ′

= [ρ̃m]ξ′ξ
[
Ṽim(t)

]
ξ
, ξ′ = 1, . . . , ν (47a)

where [Ṽim(t)]ξ the modal phasor of the incident line voltage path.
The modal travelling voltage transmission coefficient or simply the
modal travelling transmission coefficient (MTTC) [̃tmi]ξ′ξ from the ξ-
th mode to the ξ′-th one along the i-th departure line is defined upon
the medium discontinuity from:

[
Ṽtmi(t)

]
ξ′

=
[̃
tmi

]
ξ′ξ

[
Ṽim(t)

]
ξ
, ξ′ = 1, . . . , ν (47b)

The ν×ν modal travelling reflection coefficient matrix (MTRCM)
and the ν × ν modal travelling transmission coefficient matrix
(MTTCM) are then extracted as:

ρ̃m =
(
T̂V i

)−1
ρ̃T̂V i (47c)

and
t̃mi =

(
T̂V ti

)−1
t̃T̂V i (47d)

respectively, combining (45), (46), and (44).

4.2.2.2 Transition to Line-multitude Discontinuity

4.2.2.2.1 Analytical TL Model Expansion

A medium discontinuity point in considered of (n+1) intersecting TLs
(n ≥ 1), each one in general with its own multitude of conductors
as (ν0 + 1) the line of incidence, (ν1 + 1) the 1st departure line,
. . ., (νn + 1) the n-th departure line. Assuming (i) continuity of the
reference conductor from one to the other side of the discontinuity,
and (ii) numbering of all other conductors (excitation conductors)
of the intersecting TLs according to the homologous in terms of
conduction continuity excitation conductors of the line with the
maximum multitude ν ′ as

ν ′ = max {ν0, ν1, . . . , νn} (48)

the TAM matrix (Ỹci)νi×νi of every i-th line (i = 0, 1, . . . , n) expands
its dimension up to ν ′ as (ỸE

ci)ν′×ν′ setting by default equal to
zero all additional lines and columns that correspond to non-existing
conductors. Similarly, the vectorial phasors [Ṽiξ(t)]ν0 and [̃Iiξ(t)]ν0

of
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the incident voltage and current paths are expanded as [ṼE
iξ(t)]ν′ ,

[̃IE
iξ(t)]ν′ setting by default equal to zero all additional elements

(voltage/current phasor quantities) that correspond to non-existing
conductors.

Then, formulae (41) and (42) apply by default between the
expanded matrices and vectors, whence the related ν ′ × ν ′ applicable
TRCM and TTCM matrices (ρ̃)ν′×ν′ , (̃t)ν′×ν′ are obtained from (44a)
and (44b) respectively.

4.2.2.2.2 Modal Discontinuity Matrices

From the definition (43a), and since all expansion elements of
(ỸE

c0)ν′×ν′ , [ṼE
iξ(t)]ν′ , and [̃IE

iξ(t)]ν′ are equal to zero, the ν0 × ν0

TRCM matrix (ρ̃(i→r)t)ν0×ν0 relating the vectorial voltage phasor of
the incident path with the resultant of all consequent reflected ones on
the TL of incidence infinitesimally before the discontinuity as[

Ṽr(t)
]
ν0

=
(
ρ̃(i→r)

)
ν0×ν0

[
Ṽiξ(t)

]
ν0

(49a)

equals the sub-matrix remaining from the TRCM matrix (ρ̃)ν′×ν′
that comes out of (44a) after omitting all lines and columns of the
conductors that do not exist along the line of incidence. The respective
MTRCM matrix (ρ̃m(i→r))ν0×ν0 is then obtained from definition (47a)
combined with (45), as:

(
ρ̃m(i→r)

)
ν0×ν0

=
(
T̂V i

)−1

ν0×ν0

(
ρ̃(i→r)

)
ν0×ν0

(
T̂V i

)
ν0×ν0

(49b)

For any one of the departure lines, let it be the i-th one (i =
1, . . . , n), and since all expansion elements of (ỸE

ci)ν′×ν′ , [ṼE
iξ(t)]ν′ , and[

ĨE
iξ(t)

]
ν′

are by default equal to zero, the νi × ν0 applicable MTTCM

matrix (̃t(0→i))νi×ν0 relating the vectorial voltage phasor of the incident
path with the resultant of all consequent transmitted ones on the i-th
departure line infinitesimally after the discontinuity as[

Ṽti(t)
]
νi

=
(
t̃(0→i)

