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Abstract—We introduce a data-driven unsupervised classification
algorithm that uses polarimetric and interferometric synthetic aperture
radar (PolInSAR) data. The proposed algorithm uses a classification
method that preserves scattering characteristics. Our contribution
is twofold. First, the method applies adaptive model-based
decomposition (AMD) to represent the scattering mechanism, which
overcomes the flaws introduced by Freeman decomposition. Second, a
new class initialization scheme using a histogram clustering algorithm
based on a Dirichlet process mixture model is applied to automatically
determine the number of clusters and effectively initialize the classes.
Therefore, our algorithm is data-driven. In the first step, the Shannon
entropy characteristics of the PolInSAR data are extracted and used
to calculate the local histogram features. After applying AMD, pixels
are divided into three canonical scattering categories according to their
dominant scattering mechanism. The histogram clustering algorithm
is applied to each scattering category to obtain the number of classes
and initialize them. The iterative Wishart classifier is applied to
refine the classification results. Experimental results for E-SAR L-band
PolInSAR images from the German Aerospace Center demonstrate the
effectiveness of the proposed algorithm.
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1. INTRODUCTION

As a fast and efficient method for information extraction and scene
interpretation, unsupervised classification is of great importance in
processing of polarimetric and polarimetric interferometric aperture
radar (PolSAR and PolInSAR) data. Among the unsupervised
classification algorithms in the literature for PolSAR data, earlier
approaches mainly utilized the statistical characteristics of the data [1–
4]. For covariance or coherency matrices of multi-look data, Lee
et al. [2] derived a distance measure based on the complex Wishart
distribution [5] and this distance measure has been incorporated
in other classification algorithms. Alternative approaches used the
inherent characteristics of PolSAR data and classification based on
physical mechanisms [6–8]. Van Zyl [9] proposed classification of
terrain types as odd bounce, even bounce and diffuse scattering.
For PolInSAR data, classification algorithms are commonly built on
PolSAR classification results and the interferometric information is
used for further analysis [10, 11]. These methods identified canonical
scattering mechanisms based on the target decomposition theory
proposed by Cloude and Pottier [12]. In 2004, Lee et al. [13]
proposed a new robust classification algorithm based on Freeman
decomposition [14]. This method has better stability in convergence
and preserves the homogeneous scattering mechanism of each class.
Methods that preserve the scattering mechanism have the advantage
of providing information for class type identification. An improved
algorithm was proposed by Yang et al. [15] that initially divides pixels
into seven categories by introducing scattering power entropy and
anisotropy parameters.

The Freeman-Durden algorithm has been widely used because
of its simplicity and stability, but it has several limitations. As
pointed out by Van Zyl et al. [16], a major limitation is that the
volume scattering terms all assume the scattering reflection symmetry
for the observations. Furthermore, the decomposition may result in
many pixels with a negative power. Arii et al. [17] suggested an
adaptive model-based decomposition (AMD) technique in which no
reflection symmetry is required. We use this decomposition in our
classification algorithm instead of Freeman decomposition to overcome
the flaws introduced by their assumptions. In addition, determination
of the number of classes is also a challenging task for unsupervised
classification. Although the proper number can be specified artificially
by some experts, an adaptive decision is appealing. The number
of clusters poses a model order selection problem. Orbanz and
Buhmann [18] considered a Dirichlet process mixture model (DPM)
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for image segmentation using a histogram clustering method combined
with Markov random fields. The DPM model provides a Bayesian
framework for clustering problems with an unknown number of groups.

In this paper, we introduce a data-driven unsupervised classifica-
tion algorithm that preserves the homogeneous scattering mechanism
and determines the number of clusters automatically. The proposed
algorithm first calculates the Shannon entropy characteristics of the
PolInSAR data and uses three Shannon entropy terms as multichannel
data to extract local histogram features, which are the basic inputs for
the histogram clustering procedure based on the DPM model. Shan-
non entropy characterization [19] of PolInSAR data was introduced by
Morio et al. [20] and can be decomposed into sums of intensity, polari-
metric and interferometric contributions. The three terms are com-
parable with each other as they are expressed with the same “unit”.
Then the pixels are divided into three canonical scattering categories:
surface, volume, and double-bounce scattering by applying AMD. We
use the same strategy as [13] to preserve the purity of the scattering
characteristics for each class. To each category we apply the histogram
clustering algorithm based on the DPM model using histogram features
extracted in the previous step. Then the number of clusters is auto-
matically determined and the classes are effectively initialized. In the
next step, iterative clustering based on the Wishart distance measure
is applied to the three categories to refine the result. Finally, the au-
tomated color rendering scheme proposed in [13] is applied for visual
evaluation of the classification result.

