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Abstract—This paper addresses the possibility of displacement
measurement by microwave interferometry at an unknown reflection
coefficient with the use of as few as two probes. The case of an
arbitrary interpobe distance is considered. The measurement error as
a function of the interprobe distance is analyzed with the inclusion
of variations of the detector currents from their theoretical values.
The analysis has shown that as the interprobe distance decreases,
the maximum measurement error passes through a minimum for
reflection coefficients close to unity and increases monotonically for
smaller reflection coefficients. Based on the results of the analysis, the
interprobe distance is suggested to be one tenth of the guided operating
wavelength λg. In comparison with the conventional interprobe
distance of λg/8, the suggested one offers a marked reduction in the
maximum measurement error for reflection coefficients close to unity,
while for smaller ones this error remains much the same (for a detector
current error of 3%, the maximum measurement error in percent of
the operating wavelength is 2.2% and 1.0% at λg/10 as against 4.8%
and 2.7% at λg/8 for a reflection coefficient of 1 and 0.9, respectively,
and 2.9% at λg/10 as against 2.4% at λg/8 for a reflection coefficient
of 0.1).
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1. INTRODUCTION

Microwave interferometry is widely used for position sensing [1, 2]
and displacement measurement [3]. This is due to its ability to
provide fast noncontact measurements, applicability to dusty or smoky
environments (as distinct from laser Doppler sensors [4–6] or vision-
based systems using digital image processing techniques [7]), and
simple hardware implementation in comparison with other microwave
measuring instruments such as, for example, the step-frequency
continuous-wave radar sensor [8]. Interferometric sensors also have a
relatively faster system response time than other types of sensors due
to the fact that they are generally operated with a single-frequency
source.

Interferometry is basically a phase-sensitive detection process
capable of resolving any measured physical quantity within a fraction
of the operating wavelength. In displacement measurements, the
displacement of a moving object (target) is extracted from the phase
shift between the signal reflected from the target and the reference
signal. This phase shift can be determined from two quadrature
signals. At present, the usual way to form such signals is to use
special hardware incorporating a power divider and a phase-detecting
processor, which is an analog [3] or a digital [9] quadrature mixer. In
doing so, measures have to be taken to minimize the nonlinear phase
response of the quadrature mixer, which is caused by its phase and
amplitude unbalances.

In our previous paper [10], we reported a displacement
measurement technique in which the quadrature signals are extracted
from the outputs of two probes placed in a waveguide section one
eighth of the guided operating wavelength λg apart. Its hardware
implementation is far simpler than that of conventional techniques
based on quadrature mixing [3, 9], and its distinctive feature is the
possibility of displacement measurement at an unknown reflection
coefficient with two probes, while since the classic text by Tischer [11]
it has been universally believed that at least three probes are needed
to determine or eliminate the unknown reflection coefficient. The
reduction in the number of probes simplifies the design of the
measuring waveguide section and alleviates the problem of interprobe
interference. Theoretically, the technique reported in [10] gives the
exact value of the displacement for reflection coefficients (at the
location of the probes) no greater than 1/

√
2 and in the general case

determines it to a worst-case accuracy of about 4.4% of the operating
wavelength. The aim of this paper is to show that this accuracy can be
improved by using an interprobe distance other than the conventional
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λg/8. This aim is achieved by extending the approach proposed in [10]
to the case of an arbitrary interprobe distance.

2. MODEL OF TWO-PROBE MEASUREMENTS

Consider two probes, 1 and 2, with square-law semiconductor detectors
placed l apart in a waveguide section between a microwave oscillator
and a target so that probe 1 is farther from the target (Fig. 1).

Figure 1. Schematic of two-probe measurements.

