
Progress In Electromagnetics Research, Vol. 138, 675–696, 2013

TIME-DOMAIN REAL-VALUED TM -MODAL WAVES IN
LOSSY WAVEGUIDES

Oleg A. Tretyakov* and Mehmet Kaya

Department of Electronics Engineering, Gebze Institute of Technology,
Gebze, Kocaeli, Turkey

Abstract—The waveguide has a perfectly conducting surface. Its
cross section domain is bounded by a singly-connected contour of a
rather arbitrary but enough smooth form. Possible waveguide losses
are modeled by a homogeneous conductive medium in the waveguide.
The boundary-value problem for the system of Maxwell’s equations
with time derivative is solved in the time domain. The real-valued
solutions are obtained in Hilbert space L2 in a form of transverse-
longitudinal decompositions. Every field component is a product
of the vector element of the modal basis dependent on transverse
coordinates, and the modal amplitudes dependent on time and axial
coordinate. Three examples are included. The dynamic properties
of the modal waves and concomitant energetic waves are studied and
their dependence on time illustrated graphically.

1. INTRODUCTION

A layout of any analytical study of the waveguide time-domain
problems consists of two principal parts. The first one applies to
derivation of the waveguide modal fields, the amplitudes of which
depend on time, t, and an axial waveguide coordinate, z. At this
step, the one-dimensional Klein-Gordon Equation (KGE ) appears,
eventually, which specifies the modal amplitudes. The second part
relates to solving the KGE and has directly to do with the physical
analysis of the dynamic processes, in which the modal amplitudes
participate.

In the first part of our layout, we apply the simple mathematical
technique of the vector analysis for a straightforward derivation† of a
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complete set of the TM -time-domain modal waves from the system
of Maxwell’s equations with the time derivative, ∂t. Klein-Gordon
equation appears in this way naturally enough. Our main goal in the
time-domain studies is a fresh look at the dynamic physical properties
of the waveguide waves.

All the electromagnetic quantities in Maxwell’s equations are
measurable. Therefore, the solutions to Maxwell’s equations, with their
pertinent physical content, should be found in a class of the real-valued
functions.

The classical time-harmonic field approach operates in a space of
complex-valued solutions. The real-valued fields, which are needed for
the physical analysis, can be obtained then via superposition of two
solutions as

E (R,t) = E (R, ω) exp (−iωt) + E∗ (R, ω) exp (iωt) (1)

where E(R, t) and E(R, ω) are the electric field strength and its
phasor, respectively; R is a position vector at a point of observation,
t an observation time, −∞ < t < ∞, and ω a frequency parameter,
−∞ < ω < ∞.

Just the superposition in (1) presupposes linearity of Maxwell’s
equations.

We find the solutions to this problem within the framework of a
waveguide version of the evolutionary approach to electromagnetics‡,
see [2–5]. The TM -wave solutions are obtained directly in the Hilbert
space, L2, of the real-valued functions in a form, which can be exhibited
symbolically as follows:

H(R,t) = I(z, t)H(r) and E(R,t) = V (z, t)E(r) + e(z, t)Z(r), (2)

where H(r) and E(r) are the two-component basis vectors in the
waveguide cross section; Z(r) is a one-component basis vector with
the unit vector z, z the axial variable, and r a projection of R onto
the waveguide cross section. The scalar factors, I(z, t), V (z, t) and
e(z, t), are the amplitudes, physically.

reader who are familiar with the linear functional spaces, in general, and the Hilbert space,
L2, especially. Besides, that reader should have a notion about a topology of the Hilbert
space in the sense of Weyl theorem from the functional analysis.
‡ Postulation of the harmonic in time varying the fields (like in Eq. (1)) “kills” the time
derivative, ∂t, in Maxwell’s equations at the very beginning. We keep ∂t from the beginning
and up to the end in our analysis. In this way, we obtain the KGE where ∂2

t participates.
Mathematicians call all the differential equations with time derivatives as evolution (or
evolutionary) equations, see, for example, Journal of Evolution Equations [6]. Apparently,
this term was induced by Cauchy theorem for dynamic systems. Any solution, obtained
via the Cauchy theorem, exhibits how a process progresses in time (i.e., evolves, shortly)
starting from a given initial state and up to the state at a time of observation. That is why
we name this method as Evolutionary Approach to Electromagnetics (EAE).
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We had an opportunity to discuss a background history of the
time-domain electromagnetics in our previous publications, e.g., [7–
10]. A reader can find additional information on this topic in other
publications, e.g., [11–17].