The remainder of the paper is organized as follows. In Section 2,
the basic PolSAR and PolInSAR models, AMD, Shannon entropy
characterization, and the DPM model are briefly introduced as the
basic theory underpinning this paper. The proposed classification
algorithm is described in Section 3. In Section 4, experimental results
are presented and analyzed. Conclusions are drawn in Section 5.

2. THEORY

2.1. Basic Models of PolSAR and PolInSAR Data

For PolSAR data, the three unique elements of the scattering matrix
can be defined as a complex vector

k =
[
Shh,

√
2Shv, Svv

]T
, (1)

where the superscript T denotes the matrix transpose. For multilook-
processed SAR images, the data can be represented by a polarimetric
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covariance matrix

Z =
1
n

n∑

i=1

k(i)k(i)∗T , (2)

where k(i) denotes the scattering vector of the ith sample, the
superscript * denotes the complex conjugate, and n is the number of
looks. Multilook data can be expressed in the form of a polarimetric
covariance matrix with a complex Wishart distribution [5]. Let V =
E[Z]. The probability density function for the covariance matrix is

p
(n)
T (Z) =

nqn|Z|n−q exp[−nTr(V −1Z)]
K(n, q)|V |n

K(n, q) = π(1/2)q(q−1)Γ(n) . . .Γ(n− q + 1),
(3)

where q = 3 for the reciprocal case and q = 4 for the biostatic case.
Tr is the trace of a matrix, n the number of looks, K a normalization
factor, and Γ(·) the gamma function. From this probability density
function it is possible to define a Bayes maximum likelihood (ML)
classifier [2] that assigns the coherency matrix of a pixel of the SAR
image to class Xm if d(Z,Xm) ≤ d(Z,Xj) ∀j 6= m, with

d(Z, Vm) = ln |Vm|+ Tr(V −1
m Z), (4)

where Vm is the mean covariance matrix for the class Xm.
In the case of PolInSAR data, the backscattered signal can be

described by a six-element complex target vector corresponding to the
polarimetric performances at the two antennae:

K = [S1hh, S1hh,
√

2S1hv, S2hh, S2vv,
√

2S2hv]T =
[
k1, k2]T . (5)

The PolInSAR homogeneous region is statically characterized by a 6×6
covariance matrix [20]:

Υ =
[ 〈k1k

∗
1〉 〈k1k

∗
2〉〈k2k

∗
1〉 〈k2k

∗
2〉

]
=

[
Γ1 Ω12

Ω∗12 Γ2

]
, (6)

where 〈·〉 denotes statistical averaging. Matrices Γ1 and Γ2 correspond
to the polarimetric measurements at each of the two antennae. Ω12

depends on both polarimetric and interferometric characteristics. The
covariance matrix Υ also meets the complex Wishart distribution but
with q = 6 and we can also define an ML classifier similarly.

2.2. AMD for Polarimetric SAR Data

Unlike the well-known three-component decomposition method [14],
which may not satisfy the fundamental energy conservation law,
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the AMD extended from the non-negative eigenvalue decomposition
(NNED) model proposed in [16] maintains correctness from a physical
point of view. Moreover, the adaptive decomposition technique goes
one step further for modification of the covariance matrix of the volume
(canopy) component by characterizing it with a mean orientation angle
and a degree of randomness. This decomposition model [17] can be
written as
〈[C]〉 = fv 〈[Cvol(θ0, σ)]〉+ fd[Cdouble] + fs[Csurface] + [Cremainder]. (7)
where 〈[Cvol(θ0, σ)]〉, [Cdouble] and [Csurface] represent the matrices
for volume, double-bounce, and surface scattering, and the last
term [Cremainder] may include additional cross-polarized power that
could represent terrain effects and rough surface scattering [16]. As
developed in [17], the volume component covariance matrix becomes