)
νi×ν0

[
Ṽiξ(t)

]
ν0

(50a)

equals the sub-matrix remaining from the TTCM matrix (̃t)ν′×ν′
that comes out of (44b) after omitting all lines and columns of the
conductors that do not exist along the i-th departure line. The
respective MTTCM matrix (̃tm(0→i))νi×ν0 is then obtained from the
definition (47b) combined with (46), as:

(
t̃m(0→i)

)
νi×ν0

=
(
T̂V ti

)−1

νi×νi

(
t̃(0→i)

)
νi×ν0

(
T̂V i

)
ν0×ν0

(50b)
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4.2.3. Resultant Path Aggregation

4.2.3.1 Generation Process

Incidence of any of the paths generated at the origin as soon as
the excitation (23) is applied upon the end of the line generates
the consequent reflected and transmitted paths, as described under
Subsection 4.2.2. Incidence of any path travelling along a TL upon
a horizontally infinitesimal discontinuity of the line (point of medium
discontinuity) causes anew travelling-wave excitation, as also described
in Subsection 4.2.2. As thus time elapses from the initial excitation (23)
applied at the origin, the number of paths travelling over the TL
network increases continuously with accelerating rate.

Denoted by tξκ±ξ
the excitation time of the κ±ξ -th posi-

tively/negatively travelling path of the ξ-th mode, and numbering the
paths consecutively on the basis of excitation sequence as:

κ±ξ < κ′±ξ ⇒ tξκ±ξ
< tξκ′±ξ

, ξ = 1, . . . , ν,

κ+
ξ , κ′+ξ ∈ {0, 1, . . .} , κ−ξ , κ′−ξ ∈ {1, 2, . . .}

(51)

the vectorial paths and phasors are represented as:

V+
ξκ+

ξ

(z, t)=̂
[

V +

1ξκ+
ξ

(z, t) . . . V +

νξκ+
ξ

(z, t)
]T

= V+
ξ κ+

ξ

(z, t)

= Re
{
Ṽ+

ξκ+
ξ

[
z, t− tξκ+

ξ
− τξ(z)

]
ej2πfct

}

Ṽ+
ξκ+

ξ

[
z, t− tξκ+

ξ
− τξ(z)

]
=e−γ̂ξzṼ+

ξκ+
ξ

[
0, t− tξκ+

ξ
− τξ(z)

]
,

Ṽ+

ξκ+
ξ

[
0, t− tξκ+

ξ
− τξ(z)

]
= t̂V ξṼ

+

mξκ+
ξ

[
t−tξκ+

ξ
−τξ(z)

]





(52a)

and

V−
ξκ−

ξ

(z, t)=̂
[

V −
1ξκ−

ξ

(z, t) . . . V −
νξκ−

ξ

(z, t)
]T

= Re

{
Ṽ−

ξκ−
ξ

[
z, t− t

ξκ−
ξ
− τξ(l − z)

]
ej2πfct

}

Ṽ−
ξκ−

ξ

[
z, t− t

ξκ−
ξ
− τξ(l − z)

]

= e−γ̂ξ(l−z) · Ṽ−
ξκ−

ξ

[
l, t− t

ξκ−
ξ
− τξ(l − z)

]
,

Ṽ−
ξκ−

ξ

[
l, t− t

ξκ−
ξ
− τξ(z)

]
= t̂V ξṼ

−
mξκ−

ξ

[
t− t

ξκ−
ξ
− τξ(l − z)

]





(52b)

Formulae (51) and (52) hold also identically for respective current
quantities and vectors, by substituting:

V,V ↔ I, I , T̂V , t̂V ξ ↔ T̂I , t̂Iξ (53a)
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and applying:
Ĩ±
mξκ±ξ

(t) = ŶmξṼ
±
mξκ±ξ

(t) (53b)

4.2.3.2 End-to-end Aggregation

All the excited paths of (52) superpose along the TL to the following
resultant response, of which the phasor (resultant complex envelope)
indicates consecutive non-continuous step variations that are due to
the above-described discrete path-generation process:

V(z, t)=
ν∑

ξ=1

∑

κ+
ξ

t≥t
ξκ+

ξ
+τξ(z)

V+

ξκ+
ξ

(z, t) +
ν∑

ξ=1

∑

κ−ξ
t≥t

ξκ−
ξ

+τξ(l−z)

V−
ξκ−(z, t)

=Re








ν∑

ξ=1




∑

κ+
ξ

t≥t
ξκ

+
ξ

+τξ(z)