In this case, the detector currents J1 and J2 (normalized to their
values in the absence of a reflected wave, which have to be determined
prior to displacement measurements, for example, using a matched
load) are

J1 = 1 + |Γ|2 + 2 |Γ| cosψ, (1)

J2 = 1 + |Γ|2 + 2 |Γ| sin (ψ − β) (2)
where |Γ| and ψ are the magnitude and phase of the unknown complex
reflection coefficient Γ = |Γ|eiψ at the location of probe 1, i.e., ψ is the
phase difference between the reflected and the incident wave at that
point, β = π

2 ( l−λg/8
λg/8 ), and the subscripts “1” and “2” refer to probes

1 and 2, respectively (for simplicity, in the following discussion the
magnitude of the complex reflection coefficient will be referred to as
the reflection coefficient).

The phase difference ψ may be written as

ψ =
4πx

λ0
+ φ (3)

where x is the distance between the target and probe 1, λ0 the free-
space operating wavelength, and the term φ, which is governed by
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the waveguide section and horn antenna geometry and the phase shift
caused by the reflection, does not depend on the distance x.

Let it be desired to find the displacement ∆x(t) of the target
relative to its initial position x(t0) from the measured currents J1(t)
and J2(t). This displacement can be unambiguously determined from
the quadrature signals cosψ and sin ψ. From Eqs. (1) and (2) we have

cosψ =
a1 − |Γ|2

2 |Γ| , (4)

sinψ =
a2 + a1 sinβ − |Γ|2 (1 + sinβ)

2 |Γ| cosβ
(5)

where
a1 = J1 − 1, a2 = J2 − 1. (6)

Combining the squares of Eqs. (4) and (5) gives the biquadratic
equation in |Γ|

|Γ|4 − [a1 + a2 + 2 (1− sinβ)] |Γ|2 +
a2

1 + a2
2 + 2a1a2 sinβ

2 (1 + sinβ)
= 0. (7)

This equation has two positive roots

|Γ|1 =

a1+a2

2
+1−sinβ+

√(
a1+a2

2
+1−sinβ

)2

−a2
1+a2

2+2a1a2 sinβ

2(1+sinβ)




1/2

, (8)

|Γ|2 =

a1+a2

2
+1−sinβ−

√(
a1+a2

2
+1−sinβ

)2

−a2
1+a2

2+2a1a2 sinβ

2(1+sinβ)




1/2

, (9)

one of which is extraneous.
Denote the positive extraneous root by |Γ|ext. Using Eqs. (4)

and (5), the absolute term of Eq. (7) can be brought to the form

a2
1+a2

2+2a1a2 sinβ

2(1+sinβ)
=

|Γ|2{|Γ|2+2|Γ|[cosψ+sin(ψ−β)]+2(1−sinβ)
}

(10)

whence we have

|Γ|ext =
{
|Γ|2 + 2 |Γ| [cosψ + sin (ψ − β)] + 2 (1− sinβ)

}1/2
. (11)
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A simple analysis shows that for |Γ| ≤
√

1−sin β
2 ≡ |Γ|0 the

extraneous root |Γ|ext will always be greater than or equal to |Γ|, and
thus the reflection coefficient |Γ| will always be given by |Γ|2 because
|Γ|2 ≤ |Γ|1. For |Γ| > |Γ|0, the extraneous root |Γ|ext will be smaller
than |Γ| if sin(ψ + β0) < −|Γ|0/|Γ| where β0 = arcsin |Γ|0, and thus the
reflection coefficient will be given by |Γ|1 if sin(ψ + β0) < −|Γ|0/|Γ|,
otherwise it will be given by |Γ|2. For clarity, all these cases are
summarized in Table 1.