〈[Cvol(θ0, σ)]〉 = [Cα] + p(σ)[Cβ] + q(σ)[Cγ ] (8)
where

[Cα] =
1
8

[ 3 0 1
0 2 0
1 0 3

]

[Cβ(2θ0)] =
1
8



−2 cos 2θ0

√
2 sin 2θ0 0√

2 sin 2θ0 0
√

2 sin 2θ0

0
√

2 sin 2θ0 2 cos 2θ0




[Cγ(4θ0)] =
1
8




cos 4θ0 −√2 sin 4θ0 − cos 4θ0

−√2 sin 4θ0 −2 cos 4θ0

√
2 sin 4θ0

− cos 4θ0

√
2 sin 4θ0 cos 4θ0




(9)

and
p(σ) = 2.0806σ6 − 6.3350σ5 + 6.3864σ4

− 0.4431σ3 − 3.9638σ2 − 0.0008σ + 2.000

q(σ) = 9.0166σ6 − 18.7790σ5 + 4.9590σ4

+ 14.5629σ3 − 10.8034σ2 + 0.1902σ + 1.000.

(10)

According to the derivation in [17], the mean orientation angle θ0 varies
from 0 to π and the degree of randomness σ from 0 to 0.91.

We conduct adaptive decomposition according to the following
procedure:
(1) For each pixel, the remainder terms matrix is defined as

[C ′
remainder] = 〈[C]〉 − fv 〈[Cvol(θ0, σ)]〉 . (11)

We numerically calculate the eigenvalues of [C ′
remainder] at special

θ0 and σ by varying fv, and the maximum fv for which all three
eigenvalues of [C ′

remainder] are non-negative is selected.
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(2) After subtracting the resulting volume component, eigenvalue
decomposition as proposed by van Zyl [21] is implemented
to determine the remaining unknown parameters fd, fs and
[C ′

remainder] simultaneously.
(3) By varying θ0 and σ within the entire range, the parameter set

that minimizes the power associated with the remainder matrix
[C ′

remainder] is selected, and then the corresponding power Pv of
the pixel is determined.

(4) The covariance matrix described in the three-component scatter-
ing approach [14] for Cdouble and Csurface is used to determine Pd

and Ps.
(5) Repeat steps (1)–(4) for each pixel in the image.

2.3. Shannon Entropy Characterization

For a six-dimensional complex-valued random vector ~K with
probability density function PΥ( ~K), Shannon entropy is defined as

S
[
PΥ

(
~K

)]
= −

∫
PΥ

(
~K

)
log

[
PΥ

(
~K

)]
d ~K, (12)

where
∫ · d ~K denotes complex six-dimensional integration and PΥ( ~K)

follows a six-dimensional Gaussian distribution. The Shannon entropy
characterization [20, 22] can be written as

S [Υ] = log
{
π6e6 det [Υ]

}
. (13)

In a homogeneous region of PolInSAR data, the Shannon entropy
expression S[Υ] can be decomposed into a sum of three terms:

S [Υ] = SI [Υ] + SP [Υ] + Sµ [Υ]

SI [Υ] = 3 log
(

eπI1

3

)
+ 3 log

(
eπI2

3

)

Sµ [Υ] = log
{(

1− µ2
1

) (
1− µ2

2

) (
1− µ2

3

)}

SP [Υ] = 3 log
[
1− ρ2

1

]
+ 3 log

[
1− ρ2

2

]
.

(14)

The first term represents the intensity contribution and depends on the
intensities I1 and I2 received by the two antennae. The second term
represents the polarimetric contribution and depends on the Barakat
degrees of polarization ρ1 and ρ2 for the scattering matrices. The
last term represents the interferometric contribution and only depends
on µ1, µ2 and µ3, the three singular values of the normalized mutual
coherence matrix M defined as [20, 23]

M = Γ
− 1

2
1 Ω12Γ

− 1
2

2 (15)



Progress In Electromagnetics Research B, Vol. 49, 2013 221

where matrix Γ
− 1

2
i (i = 1, 2) is defined from the diagonal form. These

singular values correspond to optimized degrees of coherence [23]. An
advantage of this decomposition is that the three terms are comparable
with each other since they are expressed with the same “units”.

