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Abstract—In this paper, we present an efficient Artificial Neural
Network (ANN)-based model to estimate both azimuth and elevation
arrival angles of a signal source. To achieve this goal, the ANN model
is constructed using measurement data obtained by a rectangular
antenna array in the space-frequency domain. Unlike classical super-
resolution algorithms such as 2D MUSIC, the proposed model is
capable to account for imperfections of measurement equipment as well
as mutual couplings between array elements. The neural model has
been verified for several angular positions and frequencies. It is shown
that the use of ANN model to estimate angular positions of a signal
source yields more accurate results when compared to 2D MUSIC.
Moreover, the neural model significantly outperforms 2D MUSIC in
terms of speed of computation.

1. INTRODUCTION

The concept of SDMA (Space Division Multiple Access) employs
smart antennas and digital signal processing algorithms to increase the
capacity of modern wireless communication systems. By exploiting the
users’ spatial separability, this multi-user access scheme has the ability
to automatically sense and suppress interference while simultaneously
enhancing desired signal reception [1]. The typical procedure of SDMA
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includes Direction of Arrival (DOA) estimation of users’ signals and
adaptive beamforming. Assuming that the antenna array manifold
is known and all users are located in the far-field of the array, DOA
estimation algorithms are used to retrieve the DOAs from the data of
array output. Next, the adaptive beamforming is applied, so that the
radiation pattern of the smart antenna is dynamically tuned to specific
directions through complex weights adjustments. Consequently, users
operating outside the bounds of the directed beams experience a near
zero interference from other users operating under the same base
station with the same radio frequency. This attribute of SDMA allows
base stations to have larger radio coverage with less radiated energy.
Also, the SDMA architecture saves on valuable network resources
and prevents redundant signal transmission in areas where users are
currently inactive.

So far, numerous algorithms have been devised to deal with the
DOA estimation problem and among them, the subspace-based meth-
ods MUSIC (MUltiple SIgnal Classification) and ESPRIT (Estimation
of Signal Parameters via Rotational Invariance Techniques), are best
known for their super-resolution capabilities [2, 3]. Performing spec-
tral search procedure, MUSIC is able to provide accurate DOA esti-
mation at the expense of high computational complexity. When multi-
dimensional parameter estimation is required, ESPRIT demonstrates
significant advantage over MUSIC. Avoiding the orthogonally search,
its computational complexity grows linearly with the dimension while
that of MUSIC grows exponentially. Subsequently, for two-dimensional
(2D) DOA estimation, MUSIC algorithm performs a spectrum peak
search for all angles in azimuth and elevation what causes demand-
ing computations, and makes this algorithm unsuitable for real-time
user tracking. To overcome this problem a number of algorithms have
been developed [4–16]. For 2D scenarios, ESPRIT algorithm is ex-
tended in [10], to provide both azimuth and elevation estimates. Since
this method does not require complex search procedure and initializa-
tion, its computational complexity is twice that of 1D ESPRIT. Uni-
tary ESPRIT of similar computational complexity is presented in [11].
In [12, 13], a technique that uses generalized Rayleigh ratio theory is
proposed. By the factorization of the steering vector with respect to
DOA and nuisance parameters a simple 1D-optimization procedure is
needed for accurate DOA estimation. It is shown that performance
of this method is comparable to 2D MUSIC for higher SNR values
(> 20 dB) [13]. A propagator model that avoids the need for eigen-
value decomposition is presented in [14]. The model exploits different
arrangements of L-shaped array to accurately estimate azimuth and el-
evation arrival angles, but assumes ideal elements and neglects mutual
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couplings. Investigation of the 2D DOA estimation using two L-shape
arrays is performed in [15]. In [16], an approach based on singular
value decomposition of cross-correlation matrices demonstrated high
accuracy in 2D DOA estimation.