Ṽ+

ξκ+
ξ

[
z, t− t

ξκ−
ξ
− τξ(z)

]




+

ν∑

ξ=1




∑

κ−
t≥t

ξκ
−
ξ

+τξ(z)

Ṽ−
ξκ−

ξ

[
z, t− t

ξκ−
ξ
− τξ(l−z)

]






ej2πfct





(54a)

I(z, t)=
ν∑

ξ=1

∑

κ+
ξ

t≥t
ξκ+

ξ
+τξ(z)

I+

ξκ+
ξ

(z, t) +
ν∑

ξ=1

∑

κ−ξ
t≥t

ξκ−
ξ

+τξ(l−z)

I−
ξκ−(z, t)

=Re








ν∑

ξ=1




∑

κ+
ξ

t≥t
ξκ

+
ξ

+τξ(z)

Ĩ+

ξκ+
ξ

[
z, t− t

ξκ−
ξ
− τξ(z)

]




+

ν∑

ξ=1




∑

κ−
t≥t

ξκ
−
ξ

+τξ(z)

Ĩ−
ξκ−

ξ

[
z, t− t

ξκ−
ξ
−τξ(l−z)

]






ej2πfct





(54b)
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5. COINCIDENCE WITH FREQUENCY-DOMAIN
ANALYSIS

5.1. Physical Interpretation

The FD analysis of a TL provides the response in terms of electric
line quantities against harmonic excitation of line’s origin according to
(5a)–(5b), or equivalently after infinite time from application of the
excitation defined in (23) with complex step phasor as:

ṼGkk′ (t) = ṼGkk′u(t) (55a)

so that the actual excitation applied is:

VGkk′ (t) =̂Re
{

V̂Gkk′ (t)
}

,

V̂Gkk′ (t) = ṼGkk′u(t)ej2πfc t−→
←−V̂Gkk′

[
δ(f − fc)

2
+

1
j2π(f − fc)

] (55b)

Despite the Fourier spectrum expression of (55b), whence the harmonic
step ṼGkk′ (t) seems to lie infinitely along the FD, the excitation of (55a)
is indeed narrowband in the sense of (23b), as (i) its spectrum fades
rapidly when moving away from the centre (peak) value fc, and
(ii) assuming a narrowband modulation and transmission scheme, any
residual spectral content outside the transmission band is normally
expected to be suppressed.

Since correspondence between the TD response of any system
and its respective TF in the FD is by default unique, in order to
prove coincidence of the well established TL analysis in the FD as
summarised in Section 3 above with the travelling-wave TD approach
introduced herein, it is sufficient to demonstrate that the response
against the harmonic excitation of (5a)–(5b) equals the response
against the harmonic step of (55) for:

t →∞ (56a)

and

ṼGkk′ = V̂Gk k′ , k = 1, . . . ,ν, k′ = 0, . . . ,ν, k′ 6= k (56b)

5.2. Resulting Time-domain Response

Since (i) the phasor ṼGkk′ of the harmonic step excitation (55) is con-
stant (time invariable), and (ii) the excitation terminal conditions (39)
and the medium-discontinuity terminal conditions (41)–(44) involve all
merely linear interdependence between the complex envelopes of the
excitation applied and the consequent travelling line quantities, the
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phasors of all travelling modal and line quantities are as well time-
invariant, and path aggregation along the line results in consecutive
step variations of the complex envelope of the resultant response, as:

V+

ξκ+
ξ

(z, t) = Re
{
Ṽ+

ξκ+
ξ

(z)u
[
t− tξκ+

ξ
− τξ(z)

]
ej2πfct

}
,

Ṽ+

ξκ+
ξ

(z) = e−γ̂ξzṼ+

ξκ+
ξ

(0) , Ṽ+

ξκ+
ξ

(0) = t̂V ξṼ
+

mξκ+
ξ

(57a)

V−
ξκ−ξ

(z, t) = Re
{
Ṽ−

ξκ−ξ
(z)u

[
t− tξκ−ξ

− τξ(l − z)
]
ej2πfct

}
,

Ṽ−
ξκ−ξ

(z) = e−γ̂ξ(l−z)V−
ξκ−ξ

(l), Ṽ−
ξκ−ξ

(l) = t̂V ξṼ
−
mξκ−ξ

(57b)

and analogously for the related current quantities via the substitutions
of (53a) after setting:

Ṽ ±
mξκ±ξ

(t) ↔ Ṽ ±
mξκ±ξ

, Ĩ±
mξκ±ξ

(t) ↔ Ĩ±
mξκ±ξ

(57c)

5.3. End-to-end Line Quantities

As time elapses towards infinite, the electric line quantities of (54)
become harmonic, as:

V∞(z, t) = Re
{
Ṽ∞(z) ej2πfct

}
, Ṽ∞(z)=̂Ṽ+∞(z)+Ṽ−∞(z)

Ṽ±∞(z)=̂
ν∑

ξ=1

∞∑
κ±ξ =0

1

Ṽ±
ξκ±(z) = T̂V e∓γ̂zṼ±

m∞,

Ṽ±
m∞=̂

[
Ṽ ±

m1∞ . . . Ṽ ±
mν∞

]T
, Ṽ ±

mξ∞=̂
∞∑

κ±ξ =0
1

Ṽ ±
mξκ±ξ





(58a)

the line voltages, whereas respective line currents are similarly
extracted as:

I∞(z, t) = Re
{
Ĩ∞(z) ej2πfct

}
, Ĩ∞(z)=̂Ĩ+∞(z)− Ĩ−∞(z)

Ĩ±∞(z)=̂
ν∑

ξ=1

∞∑
κ±ξ =0

1

Ĩ±
ξκ±ξ

(z) = T̂Ie
∓γ̂z Ĩ±m∞,

Ĩ±m∞=̂
[
Ĩ±m1∞ . . . Ĩ±mν∞

]T
, Ĩ±mξ∞=̂

∞∑
κ±ξ =0

1

Ṽ ±
mξκ±ξ





(58b)

and from (35b), (52), (53), (57), and (58) it results:

Ĩ±∞(z) = ŶcṼ±
∞(z), Ĩ±mξ∞ = ŶmξṼ

±
mξ∞ (59)
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5.4. Terminal Conditions at Line’s Origin

The phasors of the travelling excitation at line’s origin determined
in (38) satisfy the terminal conditions (39). From (57a), (57b),
(35b), and (41b), the vectorial phasors Ṽ−

ξκ−ξ
(0), Ĩ−

ξκ−ξ
(0) of any κ−ξ -th

negatively travelling path in line with the ξ-th mode (with no loss of
generality) incident upon the TL origin excited according to (55), and
the vectorial phasors Ṽ+

rξκ−ξ
(0), Ĩ+

rξκ−ξ
(0) of respective reflected paths

as:

Ṽ+

rξκ−ξ
(0) =

ν∑

ξ′=1

Ṽ+

ξ′,κ+
ξ′ (ξ,κ−ξ )

(0),

Ṽ+

ξ′,κ+
ξ′ (ξ,κ−ξ )

(0) =
[

Ṽ +

1,ξ′, κ+
ξ′ (ξ,κ−ξ )

(0) . . . Ṽ +

ν ,ξ′, κ+
ξ′ (ξ,κ−ξ )

(0)
] (60a)

Ĩ+

rξκ−ξ
(0) =

ν∑

ξ′=1

Ĩ+

ξ′,κ+
ξ′ (ξ,κ−ξ )

(0),

Ĩ+

ξ′,κ+
ξ′ (ξ,κ−ξ )

(0) =
[
Ṽ +

1,ξ′, κ+
ξ′ (ξ,κ−ξ )

(0) . . . Ṽ +

ν ,ξ′, κ+
ξ′ (ξ,κ−ξ )

(0)
] (60b)

satisfy:

Ĩ+

ξ′,κ+
ξ′ (ξ,κ−ξ )

(0)= ŶcṼ+

ξ′, κ+
ξ′ (ξ,κ−ξ )

(0), Ĩ+

rξκ−ξ
(0)=ŶcṼ+

rξκ−ξ
(0) (60c)

Combination of (43a) and (44a) gives:
[

ν∑
ξ′=1

Ĩ+
k, ξ′, κ+

ξ′ (ξ,κ−ξ )
(0)− Ĩ−

kξκ−ξ
(0)

]

= −




ν∑
k′ = 0
k′ 6= k

Ŷkk′




[
ν∑

ξ′=1

Ṽ +

k, ξ′, κ+
ξ′ (ξ,κ−ξ )

(0) + Ṽ −
kξκ−ξ

(0)

]

+
ν∑

k′=1
k′ 6=k

Ŷkk′

[
ν∑

ξ′=1

Ṽ +

k′, ξ′, κ+
ξ′ (ξ,κ−ξ )

