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Abstract—A collocated surface impedance boundary condition
(SIBC) – finite difference time domain (FDTD) method is developed
for conductors coated with lossy dielectric coatings at oblique
incidence. The method is based on the collocated electric and
magnetic field components on the planar interface between two
media, and rational approximation for tangent function of surface
impedance formulation is adopted. In contrast to the traditional
SIBC-FDTD implementation which is approximated with the magnetic
field component on the boundary located at half-cell distance from
the interface and half time step earlier in time, the collocation
approach is more accurate for both magnitude and phase of reflection
coefficient. By the comparison with exact results, the proposed
model is numerically verified in the frequency domain for both parallel
polarization plane wave and vertical polarization plane wave at varying
oblique angles of incidence.

1. INTRODUCTION

With the development of modern science and technology, the
electromagnetic scattering of coated targets becomes more and more
important in military and technology. For instance, the absorbing
material covering on the strong scattering source of military objects
including the vehicle, missile, ship and tanks can be used to reduce
the RCS of the objects. The absorbing material is employed to
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build up a microwave anechoic chamber without reflection. The thin
dielectric backplate does exist in the design of a microstrip circuit and
microstrip antenna. The research on the electromagnetic scattering
by a coated target [1–4] is of great importance in both theory and
practical applications.

Finite-Difference Time-Domain (FDTD) [5, 6] method is widely
applied in various electromagnetic problems for its particular
advantage in dealing with inhomogeneous and complex-shaped
dielectrics. For the calculation of electromagnetic scattering of coated
targets, the computational domain of conventional FDTD technique
needs to include the two-region media of the interface. Since the
wavelength of electromagnetic waves in the modeled medium is very
small compared with the wavelength in free space, the extremely fine
mesh inside the medium is required. This straightforward fine mesh
dissection method may largely increase the memory requirements and
computation time. Surface impedance boundary conditions(SIBC) [7–
11] are introduced into the FDTD method, which let us to ignore the
coated targets under consideration from computation space and merely
discretize the fields of the surrounding space.

FDTD models for conductors coated with lossy dielectric coatings
using the SIBC technique can be found in [12]. A more general
FDTD model for dispersive coatings on conductor surfaces is developed
in [13]. However, conventional FDTD implementation, assuming the
magnetic field component located at half-cell size distance away from
the interface and half time step earlier in time equal to the magnetic
field component on the interface, have been adopted in the above-
mentioned literatures. In many cases the approximate method may
result in errors and instabilities. A more accurate SIBC method
for coated conductors, utilizing collocated electric and magnetic field
components on the interface in FDTD method [14] has been presented
but without taking into account the incidence angle and polarization
of plane wave. Based on collocated SIBC, the FDTD models of lossy
dielectric coatings on perfect conductors for parallel polarization and
vertical polarization plane wave at oblique incidence are developed in
this article.

This paper proceeds as follows. In Section 2, taking TM
plane wave at oblique incidence as example, we begin with the
analytical impedance boundary formula simulating coated materials
in the frequency domain. Utilizing rational approximation of tangent
function and inverse Laplace transform, the impedance boundary
conditions in the time domain are derived in Section 3. Next, based on
the collocated electric and magnetic field components on the interface
and Recursive Convolution (RC) method [15], the associated discrete
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SIBC-FDTD expression is provided in Section 4. In Section 5, the
formula is verified by the comparison with the exact results and it
is shown that the collocation approach is more accurate compared
with H-node shifting implementation for both magnitude and phase
of reflection coefficient. Section 6 is devoted to the conclusion.

2. SIBC FOR A COATING ON CONDUCTOR SURFACE
AT OBLIQUE INCIDENCE

The total tangential electric field and total tangential magnetic field
on the interface of two media is defined by [10]

Etan = Zs(ω) (n̂×Htan) (1)

where Zs(ω) is a surface impedance, n̂ is the unit surface normal
pointing outwards from the interface.

Here a model that a conductor is covered with a lossy dielectric
coating of thickness d will be considered. The complex permittivity of
the coating is of the form

ε1 = ε′1,rε0 − j
σ1

ω
(2)

where ε′1,r, σ1 and ε0 are relative dielectric constant, electric
conductivity and free space dielectric constant, respectively. The
relative permeability µr of the coating is supposed to be a constant.