2.4. DPM Model and Histogram Clustering

DPM models provide a Bayesian framework for clustering problems
with an unknown number of groups. DPM models may be interpreted
as mixture models. The number of mixture components is a random
variable and may be estimated from the data.

We model a set of observations {x1, . . . , xn} using a set of latent
parameters {θ1, . . . , θn}. Each is drawn independently and identically
from G, while each xi has distribution F (·|θi) parameterized by θi:

xi|θi ∼ F (·|θi)
θi|G ∼ G

G|α, G0 ∼ DP (α, G0),
(16)

where the scalar α ∈ R+ is called the concentration parameter, and
G0 is a probability measure called the base measure of the process.
DP (α,G0) denotes the Dirichlet process parameterized by α and G0.

Inference for DPM is usually handled by Gibbs sampling. The
sampling algorithm [18, 24] for DPM is shown in Algorithm 1. From
the inference process we can see, sufficient numbers of additional draws
will eventually result in drawing from base measure G0 that may
generate new classes, the number of classes NC can be regarded as
a random variable. This shows that the DPM model is capable of
adjusting the number of classes without switching models.

In the framework of DPM based histogram clustering, local
histograms are first extracted as features. In a general mathematical
sense, a histogram is a function that counts the number of observations
that fall into each of the disjoint categories (known as bins). Each
histogram is described by a vector hi = (hi1, . . . , hiNbins

) which are
non-negative integers, where Nbins is the number of the histogram
bins. In the histogram clustering algorithm, the histogram h1, . . . ,hn

are input features, replacing the observations {x1, . . . , xn} discussed
previously.

3. PROPOSED ALGORITHM

In this section, we present the proposed algorithm. The algorithm first
calculates the Shannon entropy characteristics of the PolInSAR data
and uses the three terms SI [Υ], SP [Υ] and Sµ[Υ] as the multichannel
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Algorithm 1: DPM sampling
Initialize Generate a single cluster containing all
points: θ∗1 ∼ G0(θ∗1)

∏n
i=1 F (xi|θ∗1)

Repeat
1. Generate a random permutation σ of the data indices.
2. Assignment step.
for i = σ(0), . . . , σ(n) do

a). If xi is the only observation assigned to its cluster
k = Si, remove this cluster.
b). Compute the cluster probabilities
qi0 ∝ α

∫
Ω0

F (xi|θ)G0(θ)dθ, qik ∝ n−i
k F (xi|θ∗k), k =

1, 2, . . . , NC .
n−i

k denotes the number of samples in group k, with the
additional superscript indicating the exclusion of xi.
c). Draw a random index k according to the finite
distribution (qi0, . . . , qiNc).
d). Assignment:
if k ∈ 1, . . . , Nc then assign xi to cluster k.
else create a new cluster for xi.

3. Parameter update step: For each cluster k = 1, . . . , NC ,
update the cluster parameters θ∗k given the class
assignments S1, . . . , Sn by sampling
θ∗k ∼ G0(θ∗k)

∏n
i|Si=k F (xi|θ∗1)

Estimate assignment model For each point, choose the
cluster it was assigned to most frequently during a given final
number of iterations.

data to extract local histograms, which are the basic inputs for the
DPM-based histogram clustering procedure. AMD is applied to one
polarimetric channel of the PolInSAR data. Next, pixels are divided
into three canonical scattering categories according to the dominant
scattering power of Ps, Pv and Pd for surface, volume and double-
bounce scattering, respectively. For pixels not clearly dominated
by one of these scattering mechanisms, an additional category of
mixed scattering can be defined [13]; finer division of the scattering
categories is discussed in [15]. For simplicity, we consider just three
scattering categories here (i.e., determining the scattering categories
by the maximum power among three components). The pixels in
the PolInSAR image are then initially classified using scattering
category labels and each is associated with its local histogram feature.
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Figure 1. Flowchart of the proposed algorithm.