However, although all the mentioned algorithms provide lower
computational and storage cost than 2D MUSIC, they are still not
fast enough to estimate angular positions of a radiating source in real-
time. For that reason, an alternative approach based on artificial
neural networks (ANNs) has been proposed in this paper. Neural
networks are very convenient as a modeling tool since they have the
ability to learn from presented data [17–21]. Compared to conventional
signal processing algorithms that are mainly based on linear models,
neural networks consider DOA estimation as approximation of highly
nonlinear multidimensional function, or in other words, as a mapping
between spatial covariance matrix of received signals from antenna
elements and DOAs. There are many publications on ANNs in DOA
estimation of both narrowband and wideband signals [22–31]. Most
of them report results on Radial Basis Function Neural Network
(RBF-NN) modeling to estimate DOAs in azimuth plane only, but
there are also papers addressing two-dimensional DOA estimation [32–
35]. In [32, 33], a RBF-MLP (Multi-Layer Perceptron) neural network
based sectorisation models are proposed. The models are trained with
the simulation data and have demonstrated the ability to provide
high-resolution 2D DOA estimates. Here, the simulations assumed
a uniform rectangular array composed of isotropic antenna elements
and ideal propagation environment. An approach using MLP neural
networks and only amplitude data from an L-shaped array is discussed
and validated in [34]. In [35], 2D DOA estimates in a hemispherical
space are provided using RBF neural networks and circularly polarized
patch antennas placed on a concentric circle around the feed element.

In this work, an artificial neural network based (ANN) model is
developed for 2D DOA estimation using rectangular antenna array
geometry. Data for ANN training and testing are provided from
measurements. This prevents the failure of mathematical models
owing to mismatch between assumed and real environment. It will be
shown that the ANN model accurately estimates azimuth and elevation
of a radiating source (a transmitting antenna) at angular positions
and frequencies that have not been used in the learning process.
Taking into account real measurement conditions and imperfections
of the measurement equipment such as geometrical inaccuracies in the
manufacturing of the rectangular array and reflections in antenna feed
cables and connectors, the ANN model is able to eliminate errors
due to these effects. Also, it does not need additional calibration
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of the receiving array to minimize mutual couplings between array
elements [36–39]. This is a very important feature of the proposed
model as the presence of mutual coupling distorts phase vectors of
radiation sources and the eigenstructure of the covariance matrix.
Moreover, ANN model is able to perform well even in case of frequency
dependent mutual coupling. Finally, the main advantage of the ANN
model in comparison to 2D MUSIC is its efficiency. The model
performs DOA estimation in a matter of seconds and has been proven
as very suitable for real-time application.

The paper is organized as follows. In Section 2, an introduction
to the signal model is given. Section 3 briefly presents the theory
behind Multi-Layer Perceptron Neural Networks (MLP-NNs). System
configuration for DOA measurements is described in Section 4 followed
by a data pre-processing procedure for MLP-NN modeling in Section 5.
In Section 6, the performance of developed neural models is presented
and results are analyzed. The training and test statistics are given
as well as plots of predicted vs. actual angular positions of a signal
source. Also, a comparison with 2D MUSIC algorithm is presented.
Section 7, the Conclusion, summarizes the main results.

2. PROBLEM FORMULATION

A rectangular array of M ×N sensors with inter-element spacing d is
used to intercept signals transmitted by K sources at angles [(ϕ1, θ1),
(ϕ2, θ2), . . . , (ϕK , θK)]. The array is located in the vertical yz plane
of spherical coordinate system where sensors are uniformly arranged
in y- and z-directions at mutual distance between adjacent elements
d = λ/2 (λ is the wavelength of the impinging waves). Position of each
sensor in the array is determined by its coordinates (m, n), where
m = 0, 1, 2, . . . , M − 1, and n = 0, 1, 2, . . . , N − 1. Element located
in the origin of the coordinate system (m,n) = (0, 0), is chosen as the
phase reference point. The signal received at each sensor is sampled
into P distinct frequency bins within the designed bandwidth. The
array output in the pth frequency bin can be represented as

x(fp) =
K∑

k=1

a(ϕk, θk; fp)sk(fp) + n(fp) (1)

where sk(·) is the signal received from the kth source at the reference
antenna element, n(·) the uncorrelated noise data, and

a(ϕk, θk; f) =
[
1 . . . ej(2πf/c)(dm cos θk sin ϕk+dn sin θk) . . .