Table 1. The roots |Γ|1 and |Γ|2 of Eq. (7).

|Γ|≤|Γ|0 |Γ|> |Γ|0
sin(ψ+β0)<−|Γ|0/|Γ| sin(ψ+β0)≥−|Γ|0/|Γ|

|Γ|1 = |Γ|ext

|Γ|2 = |Γ|
|Γ|1 = |Γ|
|Γ|2 = |Γ|ext

|Γ|1 = |Γ|ext

|Γ|2 = |Γ|

In the case |Γ| ≤ |Γ|0, the reflection coefficient |Γ| is
unambiguously determined from Eq. (7) as its root |Γ|2, which allows
one to find cosψ and sinψ from Eqs. (4) and (5). The displacement
of the target can readily be extracted from cosψ and sinψ using the
phase unwrapping method, which is a powerful tool to resolve the phase
ambiguity problem in a variety of applications [3, 12, 13]. Specifically,
the displacement ∆x of the target at time tn, n = 0, 1, 2, . . ., from its
initial position x(t0) can be found by the following phase unwrapping
algorithm [14]

ϕ(tn)=





arctan
sinψ(tn)
cosψ(tn)

, sinψ(tn)≥0, cosψ(tn)≥0,

arctan
sinψ(tn)
cosψ(tn)

+π, cosψ(tn)<0,

arctan
sinψ(tn)
cosψ(tn)

+2π, sinψ(tn)<0, cosψ(tn)≥0,

(12)

∆ϕ(tn)=ϕ(tn)−ϕ(tn−1), (13)

θ(tn)=





0, n=0,

θ(tn−1)+∆ϕ(tn), |∆ϕ(tn)|≤π, n=1, 2, . . . ,

θ(tn−1)+∆ϕ(tn)−2πsgn [∆ϕ(tn)] , |∆ϕ(tn)|>π,

n=1, 2, . . . ,

(14)

∆x(tn)=
λ0

4π
θ(tn), n=0, 1, 2, . . . , (15)

where ϕ and θ are the wrapped and unwrapped phases, respectively.
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In the case |Γ| > |Γ|0, the root |Γ|2 will not always be equal
to |Γ|, but, as will be shown below, the displacement can also be
determined to sufficient accuracy using the root |Γ|2 as the reflection
coefficient. As discussed above, the root |Γ|2 will be extraneous for
sin(ψ + β0) < −|Γ|0/|Γ|. In terms of the wrapped phase ϕ, this
condition becomes

ϕ1 < ϕ < ϕ2 (16)

where

ϕ1 = π + arcsin
|Γ|0
|Γ| − β0, ϕ2 = 2π − arcsin

|Γ|0
|Γ| − β0. (17)

The phase error ∆ϕer introduced when the extraneous root is
taken as the reflection coefficient will be

∆ϕer =





ϕap − ϕ + 2π if 0 ≤ ϕap ≤ π/2 and 3π/2 ≤ ϕ < 2π,

ϕap − ϕ− 2π if 3π/2 ≤ ϕap < 2π and 0 ≤ ϕ ≤ π/2,

ϕap − ϕ otherwise
(18)

where ϕ is the actual wrapped phase; ϕap is the apparent wrapped
phase calculated by Eqs. (4), (5), and (12) with the extraneous root
{|Γ|2 + 2|Γ|[cosψ + sin(ψ − β)] + 2(1− sinβ)}1/2 in place of |Γ|; 2π is
added or subtracted to overcome the 2π-discontinuity problem at the
boundary between the first and the forth quadrant.

As can be seen from Eqs. (13)–(15), the displacement error is
governed only by the phase error at the initial and the current
measurement point because the intermediate points cancel one another.
Because of this, the maximum displacement error will be

∆xer max =
λ0

4π
(∆ϕer max −∆ϕer min) (19)

where ∆ϕer max and ∆ϕer min are the maximum and the minimum value
of the function ∆ϕer(ϕ) on the interval 0 ≤ ϕ < 2π.