When the parallel polarization(TM) and the vertical polarization
(TE) plane wave incident at angle θ on the coated conductor, the
surface impedance models are shown in Fig. 1. Take TM plane wave
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Figure 1. The equivalent surface impedance model for plane wave
from a coated conductor at oblique incidence. (a) Parallel polarization
(TM). (b) Vertical polarization (TE).
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as example. Based on the simple transmission line model, the input
impedance at a distance of d from the conductor plate is the analytical
surface impedance, and we get

Zs (ω) = Z1 cos θ1
Z2 cos θ2 + jZ1 cos θ1 tan (k1d cos θ1)
Z1 cos θ1 + jZ2 cos θ2 tan (k1d cos θ1)

(3)

where Z1 =
√

µ1/ε1 is the characteristic wave impedance of the
coating; Z2 =

√
µ2/ε2 is the characteristic wave impedance of the

material under the coating; k1 = ω
√

ε1µ1 is the wave number inside
the coating; θ1 and θ2 are angle of transmission in the coating and
conductor, respectively; d is thickness of the coating.

According to Snell’s law, we have

cos θ1 =
[(

1− α sin2 θ
) jω + β′

jω + β

]1/2

(4)

where α = µ0

µ1ε′1,r
, β = σ1

ε0ε′1,r
, β′ = β

1−α sin2 θ
.

When the background material is the ideal conductor, the
characteristic wave impedance satisfies Z2 ≈ 0, then the surface
impedance formula (3) becomes

Zs (ω) = jZ1 cos θ1 tan (k1d cos θ1) (5)

3. DERIVATION OF THE SIBC IN THE TIME DOMAIN

In Fig. 1, we assume the unit surface normal vector of the interface
parallel to the z-axis: n̂ = ẑ, the impedance boundary condition in (1)
can be represented respectively as

Ex = −Zs(ω)Hy (6)
Ey = Zs(ω)Hx (7)

In this paper, we will derive Equation (6) as example.
For the convenience of calculation, the tangent function in

surface impedance formula (5) is represented as continuous rational
approximations according to [13]

tan (x) ≈ f(x) =
M∑

s=1

asx

1− qsx2
(8)

where qs = 4/(2s− 1)2/π2 are to correctly model the singularities
of the tangent function corresponding to the thickness resonances
of the coating and the value of as have to guarantee the rational
approximation zero point be equal to the tangent function zero point.
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By setting the value of M , we get the same number of singularities: qs,
s = 1, . . . , M . And zeros zs = (s− 1)π, s = 1, . . . , M . The tangent
function and the proposed rational approximation (M = 20, x0 = π/4)
are shown in Fig. 2.
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Figure 2. Tangent function and an approximation of it.

Substituting Equations (5) and (8) into (6), we get the sum form
of Equation (6):

Ex =
M∑

s=1

−jZ1 cos2 θ1k1das

1− qs cos2 θ1k2
1d

2
Hy =

M∑

s=1

Es (9)

with

Es =
−jZ1 cos2 θ1k1das

1− qs cos2 θ1k2
1d

2
Hy (10)

Equation (10) is the basis for the rest of this paper.
We substitute Z1, k1 and cos θ1 into (10). By simplifying, the

following equation is obtained

[
1−ω2qsµ1ε

′
1d

2
(
1−α sin2θ

)jω+β′

jω+β
+jωqsµ1σ1d

2
(
1−α sin2θ

)jω+β′

jω+β

]
Es

= −jωµ1das

(
1− α sin2 θ

) jω + β′

jω + β
Hy (11)

With the Laplace transform variable s = jω, we have

[
1+s2qsµ1ε

′
1d

2
(
1−α sin2 θ

) s+β′

s+β
+ sqsµ1σ1d

2
(
1−α sin2 θ

)s+β′

s+β

]
Es

= −sµ1das

(
1− α sin2 θ

) s + β′

s + β
Hy (12)
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Setting F (s) = s+β′
s+β = 1 + β′−β

s+β , we can get the following formula by
applying the inverse Lapalace transform:

L−1 {F (s)} = δ (t) +
(
β′ − β

)
e−βt (13)

Substituting (13) into (12) and using the corresponding relationship of
time domain with frequency domain jω ↔ ∂

∂t , (12) is transformed into
the time domain

Es + A1
∂2Es

∂t2
+ A1

∫ t

0

(
β′ − β

)
e−βτ ∂2Es

∂ (t− τ)2
dτ

+A2
∂Es

∂t
+ A2

∫ t

0

(
β′ − β

)
e−βτ ∂Es

∂ (t− τ)
dτ

= −A3
∂Hy

∂t
−A3

∫ t

0

(
β′ − β

)
e−βτ ∂Hy

∂ (t− τ)
dτ (14)

where A1 = ε′1A0, A2 = σ1A0, A3 = asA0/q1d, A0 =
qsµ1d

2(1− α sin2 θ).

4. IMPLEMENT OF SIBC IN FDTD

According to Equation (14), the tangential electric field components
on the interface between free space and the coated conductor is related
to the tangential magnetic field components at the same position.
However, the electric and magnetic field components are not collocated
in space and have half time step difference in time in FDTD method.
Traditional SIBC implementation is approximated with the magnetic
field component located at half-cell size distance away from the
interface and half time step earlier in time: Hy|n0 ≈ Hy|n−1/2

1/2 . In many
cases the approximate method may results in errors and instabilities.

In this paper, Equation (14) is dealt with collocated magnetic and
electric components on the boundary according to the Reference [14].
At time step t = n∆t, the finite difference expression of the SIBC fields
and their derivatives are as follows:

X(n∆t)=α X|n0 +
β

2

(
X|n+1

0 + X|n−1
0

)

∂X(n∆t)
∂t

=
X|n+1

0 −X|n−1
0

2∆t
,

∂2X(n∆t)
∂t2

=
X|n+1

0 −2 X|n0 +X|n−1
0

∆t2

(15)

where X ∈ {Es, Hy}, α + β = 1 (0 ≤ α, β ≤ 1), α = 0.5 can guarantee
the stabilities of the collocation method.

In FDTD method, electric field and magnetic field component
in each time step can be assumed to be constant value. Then the
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convolution integrals in (13) are expressed as sums of the form
∫ t

0

(
β′−β

)
e−βτ ∂2Es

∂(t−τ)2
dτ =

n∑

m=0

Es|n−m+1
0 −2Es|n−m

0 +Es|n−m−1
0

∆t2
χm (16)

where

χm =
∫ (m+1)∆t

m∆t

(
β′ − β

)
e−βτdτ (17)

Since χm = e−β∆tχm−1, (16) can be represented as
∫ t

0

(
β′−β

)
e−βτ ∂2Es

∂(t−τ)2
dτ =

Es|n+1
0 −2Es|n0 +Es|n−1

0

∆t2
χ0+ϕn

1 (18)

where

ϕn
1 =

Es|n0 − 2Es|n−1
0 + Es|n−2

0

∆t2
χ1 + e−β∆tϕn−1

1 (19)

In a similar way, the other two convolution integrals in Equation (14)
can be expressed as

∫ t

0

(
β′ − β

)
e−βτ ∂Es

∂ (t− τ)
dτ =

Es|n+1
0 − Es|n−1

0

2∆t
χ0 + ϕn

2 (20)

where

ϕn
2 =

Es|n0 − Es|n−2
0

2∆t
χ1 + e−β∆tϕn−1

2 (21)

and
∫ t

0

(
β′ − β

)
e−βτ ∂Hy

∂ (t− τ)
dτ =

Hy|n+1
0 − Hy|n−1

0

2∆t
χ0 + ϕn

3 (22)

where

ϕn
3 =

Hy|n0 − Hy|n−2
0

2∆t
χ1 + e−β∆tϕn−1

3 (23)

In this way, the SIBCs differential Equation (14) is discretized as

Es

∣∣n+1

0
CA + Hy

∣∣n+1

0
CB

= Es

∣∣n
0
CA1+Es

∣∣n−1

0
CA2+Hy

∣∣n−1

0
CB−A1ϕ

n
1−A2ϕ

n
2−A3ϕ

n
3 (24)

where

CA=
β

2
+

A1

∆t2
(
1+χ0

)
+

A2

2∆t

(
1+χ0

)
, CB =

2A1

∆t2
(
1+χ0

)