(0) + Ṽ −
k′ξκ−ξ

(0)

]

k = 1, . . . , ν





(61)

As all positively travelling paths except the zero-indexed ones
of (37) are generated from reflection following incidence of negatively
travelling paths upon the excited origin, from (38a), (39), and (61),
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the terminal conditions of the harmonic electric line quantities of (58)
at line’s origin (z = 0) become:

[
Ĩ∞(0)

]
k
= Ŷk0

{
V̂Gk0

−
[
Ṽ∞(0)

]
k

}
−

ν∑

k′=1
k′ 6=k

{[
Ṽ∞(0)

]
k

−V̂Gkk′ −
[
Ṽ∞(0)

]
k′

}
Ŷkk′ , k = 1, . . . , ν (62)

5.5. Terminal Conditions at Line’s End

For the vectorial phasors Ṽ+

ξκ+
ξ

(l), Ĩ+

ξκ+
ξ

(l) of any positively-travelling

κ+
ξ -th path of the ξ-th mode (with no loss of generality) that arrives

at the passively terminated end of the line (i.e., with no excitation
source in between any pair of line conductors) and the related travelling
excitation vectorial phasors Ṽ−

rξκ+
ξ

(l), Ĩ−
rξκ+

ξ

(l) of the reflected paths

consequent upon incidence, as:

Ṽ−
rξκ+

ξ

(l) =
ν∑

ξ′=1

Ṽ−
ξ′, κ−

ξ′ (ξ,κ+
ξ )

(l),

Ṽ−
ξ′,κ−

ξ′ (ξ,κ+
ξ )

(l) =
[
Ṽ −

1,ξ′,κ−
ξ′ (ξ,κ+

ξ )
(l) . . . Ṽ −

1,ξ′, κ−
ξ′ (ξ,κ+

ξ )
(l)

] (63a)

Ĩ−
rξκ+

ξ

(l) =
ν∑

ξ′=1

Ĩ−
ξ′, κ−

ξ′ (ξ,κ+
ξ )

(l),

Ĩ−
ξ′,κ−

ξ′ (ξ,κ+
ξ )

(l) =
[
Ṽ −

1,ξ′,κ−
ξ′ (ξ,κ+

ξ )
(l) . . . Ṽ −

1,ξ′, κ−
ξ′ (ξ,κ+

ξ )
(l)

] (63b)

satisfying through (52a), (35b), and (41b) the conditions:
Ĩ−
ξ′, κ−

ξ′ (ξ,κ+
ξ )

(l) = ŶcṼ−
ξ′, κ−

ξ′ (ξ,κ+
ξ )

(l) , Ĩ−
rξκ+

ξ

(l) = ŶcṼ−
rξκ+

ξ

(l) (63c)

from (43a) and (44a) it holds:
Ĩ+

kξκ+
ξ

(l)−
ν∑

ξ′=1

Ĩ−
k, ξ′, κ−

ξ′ (ξ,κ+
ξ

)
(l)




=




ν∑

k′=0
k′ 6=k

Ŷkk′





Ṽ +

k ξκ+
ξ

(l) +

ν∑

ξ′=1

Ṽ −
k, ξ′, κ−

ξ′ (ξ,κ+
ξ

)
(l)




−
ν∑

k′=1
k′ 6=k

Ŷkk′


Ṽ +

k′ξκ+
ξ

(l) +

ν∑

ξ′=1

Ṽ −
k′, ξ′, κ−

ξ′
(

ξ,κ+
ξ

)(l)




k = 1, . . . , ν





(64)
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As all negatively travelling paths are generated from reflection
following incidence of positively travelling paths upon line’s end,
from (38a), (39), and (61), the terminal conditions of the harmonic
electric line quantities in (58) at line’s end (z = l) become:

Ĩ∞(l)=Ŷ0Ṽ∞(l),
[
Ĩ∞(l)

]
k

k=1, ...,ν

= Ŷk0

[
Ṽ∞(l)

]
k

+
ν∑

k′=1
k′ 6=k

{[
Ṽ∞(l)

]
k
−

[
Ṽ∞(l)

]
k′

}
Ŷkk′

(65)

5.6. Resulting Coincidence

The response (58) against the asymptotically harmonic excitation
deriving from (55) and (56a) is absolutely equivalent to the FD
response set out in Section 3, since (i) all quantities are identically
dependent one-to-one after substituting:




V(z, t) ↔ V∞(z, t)
V̂(z) ↔ Ṽ∞(z)
V̂±(z) ↔ Ṽ±∞(z)

V̂±
m ↔ Ṽ±

m∞
V̂ 0

Gkk′
↔ Ṽ 0

Gkk′




,




I(z, t) ↔ I∞(z, t)
Ĩ(z) ↔ Ĩ∞(z)
Ĩ±(z) ↔ Ĩ±∞(z)

Ĩ±m ↔ Ĩ±m∞








(66)

and (ii) all homologous voltage and current phasors are identically
associated along the line by virtue of (10), (8a), and (59), and (iii)
from (5d), (62), and (65), fall under identical as well terminal
conditions.