ej(2πf/c)(d(M−1) cos θk sin ϕk+d(N−1) sin θk)
]T

(2)
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denotes the MN × 1 steering vector associated with the kth source,
where [·]T is the transpose operator. We write (1) in matrix form as

x(fp) = A(ϕ, θ; fp)s(fp) + n(fp) (3)

for p = 1, 2, 3, . . . , P . A is a MN×K steering matrix whose columns
are the steering vectors of the K signals impinging on the rectangular
array

A(ϕ, θ; fp) = [a(ϕ1, θ1; fp), . . . ,a(ϕK , θK ; fp)] (4)

and s(fp) is a signal vector

s(fp) = [s1(fp), . . . , sK(fp)]T (5)

Further, to determine the angular positions of sources from the
observed data x(f) it is necessary to estimate space-frequency
covariance matrix Rx(f). The covariance matrix in the pth frequency
bin is defined as

Rx(fp) = E
{
x(fp)x(fp)H

}
(6)

where [·]H denotes Hermitian operator, and E is the expectation
operator. Combining Equations (3) and (6), we obtain

Rx(fp) = A(ϕ, θ; fp)Rs(fp)AH(ϕ, θ; fp) + E
{
n(fp)n(fp)H

}
(7)

where
Rs(fp) = E

{
s(fp)s(fp)H

}
(8)

is the source covariance matrix. In this formulation it is assumed that
the source signals and noise are uncorrelated.

3. MLP NEURAL NETWORKS

A neural network is a system composed of many simple processing
elements (neurons) operating in parallel. Neurons in an MLP neural
network are organized into an input, an output as well as several hidden
layers. Every neuron in each layer of the network is connected to
every neuron in the adjacent forward layer, and no connections are
permitted between the neurons belonging to the same layer. Each
neuron is characterized by a transfer function and bias, and each
connection between two neurons by a weight. An MLP neural network
is configured for a specific application through a learning phase in
which several known input/output mappings are used to determine
the network parameters. Weights are adjustable, and are typically
calculated by means of an adaptive algorithm combined with training
examples (input-output signals) presented during the training (or
learning) phase.
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Input signals propagate gradually through the network from the
input layer through the hidden layers up to the output layer. It follows
that the output of the l-th layer, Yl, can be written as

Yl = F (WlYl−1 + Bl) (9)

where Yl−1 is the output the (l − 1)-th layer, Wl is a weight matrix
between (l−1)-th and l-th layer and Bl is a bias vector between (l−1)-
th and l-th layer. Function F is the activation function of each neuron
and it is linear for input and output layers and sigmoid (tan-sigmoid
in the particular case)

F (u) = (1− e−u)/(1 + e−u) (10)

for hidden layers (Fig. 1) [40]. Usually all inputs and outputs to the
network are normalized to an internal representation between−1 and 1,
and the output is then rescaled to match the range of the training data.
The most known training procedure is the backpropagation algorithm
and its modifications such as quasi-Newton or Levenberg-Marquardt
(LM) algorithms [40]. The training process of a MLP network is as
follows. First, input vectors are presented to the input neurons and
output vectors are calculated. These output vectors are then compared
to target values and errors are determined. Error derivatives are
calculated and summed up for each weight and bias until the whole
training set has been presented to the network. Further, they are used
to update the weights and biases for neurons in the model. The training
process proceeds until errors are lower than the prescribed values or
until the maximum number of epochs (epoch — the whole training set
processing) is reached.

Figure 1. Multi-Layer Perceptron structure.
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Once trained, the network is able to generalize that means,
to perform well in response to input signals that have not been
initially included in the training set. Generalizing performance of
the trained MLP neural network can be expressed in terms of WCE
(Worst Case Error), ACE (Average Case Error) or Pearson product-
moment correlation coefficient, r, between reference values and network
responses [40]. The formula for r is

r =
∑

(xi − x̄i) (yi − ȳi)√∑
(xi − x̄i)

2 ∑
(yi − ȳi)

2
(11)

where xi represents a reference value, yi an ANN computed value, x̄ a
reference sample mean, and ȳ an ANN sample mean. The correlation
coefficient is an indicator of how well the modeled values match the
actual ones. If the correlation coefficient is close to one then the
neural network has an excellent predictive ability whereas r close to
zero indicates poor performance of the network. Finally, the network
architecture with the best performance is selected for further analysis.