The article is organized as follows:
In Section 2, the time-domain problem is stated for the

transverse-longitudinal decompositions of Maxwell’s equations with
time derivative, ∂t. Hilbert space, L2, of the real-valued functions
is defined as the space of solutions.

In Section 3, this problem is solved, and main results are listed.
A complete set of the basis elements, {Hm, Em, Zm}∞m=1, is derived
with needed their physical dimensions. The “magnetic” basis elements,
Hm(r), are obtained with dimension ampere per meter, whereas the
“electric” elements, Em(r) and Zm(r), are derived with dimension
volt per meter, both. The modal amplitudes, Im(z, t), Vm(z, t) and
em(z, t), which are attached to the basis elements (like in Eq. (2)), have
dimensionless quantities. The modal amplitude problem is obtained
in a general form. The modal basis problem and modal amplitude
problem are obtained as the autonomous ones.

In Section 4, the modal amplitude problem is analyzed.
Eventually, this problem comes to solving the Klein-Gordon Equation
for the modal amplitude em(z, t). As soon as em(z, t) is obtained,
the other amplitudes, Im(z, t) and Vm(z, t), can be found as t- and
z-derivatives of em(z, t), respectively. Implementation of this scheme
is illustrated by two examples where the variables (z, t) are separated
and exact explicit solutions are obtained.

In Section 5, a new version of separation of the variables in the
KGE is considered. This version is based on Miller’s concept about
existence of ten hidden “orbits of symmetry” in the KGE [20]. One
of the orbits is taken for analysis herein. A final physical result
can be shortly announced as follows. The symmetry of KGE on the
chosen orbit discloses existence of a new countable set of the modal
amplitudes oscillating with the same cut-off frequency. Besides, these
elements have some polynomial factors, which involve z and t variables.
The lowest element coincides with that one what yields separation of
variables on the orbit (z, t). All other elements belong to another orbit
of symmetry.

In Section 6, the time-domain energetic quantities are listed. The
conservation of energy law is presented as a continuity equation with
z- and t-derivatives. The modal energetic waves, which propagate
accompany with the field waves, are discovered and illustrated
graphically.

In Section 7, a short summary of new research findings is given.
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2. THE NOTATIONS AND THE GOVERNING
EQUATIONS

2.1. A Description of the Waveguide and the Notations

The waveguide is geometrically homogeneous along its axis, Oz. Its
invariable cross-section domain, S, is bounded by a closed singly-
connected contour, L. The shape of L may be rather arbitrary
provided that none of the possible its inner angles (i.e., measured
within S) exceed π. The standard waveguides with the rectangular
cross section satisfy this requirement. A right-handed triplet {z, l,n}
(where z × l = n and so on) of the mutually orthogonal unit vectors
is introduced. The vector z is oriented along the waveguide axis,
Oz; the vector l is tangential to the contour, L; and n is the outer
normal to the domain S. The waveguide surface has the properties
of the perfect electric conductor. The waveguide is filled with a lossy
medium specified by its conductivity, σ. The relative permittivity
and permeability of the medium within the waveguide are taken as
ε = µ = 1.

2.2. The Governing Equations

The electromagnetic field quantities are the functions of four
independent variables, namely: two transverse coordinates, which are
accumulated in the vector r, and the variables (z, t). In the form (2) of
the expected solution, every field component is presented as a product
of two functions. In every product, one function depends on (z, t),
only, and the other one depends on r, solely. This trick is known in
the partial differential equation theory as an incomplete separation of
the variables [18]. In order to apply this method effectively, we should
first rearrange Maxwells equations. Projecting these equations onto
the waveguide cross section and the waveguide axis results in

∂zE + µ0∂t [H× z] =∇⊥Ez (3a)
∇⊥ · [z×E] = 0 (3b)
∂z [z×H] = ε0∂t E + σE (3c)
∇⊥ · [H× z] = ε0∂tEz + σEz (3d)

∇⊥ ·H = 0 (3e)