As a result, the travelling-wave TD approach developed herein is
identically equivalent with the established TL theory in the FD.

6. IMPLEMENTATION GUIDELINES

6.1. Channel Response Estimation

The TD response against any narrowband excitation applied according
to (23) at the origin of any TL is determined in the TD through the
following sequence of steps:

1) Calculate the initial positively travelling paths generated as soon
as excitation is applied, from the terminal conditions (39) and
interrelation (37) between line and modal excitations.

2) Apply the proper form of the generic terminal conditions (49)
and (50) every time an incident path arrives at a point of structural
medium discontinuity.
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3) Aggregate all paths existing at the point and time of observation
according to (54).

If excitation is applied to more than one TL within the observed
network, since any uniform TL is a linear system, the aforementioned
calculation sequence is performed separately for every single excitation,
and the overall response is the resultant of all several responses.

6.2. Structural Reductions

6.2.1. Open Circuit between Excitation Conductor Origins

If no excitation or termination branches are connected except between
the excitation conductors and the reference one, i.e.,

Ŷ0 = diag
[
Ŷk0

]
, Ŷk0 ∈ C ∀ k ∈ {1, . . . , ν} (67a)

and
VGkk′ (t) = 0, k, k′ ∈ {1, . . . , ν} (67b)

the voltage excitation phasors vector

ṼG(t) =
[

ṼG10(t) . . . ṼGν0(t)
]T (68a)

is defined, and the line’s origin excitation terminal conditions (39)
become:

Ĩ+
0 (0, t) = Ŷ0

[
ṼG(t)− Ṽ+

0 (0, t)
]
, Ĩ+

0 (0, t) = Ŷc Ṽ+
0 (0, t) (68b)

6.2.2. Two-conductor Transmission Line

In the case of a single two-conductor TL, the travelling-wave approach
turns directly out scalar, as:




ṼG,r,t ↔ ṼG,r,t ,̃Ir,t ↔ Ĩr,t
ν∑

ξ=1

V+
0 (0, t) ↔ V +

0 (0, t)

ν∑
ξ=1

I+
0 (0, t) ↔ I+

0 (0, t)




,




γ̂ ↔ γ̂II

Ỹc ↔ Ỹc

Ŷc,0 ↔ Ŷc,0

ρ̃ ↔ ρ̃
t̃ ↔ t̃




(69)

From the scalar equivalent (69) of the terminal conditions (68b),
the initial positively-travelling path is determined, which is raised as
soon as excitation is applied at line’s origin. The medium-discontinuity
terminal conditions (41)–(44) are replaced by the scalar equivalent
according to (69), and all paths raised travel in line with the same
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propagation constant γ̂II and the related propagation velocity vII,
wavelength λII, and propagation delay τII(∆l), as:

vII=̂ω
/

β̂II, λII=̂vII/fc, τII(∆l)=̂∆l/vII (70)

6.3. Signalling Circuitry — Reference Transposition

Regarding PLC signalling over power cables, transmission is normally
expected from an excitation conductor to the reference one, whereas
reception is observed either in between the same pair of conductors
to determine response of the transmission circuit (channel), or from
a different excitation conductor to the common reference one, if
interference over another channel (crosstalk) of the MTL structure
examined is required. However, transmission and/or reception may
also be respectively performed and observed in between a pair of
excitation conductors, when differential TL excitation is applied, or
if interference from Electromagnetic (EM) field(s) penetrating the TL
is required. In such a case, transposition of the reference conductor is
necessary in order to estimate the response on travelling-wave basis.

As regards reference transposition from the 0-th conductor of a
(ν + 1)-conductor transmission line to the k-th one, the electric line
quantities are by default transformed as follows:

V ′
k′(z, t) = Vk′(z, t)− Vk(z, t), k′ ∈ {1, . . . , ν\k}

V ′
k(z, t) = −Vk(z, t)

}
(71a)

I ′k′(z, t) = Ik′(z, t), k′ ∈ {1, . . . , ν\k}
I ′k(z, t) = −

ν∑
k′=1

Ik′(z, t)



 (71b)

where the initial reference conductor is transposed with the final, and
final quantities are indicated by the accentuation mark “′”.