4. SYSTEM SETUP

All the experimental works reported here were conducted in an
anechoic chamber with dimensions of 7.44 × 4.97 × 4.69m. Since the
chamber gives no possibility of generating multipath signals only the
direct signal path between the transmitting (Tx) and receiving (Rx)
antenna was considered (Fig. 2). The measurement system was based
upon the classic vector network analyzer (VNA) technique. The VNA
was used to measure the forward transmission scattering coefficient,
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Figure 2. (a) Measurement setup in the anechoic chamber,
(b) receiving rectangular array on the antenna tower.
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S21 (effectively the complex channel frequency response) [41]. A
horn antenna was set to transmit a signal at the center frequency of
2.44GHz. At the receiving site, a 4 × 4 rectangular microstrip patch
array with a half-wavelength distance between adjacent elements was
employed. Dimensions of microstrip patches were optimized in CST
Microwave Studio, (L = 39.6mm, W = 49.4mm) and realized on a
Duroid Rogers RT5880 substrate (epsilon = 2.2, thickness = 1.57 mm).
The fabricated patch antennas resonated around 2.4400 GHz with a
10-dB bandwidth of approximately 60MHz. Measured return loss of a
single patch was −37 dB. HPBW (Half Power Beamwidth) of a single
element was about 82.5◦ and measured gain was 6.7 dBi at resonant
frequency.

The measurement procedure can be described as follows. The
horn antenna and the array were placed at the same height (1.9m), at
two ends of the anechoic chamber so as to ensure that the array was
in the far-field region of the horn antenna (R = 5.1m). A HP 8510
VNA was used to measure the transfer function of the radio channel
between two antennas. A RF switch was used to sample data from each
array element. The switch matrix was placed on the antenna tower,
behind the receiving array, and allowed each element of the array to
be connected to each input of the switch matrix through a 40 cm long
coax cable. In such a way, only one of the elements was active (ON)
while the others acted as dummy elements. However, due to mutual
couplings the other elements also radiated.

Once the measurement system was configured, antenna measure-
ments were conducted in the anechoic chamber. Initially, the auto-
mated measurement system was calibrated and calibration data was
saved separately from measurement data. These data were used later,
in the process of 2D MUSIC algorithm validation. No calibration pro-
cedure regarding mutual coupling was performed. Received signals at
rectangular array were sampled in a number of frequency points, and 2
snapshots (snapshot - sampling all the array elements) for each angular
position of the transmitting antenna were recorded. The measurements
at the VNA were averaged 16 times. The software in the chamber was
upgraded in order to integrate RF switch matrix into the system. Af-
ter that, the measurement system operated automatically and captured
the data. Different positions in azimuth were obtained by rotating the
antenna tower to a certain position in the region [−45◦, 45◦], with the
smallest step of ∆ϕ = 1◦.

Elevation angles were provided by changing the height of the
tripod where the horn antenna was mounted (∆h = 10 cm). Measured
signals for 19 elevation angles in the region [−10◦, 10◦] were stored for
further processing.
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5. DIRECTION OF ARRIVAL ESTIMATION USING
MLP NEURAL NETWORKS

Experimental data obtained from the 16-element rectangular array
were utilized to estimate the space-frequency channel covariance matrix
R (Fig. 3(a)). The matrix R was then used as input to an ANN
developed to retrieve DOA of a source signal (Fig. 3(b)). In this work,
we made a dimension-degraded training set to develop MLP-NNs as
only the first row of a MN × MN covariance matrix was used to
represent signals at the array output [23]. Further, keeping in mind
that ANNs cannot operate with complex numbers, all ANN inputs were
organized into a 2MN−1 element vector b. Before applied to the input
layer of the neural network, the vector b was normalized (divided by
its own norm), z = b/‖b‖. So, the dimensionality of input vectors
was significantly reduced allowing more efficient training of MLP-NNs.
Finally, a database of training and test samples with the indexes of the
transmitting locations was established.

(a) (b)

Figure 3. Illustration of (a) the training data structure, (b) the neural
model for 2D DOA estimation.