3. ADVISABLE INTERPROBE DISTANCE

Figure 2 shows the ratio ∆xer max/λ0 = (∆ϕer max −∆ϕer min)/4π
versus |Γ| for different values of the interprobe distance: l = λg/8, l =
0.9(λg/8) = 9λg/80, l = 0.8(λg/8) = λg/10, l = 0.7(λg/8) = 7λg/80,
and l = 0.5(λg/8) = λg/16. As illustrated, the error ∆xer max decreases
rapidly with decreasing l. However, in actual practice the interprobe
distance cannot be decreased below a certain lower limit. First, too
small interprobe distances are difficult to realize technically, which is
due in particular to the fact that any probe has a finite size. Second, as
the interprobe distance decreases, the detector currents approach each
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Figure 2. Maximum displacement error ∆xer max versus the reflection
coefficient |Γ| at different values of the interprobe distance l when the
only source of error is the use of the root |Γ|2 where it is extraneous.

other, thus increasing the contribution of the error component caused
by variations of the detector currents from their theoretical values
given by Eqs. (1) and (2) (such variations may be due to the effect of
the reflecting surface shape and orientation and the antenna radiation
pattern on the reflected wave, electromagnetic noise, etc.). As a result,
at some value of the interprobe distance the error may pass through
a minimum and start increasing. Because of this, calculations were
conducted to find out an advisable value of the interprobe distance.
In the calculations, the determination of the relative displacement of a
target executing a harmonic vibratory motion was simulated. In doing
so, variations of the detector currents from their theoretical values
were modeled by random current noise. The distance x of the target
to probe 1 and the detector currents J1 and J2 were simulated as

x(t) = x0 + A sin (2πt/T ) , (20)

ψ = ψ0 +
4π

λ0
A sin (2πt/T ) , ψ0 = φ +

4πx0

λ0
, (21)

J1 =
(
1 + |Γ|2 + 2 |Γ| cosψ

)
(1 + Anr) ,

J2 = [1 + |Γ|2 + 2 |Γ| sin (ψ − β)] (1 + Anr)
(22)

where t is the time; A and T are the target vibration amplitude and
period; x0 and ψ0 are the distance x and the phase ψ at t = 0; An

is the noise amplitude; r is a random variable uniformly distributed
between −1 and 1.

The calculations were conducted for different values of the
interprobe distance l and the reflection coefficient |Γ| at A = 2.5λ0 and
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An = 0.03. To get the maximum possible error, the initial phase ψ0

should be such that ∆ϕer(ψ0) = ∆ϕer min or ∆ϕer max; for definiteness,
ψ0 was chosen such that ∆ϕer(ψ0) = ∆ϕer min.

Figure 3 shows the maximum displacement error ∆xer max

(normalized to the free-space wavelength λ0) over five cycles of
vibration versus the interprobe distance l (normalized to λg/8) at
different values of the reflection coefficient |Γ|. As illustrated, with
decreasing interprobe distance the error passes through a minimum for
reflection coefficients close to unity (|Γ| =1, 0.95, and 0.9) and increases
monotonically for smaller reflection coefficients (|Γ| = 0.7, 0.3, 0.2,
and 0.1). The nonmonotonity of the error has been discussed above.
Its monotonic increase is due to the fact that for |Γ| < |Γ|0 (for
l ≤ λg/8, |Γ|0min = 1/

√
2 = 0.707) the displacement error is governed

only by variations of the detector currents from their theoretical values.
As can be seen from the figure, l = 0.8(λg/8) = λg/10 may be
chosen as an advisable interprobe distance because at this value of
l, in comparison with l = λg/8, the error shows a more than two-fold
decrease for reflection coefficients close to unity while remaining much
the same for smaller ones.
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Figure 3. Maximum displacement error ∆xer max versus the
interprobe distance l at different values of the reflection coefficient
|Γ| when the error is due both to the use of the root |Γ|2 where it is
extraneous and to detector current noise.

4. EXPERIMENTAL VERIFICATION

To cover the cases of both small and near-unity reflection coefficients,
free-space and waveguide measurements were made using the two-
probe measuring setup described in [10]. In the experiments, the
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interprobe distance remained fixed, and the ratio l/λg was varied by
varying the microwave oscillator frequency. Two frequencies were used:
9.7 and 8.7 GHz, at which l = λg/8 and λg/10, respectively. The
reflection coefficient was determined from Eq. (7) as its root |Γ|2.