7. CONCLUSION

In this paper, travelling-wave analysis of uniform multi-conductor
transmission line networks has been elaborated determining the
time-domain response to narrowband excitation, developed in direct
equivalence with the well established transmission line theory in
the frequency domain. Applicability in respect of transmission-
line structure has been clarified, and guidelines have been provided
for computational implementation, along with further clarifications
towards treatment of Power-Line Communication signalling, a well
suitable field for application, whereas potential applicability is also
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extended to other related topics such as surge propagation resulting,
e.g., from lightning or transient overvoltage.

APPENDIX A. DERIVATION OF EQ. (28a)

Vk(z, t)=Re
{
F−1

[
Ĥξ(z) F

[[
T̂V

]
kξ

Ṽ +
mξ(t)e

j2πfc t

]]}

=Re

{
F−1

[
F

[
e−âξze−jβ̂ξz

[
T̂V

]
kξ

Ṽ +
mξ

(
t− z

2πfc/β̂ξ

)
ej2πfct

]]}

=Re

{
F−1

[
e−âξzF

[[
T̂V

]
kξ

Ṽ +
mξ

(
t− z

2πfc/β̂ξ

)
e
j2πfc

(
t− z

2πfc/β̂ξ

)]]}

⇒
Vk(z, t) = Vkξ(z, t)=̂Re

{
Ṽkξ(z, t)ej2πfct

}

Ṽkξ(z, t) = e−γ̂ξzṼkξ

(
0, t− z

2πfc/β̂ξ

)


, k=1, . . . , ν

APPENDIX B. DERIVATION OF EQ. (58a)

V∞(z, t)

=
ν∑

ξ=1

∞∑

κ+
ξ =0

V+

ξκ+
ξ

(z, t) +
ν∑

ξ=1

∞∑

κ−ξ =0

V−
ξκ−ξ

(z, t)

=Re








=̂Ṽ+∞(z)︷ ︸︸ ︷
ν∑

ξ=1

∞∑

κ+
ξ =0

Ṽ+

ξκ+
ξ

(z) +

=̂Ṽ−∞(z)︷ ︸︸ ︷
ν∑

ξ=1

∞∑

κ−ξ =0

Ṽ−
ξκ−ξ

(z)




ej2πfct





=Re







T̂V e−γ̂z

[
Ṽ +

m1∞ . . . Ṽ +
mν∞

]T

︷ ︸︸ ︷
Ṽ+

m∞︸ ︷︷ ︸
=Ṽ+∞(z)

+ T̂V eγ̂z

[
Ṽ −

m1∞ . . . Ṽ −
mν∞

]T

︷ ︸︸ ︷
Ṽ−

m∞︸ ︷︷ ︸
=Ṽ−∞(z)




︸ ︷︷ ︸
=̂Ṽ∞(z)

ej2πfct







Progress In Electromagnetics Research B, Vol. 52, 2013 283

⇒

V∞(z, t) = Re
{
Ṽ∞(z) ej2πfct

}
, Ṽ∞(z)=̂Ṽ+∞(z) + Ṽ−∞(z)

Ṽ±∞(z)=̂
ν∑

ξ=1

∞∑
κ±ξ =0

1

Ṽ±
ξκ±(z) = T̂V e∓γ̂zṼ±

m∞

Ṽ±
m∞=̂

[
Ṽ ±

m1∞ . . . Ṽ ±
mν∞

]T
, Ṽ ±

mξ∞=̂
∞∑

κ±ξ =0
1

Ṽ ±
mξκ±ξ





APPENDIX C. DERIVATION OF EQ. (61)

Ṽ+

rξκ−ξ
(0)=

(
Ŷc + Ŷ0

)−1 (
Ŷc − Ŷ0

)
Ṽ−

ξκ−ξ
(0)

⇒
(
Ŷc + Ŷ0

)
Ṽ+

rξκ−ξ
(0) =

(
Ŷc − Ŷ0

)
Ṽ−

ξκ−ξ
(0)

⇒Ŷc




ν∑

ξ′=1

Ṽ+

ξ′, κ+
ξ′ (ξ,κ−ξ )

(0)− Ṽ−
ξκ−ξ

(0)