6. MODELING RESULTS

As already mentioned in Section 4, to develop MLP-NN models for 2D
DOA estimation, training and test sets were formed using experimental
data. Training set was composed of 7905 samples for 31 azimuth
angles from −45◦ to 45◦ (∆ϕ = 3◦), 15 elevation angles (0, ±1.12,
±3.36, ±4.48, ±5.6, ±7.81, ±8.92, ±10), and 17 frequency points from
2.4100GHz to 2.4700 GHz (∆f = 3.6MHz). Similarly, the test set
consisted of 868 samples, including 31 azimuth angles from −45◦ to 45◦
(∆ϕ = 3◦), 4 elevation angles (±2.25, ±6.71), and 7 frequency points.
None of the test samples was used in the learning phase of MLP-NNs.
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Further, a number of MLP neural networks with two hidden layers,
aimed to separately estimate angular positions of the source in azimuth
and elevation, were developed (Fig. 3(b)). The neural networks used
both the frequency and spatial covariance matrix R as inputs, while
the outputs were azimuth and elevation angles.

As the size of hidden layers in a network cannot be a priori
known, the optimum number of neurons is usually found through
an investigation. Namely, an iterative process is applied in order to
dynamically adjust the network configuration. This procedure starts
with a minimum network and then gradually adds hidden neurons and
recalculates weights and biases during the training. As the iterative
process converges to the solution, the network with good test statistics
is obtained. If the number of hidden neurons is further increased
(after an optimum configuration is found), the network will give
excellent results for training samples but its generalization capabilities
— results for test samples will be deteriorated due to overtraining.
In Table 1, MLP-az H1-H2 denotes MLP neural network model for
azimuth estimates with H1 and H2 neurons in the first and second
hidden layer, respectively, while MLP-el H1-H2 denotes MLP network
for elevation estimates.

Networks that have demonstrated the best test statistics, MLP az-
20-12 for azimuth, and MLP el-16-12 for elevation, were utilized for
further analysis. The appropriate correlation coefficient is 0.9997 for
MLP az-20-12 which has 20 and 12 neurons in two hidden layers, and
0.9987 for MLP el-16-12 with 16 and 12 neurons in hidden layers. The
response of the neural model (composed of two networks) for 2D DOA
estimation is shown in Figs. 4–6. Correlation diagrams are plotted
using the test data and illustrate the generalization capability of the
neural model. In these figures, azimuth and elevation estimates are
given for three test frequencies f = 2.4220 GHz, f = 2.4400GHz and
f = 2.4700GHz where grey dots represent MLP-NN responses and
black dots denote results of 2D MUSIC algorithm. On the basis of these
graphs, it can be concluded that the MLP-NN model exhibits slightly
better performance than 2D MUSIC in the estimation of azimuth
angles.

Also, we observe that MLP-NN demonstrates better ability
to retrieve elevation angels, especially at the lower and higher
frequencies of the operating band. Good results of MLP-NN model are
consequence of its ability to account for real measurement conditions
such as imperfections of measurement equipment and presence of
systematic errors. Therefore, it is logical to expect better matching
of the test and referent values with an already “known” measurement
system (Table 2).
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Table 1. Test statistics of MLP neural networks for DOA estimation
of azimuth and elevation angles.

MLP az
Model WCE (%) ACE (%) r

MLP az-20-12 2.9848 0.8458 0.9997
MLP az-25-15 3.0561 0.8725 0.9997
MLP az-25-25 3.5554 0.9700 0.9997
MLP az-22-18 3.8451 0.8244 0.9997
MLP az-36-16 4.0394 0.8831 0.9997
MLP az-19-17 5.3236 1.0067 0.9996

MLP el
Model WCE (%) ACE (%) r

MLP el-16-12 6.3149 1.6078 0.9987
MLP el-21-17 6.4592 1.7025 0.9985
MLP el-12-10 7.3799 1.8137 0.9984
MLP el-22-18 7.1875 1.8197 0.9983
MLP el-40-18 8.1340 1.8481 0.9983
MLP el-20-12 8.0346 1.8645 0.9982

Table 2. Average error in estimating the transmitting antenna angular
positions using MLP neural model and 2D MUSIC algorithm.