The scattering category label is fixed for each pixel throughout
the classification process to preserve the purity of the scattering
characteristics. We devised a new and effective initialization for the
classes by applying histogram clustering algorithms to each of the
categories. The number of classes can be evaluated simultaneously.
A flowchart of this algorithm is shown in Fig. 1.

A. Extraction of the characteristics and initial clustering

1) We first extract the Shannon entropy characteristics from the
PolInSAR data and use the three Shannon entropy terms as
multichannel input images to extract local histograms. For
a given channel, histogram feature extraction is performed
pixel-wise. A square histogram window is placed around each
pixel and a histogram hi is plotted of the values for all pixels
within the window. The size of the window (and therefore
the number of data value records in each histogram, NCounts)
and the number of histogram bins Nbins are kept constant for
the whole image. We simply combine the histograms for the
three channels to form the final histogram feature for each
pixel.
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2) Decompose each pixel using the AMD and compute the
powers Ps, Pv and Pd. This decomposition is applied to one
polarimetric channel of the PolInSAR data. Label each pixel
with the dominant scattering mechanism (i.e., the maximum
of the power) as surface (S ), volume (V ) or double-bounce
(DB).

B. Auto clustering using a histogram clustering model
3) For each category, we perform the DPM clustering procedure

using the histogram features for all pixels. The histograms
h1, . . . ,hn are the input features of the DPM clustering
algorithm. The parameters drawn from the DP in the DPM
model are the probabilities of the histogram bins. Histograms
are multinomially distributed and the likelihood is chosen
according to

F (hi|θi) = NCounts!
Nbins∏

j=1

θ
hij

ij

hij

=
1

ZM (hi)
exp




Nbins∑

j=1

log(θij )


. (17)

The prior distribution of the parameter vectors is assumed
to be a Dirichlet distribution of dimension Nbins, forming a
conjugate pair

G0(θi|βπ) =
Γ(β)∏Nbins

j=1 Γ(βπj)

∏Nbins

j=1
θ

βπj−1
ij

=
1

ZD(βπ)
exp

(∑Nbins

j=1
(βπj − 1) log(θij)

)
, (18)

where π is a Nbins-dimensional probability vector and β
is a positive scalar. For this particular conjugate pair
distribution, the corresponding formulas in Algorithm 1
become:

q̃i0 := α
ZD(hi + βπ)

ZD(βπ)
; q̃ik := n−i

k exp
(∑

j
(hij log θ∗kj)

)
.

Class probabilities are obtained by normalization:

q̃ik :=
q̃ik∑Nc
l=0 q̃il

; k = 0, . . . , NC . (19)

The posterior distribution to be sampled is Dirichlet as well:

G0(θ∗k|βπ)
∏

i|Si=k
F (xi|θ∗k) ∝ G0

(
θ∗k|βπ+

∑
i|Si=k

hi

)
. (20)
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Then the pixels are divided into different classes and the
number of classes Nd is determined automatically. As we
insist to cluster pixels in each scattering category respectively,
the resulting classes keep homogeneous in scattering and have
the labels “S”,“V” or “DB”.

C. Iterative K-means Wishart classification
4) As the coherency matrix also follows a complex Wishart

distribution with Υ, the 6 × 6 average coherency matrices
from the Nd classes are computed and used as the class
centers. Within each basic scattering category, all pixels are
reclassified according to their Wishart distance from the class
centers.

5) Iterative clustering with the Wishart classifier is applied in
each scattering category. We can use the ratio of the changed
labels or the number of iterations as the iteration termination
criterion.

D. Auto color rendering
6) After the final classification, each class is color-coded for

visual evaluation of the classification results. The principle of
the color coding follows the scheme of Lee et al. [13].

4. EXPERIMENTAL RESULTS

In this section, we illustrate the effectiveness of the proposed
classification algorithm using E-SAR PolInSAR data from the German
Aerospace Center (DLR). The E-SAR data were acquired in the L
band using a repeat-pass model as part of a multi-baseline experiment
in May 1998; images of 1300 × 1200 pixels were collected in the
Oberpfaffenhofen area of Germany. The resolution is 3.00 × 2.20m
and the look angle spans from 25◦ to 60◦. The average baseline across
the scene is approximately 26 m and the height of the platform is 3 km.
The original data were multi-look processed and filtered using a boxcar
filter. The scene is composed of various agricultural areas, forests and
urban zones, and buildings at the center correspond to the DLR. Fig. 2
shows the optical image and details of several typical sample areas.