=−Ŷ0




ν∑

ξ′=1

Ṽ+

ξ′, κ+
ξ′ (ξ,κ−ξ )

(0) + Ṽ−
ξκ−ξ

(0)




⇒



ν∑

ξ′=1

Ĩ+
ξ′, κ+

ξ′ (ξ,κ−ξ )
(0)− Ĩ−

ξκ−ξ
(0)




=−Ŷ0




ν∑

ξ′=1

Ṽ+

ξ′, κ+
ξ′ (ξ,κ−ξ )

(0) + Ṽ−
ξκ−ξ

(0)




⇒



ν∑

ξ′=1

Ĩ+

k, ξ′, κ+
ξ′ (ξ,κ−ξ )

(0)− Ĩ−
kξκ−ξ

(0)




=−




ν∑

k′=0
k′ 6=k

Ŷkk′







ν∑

ξ′=1

Ṽ +

k, ξ′, κ+
ξ′ (ξ,κ−ξ )

(0) + Ṽ −
kξκ−ξ

(0)




+
ν∑

k′=1
k′ 6=k

Ŷkk′




ν∑

ξ′=1

Ṽ +
k′, ξ′,κ+

ξ′ (ξ,κ−ξ )
(0) + Ṽ −

k′ξκ−ξ
(0)


,

k=1, . . . , ν
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APPENDIX D. DERIVATION OF EQ. (62)

[
Ĩ∞(0)

]
k
=

ν∑

ξ=1

Ĩ+
kξ0(0) +

ν∑

ξ=1

∞∑

κ+
ξ =1

Ĩ+
kξκ+(0)−

ν∑

ξ=1

∞∑

κ−ξ =1

Ĩ−
kξκ−ξ

(0)

=Ĩ+
k0(0) +

ν∑

ξ=1

∞∑

κ−ξ =1




ν∑

ξ′=1

Ĩ+

k, ξ′, κ+
ξ′ (ξ,κ−ξ )

(0)− Ĩ−
kξκ−ξ

(0)




=Ŷk0

[
V̂Gk0

− Ṽ +
k0(0)

]
−

ν∑

k′=1
k′ 6=k

[
Ṽ +

k0(0)− V̂Gkk′ − Ṽ +
k′0(0)

]
Ŷkk′

−
ν∑

ξ=1

∞∑

κ−ξ =1








ν∑

k′=0
k′ 6=k

Ŷkk′







ν∑

ξ′=1

Ṽ +

k, ξ′, κ+
ξ′ (ξ,κ−ξ )

(0)+Ṽ −
kξκ−ξ

(0)








+
ν∑

ξ=1

∞∑

κ−ξ =1





ν∑

k′=1
k′ 6=k

Ŷkk′




ν∑

ξ′=1

Ṽ +

k′, ξ′, κ+
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ξ
)
(0)+Ṽ −
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(0)










−
ν∑
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⇒
[
Ĩ∞(0)

]
k

= Ŷk0

{
V̂Gk0

−
[
Ṽ∞(0)

]
k

}

=−
ν∑

k′=1
k′ 6=k

{[
Ṽ∞(0)

]
k
−V̂Gkk′−

[
Ṽ∞(0)

]
k′

}
Ŷkk′ , k=1, . . . , ν

APPENDIX E. DERIVATION OF EQ. (64)

Ṽ−
rξκ+

ξ

(l)=
(
Ŷc + Ŷ0

)−1 (
Ŷc − Ŷ0

)
Ṽ−

ξκ+
ξ

(l)

⇒Ŷc

[
Ṽ+

ξκ+
ξ

(l)− Ṽ−
rξκ+

ξ

(l)
]

= Ŷ0
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Ṽ+

ξκ+
ξ
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ξ

(l)
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ξ
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Ĩ−
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ξ′ (ξ,κ+
ξ
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(l)=Ŷ0


Ṽ+
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ξ
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ξ
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Ṽ −
k, ξ′, κ−

ξ′ (ξ,κ+
ξ )

(l)




−
ν∑

k′=1
k′ 6=k
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, k=1, . . . , ν

APPENDIX F. DERIVATION OF EQ. (65)
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Ṽ −
k,ξ′,κ−

ξ′ (ξ,κ+
ξ )

(l)










286 Papaleonidopoulos, Theodorou, and Capsalis

−
ν∑

ξ=1

∞∑

κ+
ξ

=0





ν∑

k′=1
k′ 6=k
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Ŷkk′
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