CA1 =−α+
2A1

∆t2
(
1+χ0

)
, CA2 =−β

2
− A1

∆t2
(
1+χ0

)
+

A2

2∆t

(
1+χ0

) (25)
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Setting

Hs =Es

∣∣n
0
CA1+Es

∣∣n−1

0
CA2−Hy

∣∣n−1

0
CB−A1ϕ

n
1−A2ϕ

n
2−A3ϕ

n
3 (26)

In light of Equations (9), (24) and (26), it is easy to obtain

Ex|n+1
0 + Hy|n+1

0 ·KK =
20∑

s=1

Hs (27)

where KK =
20∑

s=1

CB
CA .

Utilizing the one-dimensional FDTD formula of Faraday’s
law [6, 14]

Ex|n+1
0 = Ex|n0 −

2
∆z

· ∆t

ε0

(
Hy|n+1/2

1/2 − 1
2

Hy|n+1
0 − 1

2
Hy|n0

)
(28)

and combining Equations (27) and (28), we can obtain the following
expressions

(
1 +

∆t

∆x · ε0 ·KK

)
Ex|n+1

0

= Ex|n0−
2

∆z
· ∆t

ε0

(
Hy|n+1/2

1/2 − 1
2KK

20∑

s=1

Hs − 1
2

Hy|n0
)

(29)

Hy|n+1
0 =

1
KK

(
20∑

s=1

Hs−Ex|n+1
0

)
(30)

(29) and (30) are one-dimensional update formulas of tangential
electric and magnetic field components on the interface, respectively.

5. NUMERICAL VERIFICATION

In this section, the numerical examples of the proposed collocated
SIBC-FDTD method will be presented. The incident field is a
differentiated Gaussian pulse of the form

E (t) = (t− τ1) e
−

(
t−τ1

τ2

)2

(31)

5.1. Reflection of TM Plane Wave from a Coated Conductor
at Oblique Incidence

Firstly, let us analyze the case that a TM plane wave is incident at
the angle θ = 30◦ on a coated ideal conductor. The thickness of the
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coating is d = 2mm, the relative dielectric constant of the coating is
ε′1,r = 10, and the conductivity of the coating is σ1 = 2S/m. The
relative permeability of coating is equal to 1. The FDTD spatial
step is ∆x = 2 mm, and the time step is ∆t = ∆x/2c0. The
parameters of the pulse are τ1 = 40∆t, τ2 = 12∆t. To reduce
the reflection from absorbing boundary, a modified Mur absorbing
boundary is used in the oblique incident situations [16]. Fig. 3(a) shows
the magnitude of reflection coefficients simulated with the collocated
SIBC-FDTD method and the traditional H -node shifts SIBC-FDTD
method. The exact reflection coefficients in the same conditions are
also presented. We can see that both of the two simulated results agree
quite well with the exact values for lower frequencies from 0 GHz to
12GHz. However, in the frequency range from 7 GHz to 20 GHz, it
is clearly seen that the collocation approach solution is considerably
more accurate as compared to the method with time and space shift
for magnetic component. In Fig. 3(b), the phase of the reflection
coefficient simulated with the proposed method is also better than
results simulated by the traditional approximation method.
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Figure 3. The reflection coefficient of TM plane wave from a coated
conductor at the angle of incidence θ = 30◦. Parameters of the coating:
d = 2 mm, ε′1,r = 10, σ1 = 2S/m. (a) Magnitude. (b) Phase.