Figure 3 shows characterization images for the data. Fig. 3(a)
is the original image with Pauli matrix components |Shh − Svv|, |Shv|
and |Shh +Svv| for the three composite colors. Figs. 3(b) and (c) show
the Freeman decomposition and the AMD, using |Pd|, |Pv| and |Ps|
for red, green and blue respectively. The model-based decomposition
methods yield similar characteristics to the Pauli-based decomposition
but they provide more realistic representations. The two model-
based decompositions yield similar visual characterizations, but the
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Figure 2. E-SAR PolInSAR data set for Oberpfaffenhofen, Germany.
(a) The corresponding optical image from Google earthr. (b) Sample
areas for different scenes, including forest, farmland, bare land, airport
runway, and building areas 1–5.

AMD can yield more valuable estimations for scattering areas in
the vegetation canopy because of the general volume model adopted.
Figs. 3(e) and (f) show the intensity, polarimetric and interferometric
contributions to Shannon entropy. It is evident that the three entropy
contributions reveal different properties of the different zones and yield
good discrimination. Because the three terms are comparable with
each other, we use them as multi-channel data for local histogram
feature extraction in DPM model-based histogram clustering. In our
experiments the size of the histogram window is five and hence NCounts

is 25. We set Nbins to 4 for each histogram in each data channel. We
cascade the histograms for each pixel for simplicity.

After the initial segmentation, the pixels are divided into three
categories labeled as S, V and DB. The histogram clustering algorithm
is applied to each of the categories, classes are initialized and we obtain
the cluster numbers. The estimated number of classes is 12, comprising
five for the surface, three for the volume and four for the double-bounce
scattering categories. The histogram clustering algorithm is iterated
200 times and the results of the last 100 iterates are used for mode
estimation. Iterative Wishart classification is then performed to refine
the result. The color rendering scheme uses brown colors for surface,
green colors for volume, and red colors for double-bounce scattering
classes. The final classification result is shown in Fig. 4(b). Since the
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(d)(c)

(b)(a)

(f)(e)

Figure 3. Characterization images for the PolInSAR data. (a) Image
using Pauli matrix components |Shh−Svv|, |Shv| and |Shh+Svv| for red,
green and blue, respectively. (b) Freeman decomposition using |Pd|,
|Pv| and |Ps| for the three RGB channels. (c) The AMD. (d) Intensity.
(e) Polarimetric and (f) interferometric contributions to the Shannon
entropy.
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Figure 4. Classification maps and automated color rendering for
classes. (a) PolSAR classification results according to (a) Lee’s
algorithm and (b) the proposed method. For Lee’s method, we
manually specified the number of classes as eight, four and four for
surface, volume and double-bounce scattering categories, respectively.
For the proposed method, the corresponding numbers generated
automatically were five, three and four.

scattering-preserving classification algorithm proposed by Lee et al. [13]
has better stability in convergence and when the number of classes is
selected elaborately, it could achieve quite well results, we consider it
as a benchmark for comparison. Fig. 4(a) shows the results obtained
by Lee’s method with eight S, four V and four DB classes.