In the free-space measurements, the target was a ∅ 218mm brass
disc put in motion by an electrically driven crank mechanism. The
disc peak-to-peak amplitude 2A (twice the crank radius) was 10 cm,
and the minimum distance between the disc and the antenna was
58 cm. The results for 9.7 and 8.7 GHz are presented in Figs. 4 and 5,
respectively. The figures show the measured disc displacement (a), the
disc peak-to-peak amplitude error ∆2A = |2Ameas − 2Aact| (b), and the
measured reflection coefficient. As can be seen from the figures, the
measured reflection coefficient is less than |Γ|0min = 1/

√
2 = 0.707. So

the root |Γ|2 gives the actual reflection coefficient. As is evident from
the graphs, for these small values of the reflection coefficient the error
∆2A at 8.7 GHz (l = λg/10) does not increase much in comparison
with 9.7 GHz (l = λg/8).

It can also be seen from the graphs that the measured reflection
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Figure 4. Free-space measure-
ments: (a) measured disc dis-
placement, (b) peak-to peak am-
plitude error, and (c) measured
reflection coefficient at 9.7 GHz
(l = λg/8).
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coefficient oscillates with a period equal to the half-wavelength (λ0/2 =
15.5mm at 9.7 GHz and 17.2 mm at 8.7 GHz). Such a behavior of the
reflection coefficient is indicative of the presence of multi-reflections
between the antenna and the disc surface. However, at the location of
the probes (in the waveguide section between the microwave oscillator
and the antenna, see Fig. 1) only two waves are present: the incident
wave and the reflected wave. Thus Eqs. (1) and (2) hold in the presence
of multi-reflections between the antenna and the target surface too.
Clearly these multi-reflections affect the amplitude of the reflected
wave in the waveguide section, but in the proposed technique their
effect is accounted for by determining the instantaneous value of the
reflection coefficient.

In the waveguide measurements, a short-circuiting piston was
mounted at the end of the waveguide section with the probes in
place of the horn antenna used in the free-space measurements. The
displacement was measured as the piston was moved every 1 mm. The
results for 9.7 GHz (l = λg/8) and 8.7 GHz (l = λg/10) are presented
in Fig. 6. The figure shows the measured piston displacement (a), the
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displacement error ∆xer = ∆xmeas − ∆xact (b), and the measured
reflection coefficient (c). The measured reflection coefficient shows
near-unity plateaus and valleys. The plateaus correspond to the
actual reflection coefficient, and the valleys occur where the root |Γ|2
becomes extraneous, which also manifests itself as the increase in
the displacement error observed at the location of the valleys. The
maximum displacement error decreases from 1.8 mm at l = λg/8 (4.3%
of λg = 4.18 cm) to 0.6 mm at l = λg/10 (1.2% of λg = 5.21 cm). The
decrease in the displacement error in this case (a near-unity reflection
coefficient) is much greater than its increase in the case of a small
reflection coefficient discussed above.

5. CONCLUSION

It is shown that the displacement of a target with an unknown
reflection coefficient can be determined to within a few percent of the
operating wavelength using a two-probe implementation of microwave
interferometry and the measurement error can be reduced by using
an interprobe distance shorter than the conventional one eighth of the
guided operating wavelength λg. The interprobe distance is suggested
to be λg/10. At this suggested value, in comparison with λg/8,
the inherent error of two-probe measurements, which manifests itself
at reflection coefficients close to unity, is reduced, while the error
introduced by variations of the detector currents from their theoretical
values, which increases as the interpobe distance and/or the reflection
coefficient decrease, remains much the same. So the major advantage
of the two-probe technique proposed in this paper over that proposed
in [10] is a distinctly smaller measurement error at near-unity reflection
coefficients.
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