The parameters of the case in Fig. 4 are as follows: the incident
angle of TM plane wave is θ = 60◦, the thickness of the coating is
d = 1 mm, the relative dielectric constant of the coating is ε′1,r = 15,
and the conductivity of the coating is σ1 = 1.5 S/m. The FDTD spatial
step is ∆x = 1 mm, and the time step is ∆t = ∆x/2c0. Compared
to the results simulated by traditional shift SIBC-FDTD method,
we can also see that the magnitude and the phase of the reflection
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Figure 4. The reflection coefficient of TM plane wave from a coated
conductor at the angle of incidence θ = 60◦. Parameters of the coating:
d = 1 mm, ε′1,r = 15, σ1 = 1.5 S/m. (a) Magnitude. (b) Phase.
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Figure 5. Magnitude of the reflection coefficient of TM plane wave
at varying oblique angles. Parameters of the coating: (a) d = 1 mm,
ε′1,r = 30, σ1 = 1S/m. (b) d = 2 mm, ε′1,r = 10, σ1 = 0.4 S/m.

coefficient calculated by collocated SIBC-FDTD method agrees better
with the exact results. The minor errors appearing in Figs. 3 and 4 are
acceptable, since the rational approximation of the tangent function
has a limited range of good accuracy.

Figure 5 below shows the reflection coefficients calculated by
collocated SIBC-FDTD method for the TM plane wave with varying
oblique incident angles. The incident angle of the pulse is π

6 , π
4 and

π
3 , respectively. The following parameters were used for the coatings
in Fig. 5(a): d = 1 mm, ε′1,r = 30, σ1 = 1 S/m. The coating in
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Fig. 5(b) has parameters: d = 2 mm, ε′1,r = 10, σ1 = 0.4 S/m. The
relative permeability of coating is equal to 1. The FDTD spatial step
is ∆x = 0.2mm, and the time step is ∆t = ∆x/2c0. As shown in
Fig. 5, the simulated reflection coefficients agree quite well with the
analytical results in the entire frequency range from 0 GHz to 80GHz.

5.2. Reflection of TE Plane Wave from a Coated Conductor
at Oblique Incidence

Next, let us consider the problem of TE plane wave incident obliquely
on the coated conductors. In Fig. 6, the incident angle of the pulse
is θ = 15◦. The parameters of the coating is: d = 1 mm, ε′1,r = 20,
σ1 = 2 S/m. In Fig. 7, the incident angle of the pulse is θ = 35◦.
The parameters of the coating is: d = 2 mm, ε′1,r = 10, σ1 = 2 S/m.
Compared to the results simulated by traditional shift SIBC-FDTD
method, it is also clearly seen that the approach with collocated fields
is considerably more accurate for the reflection coefficient, in both
magnitude and phase.

The magnitude of reflection coefficient calculated with collocated
SIBC-FDTD method for TE plane wave at oblique incident are shown
in Fig. 8. The incident angle of the pulse is π

6 , π
4 and π

3 , respectively.
The parameters of the coatings are the same as Fig. 5. The simulated
reflection coefficients and the analytical results are also in good
agreement in the frequency range from 0GHz to 80 GHz. It indicates
the validation of the proposed method for TE wave at oblique incidence
situation.
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Figure 6. The reflection coefficient of TE plane wave from a coated
conductor at the angle of incidence θ = 15◦. Parameters of the coating:
d = 1 mm, ε′1,r = 20, σ1 = 2S/m. (a) Magnitude. (b) Phase.
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Figure 7. The reflection coefficient of TE plane wave from a coated
conductor at the angle of incidence θ = 35◦. Parameters of the coating:
d = 2 mm, ε′1,r = 10, σ1 = 2S/m. (a) Magnitude. (b) Phase.
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Figure 8. Magnitude of the reflection coefficient of TE plane wave
at varying oblique angles. Parameters of the coating: (a) d = 1 mm,
ε′1,r = 30, σ1 = 1S/m. (b) d = 2 mm, ε′1,r = 10, σ1 = 0.4 S/m.

6. CONCLUSION

In this paper, a collocated surface impedance boundary condition
(SIBC) — finite difference time domain (FDTD) method for
conductors coated with lossy dielectric coatings at oblique incidence
is implemented. The proposed method is numerically verified by
comparison with the analytical results for both parallel polarization
plane wave and vertical polarization plane wave at varying oblique
angles of incidence in 1D. The numerical results shows that the
collocation approach is more accurate for both magnitude and
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phase of reflection coefficient compared with the traditional SIBC-
FDTD implementation which is approximated with the magnetic field
component on the boundary located at half-cell distance from the
interface and half time step earlier in time.
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