Comparison of the two color-coded images in Fig. 4 reveals that
the two algorithms yield very similar and consistent classification
results. The forest and vegetation areas are well classified and show
different scattering properties compared to farmland and other areas
with low-growing plants. The surface scattering classes show great
distinction in separating airport runways, grassland, bare land and
plowed fields. We can observe several meta reflectors coded with
bright colors in the triangle above the runway. The DB classes
clearly show the street patterns associated with building blocks and
the edges of buildings facing the radar. Since the number of classes is
specified manually in Lee’s method, the classification results suggest
that the class numbers generated by our algorithm are reasonable and
acceptable.
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We can still observe some differences in results between the two
methods. Since the number of classes specified in Lee’s method is
greater, the method yields more fine details. For example, in Fig. 4(a)
the meta reflectors have more precise shapes and edges of buildings are
clearer. However, our method achieves better results in homogeneous
regions. In the top left corner, Lee’s method segments the ground
between two large vegetation areas into several trivial blocks, while our
method classifies them as a whole. Similar results are evident for the
plowed fields in the bottom left corner and flat areas outside the town.
To examine the results of the two algorithms in detail, we magnified
the three highlighted areas, as shown in Fig. 5, where region 1 is a
forest area, region 2 covers a corner of the town and region 3 shows
the DLR buildings and a corner of the airport. For the forest area,
Lee’s method classifies more pixels as DB scattering, while our method
misclassifies the glade as volume scattering. For the urban area, some
of buildings are misclassified as volume scattering by the two methods
because they are not aligned facing the radar. For region 3, buildings
with large roofs are all misclassified as volume scattering, and we can
see the hangars along the runway clearly. To better illustrate the
performance of the two algorithms, we quantitatively evaluated these
areas using the purity (the higher the better) and entropy gain (the
lower the better) defined in [25]. The two measures of homogeneity are
defined as follows:

Purity =
k∑

r=1

1
n

max
i

(
ni

r

)

Entropy =
k∑

r=1

nr

n

(
− 1

log q

q∑

i=1

ni
r

nr
log

ni
r

nr

)
,

(21)

where q is the number of classes, k the number of clusters obtained,
nr the size of cluster r, and ni

r the number of data points in class i in
cluster r. The results in Table 1 show that the two algorithms achieve
very similar scores, confirming their comparative performance.

Most of the misclassifications occur in urban areas because of
variations in building type and orientation, which can induce different

Table 1. Purity and entropy of the test areas.

Images Region 1 Region 2 Region 3

Algorithm Purity Entropy Purity Entropy Purity Entropy

Lee’s method 0.829 0.321 0.650 0.489 0.616 0.596

Proposed method 0.821 0.321 0.643 0.489 0.620 0.583
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Figure 5. Details of the classification results for the three regions
highlighted in Fig. 4.

Buildings1 Buildings 2 Buildings 3 Buildings4 Buildings 5

Figure 6. Classification results obtained using the proposed algorithm
for different building areas.
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scattering responses. Fig. 6 shows optical image and classification
results for five building regions marked in Fig. 2. Although these areas
all consist of buildings, the classification results are quite different.
Regions 1 and 2 are classified as volume scattering because the
buildings do not face the radar, so they do not induce DB responses.
Region 3 is correctly classified as DB scattering because the buildings
face the radar. Regions 4 and 5 are classified as volume scattering
because they have large rough roofs. It should be noted that although
the building areas are misclassified as volume scattering, they are not
classified to the same class as forest areas, which are colored darker
green. The results for regions 4 and 5 show that as the resolution
increases, we should pay more attention to the structure information
in the classification algorithm.

5. CONCLUSION AND DISCUSSION

We proposed a data-driven unsupervised classification algorithm
for PolInSAR data. The algorithm divides pixels into three
canonical scattering categories by applying AMD, which overcomes
the flaw of Freeman decomposition. We utilized Shannon entropy
characteristics of the PolInSAR data to extract local histogram
features. This characterization provides a suitable way of describing
intensity, polarimetric and interferometric information in comparable
expressions. To each of three basic scattering categories we applied
a histogram clustering algorithm based on the DPM model. This
method provides a Bayesian framework for clustering problems with an
unknown number of groups. After determining the number of classes
and class centers, the iterative Wishart classifier was applied to refine
the classification result. Our algorithm is automatic and data-driven,
and shows comparative performance to the algorithm proposed by
Lee et al. [13], which needs artificial pre-assigned number of classes.

The main purpose of the proposed algorithm is to classify
data from the point of scattering mechanism, so we only use the
Shannon entropy characterization of the PolInSAR data to extract
local histogram features for DPM model-based histogram clustering,
and interferometric PolInSAR information is not fully used. Further
analysis of the classification result combined with the interferometric
information will be discussed in future work. In our framework we
used the Shannon entropy characterization to extract local histogram
features, but this characterization is not the only choice and may be
replaced by a more suitable one.
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