f [GHz]

MLP neural model 2D MUSIC

ϕaverage error

[deg]

θaverage error

[deg]

ϕaverage error

[deg]

θaverage error

[deg]

2.4112 0.7319 0.1942 3.7116 2.5406

2.4220 0.7019 0.1897 3.1604 2.2316

2.4304 0.7526 0.2149 2.2304 1.1860

2.4400 0.8274 0.2470 1.5511 1.0840

2.4508 0.8424 0.2301 1.7275 0.9740

2.4604 0.7536 0.2145 1.8697 1.6289

2.4700 0.7186 0.2200 2.1597 2.6233
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Figure 4. Scattering diagrams of the MLP neural network and 2D
MUSIC azimuth estimates at test frequency f = 2.4220GHz.

Figure 5. Scattering diagrams of the MLP neural model and 2D
MUSIC elevation estimates at test frequency f = 2.4400GHz.

Figure 6. Scattering diagrams of the MLP neural model and 2D
MUSIC elevation estimates at test frequency f = 2.4700GHz.
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In Fig. 7, the root mean-square error (RMSE) in degrees is
obtained across different frequency points, for all angular positions
from both the training and test set. RMSE is calculated using the
following expression

RMSE =
√

E {(ϕref − ϕest)2 + (θref − θest)2} (12)

where ϕref is the reference azimuth angle of the incoming signal, ϕest

an azimuth estimate, and θref a reference elevation angle of the signal
while θest stands for an elevation estimate. As demonstrated in Fig. 6,
MLP-NN has similar performance within the frequency band where
RMSE, even in the worst case, does not exceed 2◦. Estimation errors
in these diagrams are mostly consequence of non-perfect alignment of
antennas during the measurements in different measurement scenarios.
In addition, frequency dependency of estimation error for three
azimuth positions ϕ1 = −45◦, ϕ2 = 0◦ and ϕ3 = 45◦, and four
elevation angles for each of them θ1 = −6.72◦, θ2 = −2.24◦, θ3 = 2.24◦,
θ4 = 6.72◦, is plotted in Fig. 8. It can be seen that RMSE for all test
positions has values in the range of [0.01◦, 2◦].

(a) (c)(b)

Figure 7. Root Mean Square Error (RMSE) of MLP-NN estimates
at (a) f = 2.4100GHz, (b) f = 2.4400GHz and (c) f = 2.4700GHz.

Figure 8. Frequency dependency of RMSE of estimated azimuth and
elevation angles for several positions of the transmitting antenna.
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The spectral search complexity of the conventional MUSIC-based
algorithms is too high for real-time applications. The advantage of
our MLP neural network model is the reduction in the processing time
compared to the 2D MUSIC-DOA estimation. Here, we compare the
processing time of the proposed model and the 2D MUSIC for our
implementation in Matlab 7.10 on an Intel(R) Core(TM)2 Quad CPU
computer running at 2.33GHz. The simulation conditions were set to
ϕ = 36◦ and θ = 8.92◦, while the 2D MUSIC searching grid intervals
in azimuth and elevation angles were set to 0.25◦. We measured the
propagation time of the MLP-NN model, presented in Fig. 3(a). After
that, we used the same test pattern and measured the time required for
the 2D MUSIC-DOA estimation. The processing time was 20ms for
the MLP-NN response and 17.8 s for the 2D MUSIC-DOA estimation
in average.

7. CONCLUSION

In this paper, we have presented an efficient neural network-
based model for estimation of 2D arrival angles. All geometrical
inaccuracies in the manufacturing of the rectangular array as well as
real measurement conditions and imperfections of the measurement
equipment are comprised by the developed ANN model. The model
eliminates errors due to reflections in cables and connectors, and does
not need additional calibration procedure of the array to minimize
effects of mutual couplings between array elements. It is shown that
the neural model outperforms 2D MUSIC algorithm in terms of speed
of computation. The efficiency of the ANN model stems from the fact
that, after the learning phase, the directions of arrival are estimated
with less memory requirements, since no 1D or 2D spectrum search is
needed. Being able to provide fast and accurate 2D DOA estimates, the
ANN model represents a promising solution for real time user tracking.
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