∇⊥ ·E + ∂zEz = − σ

ε0

∫ t

0
(∇⊥ ·E + ∂zEz) dt′ (3f)

where ∇⊥ is the transverse part of the operator nabla, ∇. This
operator, ∇⊥, acts on the transverse variables, (r), only. Eqs. (3a)
and (3b) are the projections of the vector equation, ∇×E = −µ0∂tH,
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onto the waveguide cross-section, S, and axis Oz, respectively.
Eqs. (3c) and (3d) are the projections of equation ∇×H = ε0∂tE +σE
onto the domain S and the axis Oz, respectively. Eq. (3e) is the
divergent equation, µ0∇ · H = 0. Combination of the equation
ε0∇·E = ρ and the continuity equation, ∇·J = −∂tρ, for the induced
current and charge densities, J = σE and ρ, results in Eq. (3f). A
complete set of the Maxwell’s differential Eqs. (3a)–(3f) should be
supplemented with the boundary conditions as

Ez|L = 0, l ·E|L = 0, n ·H|L = 0. (4)

2.3. The Space of Solutions

A Hilbert space, L2, of the real-valued functions is chosen as a space
of solutions and defined by an inner product as

〈X1,X2〉=
∫ z2

z1

∫ t2

t1

∫

S
[µ0H1 ·H2+ε0 (E1 ·E2+Ez1 · Ez2)] dsdtdz (5)

where X1 = col(E1,H1) and X2 = col(E2,H2) is a pair of the column-
vectors from the space of solutions, z1 ≤ z ≤ z2 and t1 ≤ t ≤ t2. The
free-space constants, ε0 and µ0, play role of the weighting coefficients
herein. Notice that the procedure of complex conjugation is absent in
the integrand in Eq. (5).

3. SOLVING THE PROBLEM (3)–(4)

Equations (3b) and (3e) suggest to search out the vectors E and H as

E (r,z, t) = V (z, t) ε
− 1

2
0 ∇⊥φ (r)

H (r,z, t) = I (z, t) µ
− 1

2
0 [z×∇⊥φ (r)]

(6)

where the scalar functions, V (z, t), I(z, t) and φ(r), should be found
afterwards. The free-space constants, ε0 and µ0, are installed in (6)
specially in order to provide later the fields E and H with their physical
dimensions Vm−1 (volt per meter) and Am−1 (ampere per meter),
respectively. The longitudinal field component, Ez, can be presented
similarly as

Ez (r,z, t) = E (z, t) ε
− 1

2
0 φ (r) (7)

where E(z, t) is one more unknown scalar function, as yet.
Substitution of H and Ez from Eqs. (6) and (7) to Eq. (3d) results

in
I (z, t) ∇2

⊥φ (r) =
[
c−1∂tE (z, t) + 2γc−1E (z, t)

]
φ (r) (8)
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where c−1 =
√

ε0µ0 is the light speed, and 2γ = σ/ε0 is a lossy
parameter.

Mention here that the boundary condition Ez|L = 0 results in
φ(r)|L = 0. This fact, jointly with presence of the factor ∇2

⊥φ(r)
in Eq. (8), suggests to introduce into consideration the well-studied
Dirichlet boundary-eigenvalue problem for the transverse Laplacian,
∇2
⊥, as

∇2
⊥φm (r) + κ2

mφm (r) = 0 and φm (r) |L = 0 (9)

where {κ2
m}∞m=1 is a set of the real-valued eigenvalues; κ2

0 = 0 is also
the eigenvalue, and an eigensolution φ0(r), corresponding to κ2

0, is a
solution to the problem as {∇2

⊥φ0 = 0, φ0|L = 0}. This solution
is equal to zero in accordance with the minimum-maximum principle
for the harmonic functions§. The subscript m = 1, 2, . . . regulates
positions of the other eigenvalues, κ2

m > 0, on a real axis in order of
increasing their numerical values. The set of eigenfunctions, {φm}∞m=1,
corresponding to all the eigenvalues, κ2

m, is complete. This set
originates a basis in Hilbert space L2(S) provided that the problem (9)
is supplemented with the appropriate normalization conditions for
the functions φm(r). Hence, any twice-differentiable function, φ(r),
satisfying the same boundary condition, φ(r)|L = 0, can be expanded
in terms of the basis elements.

Let us take the eigenfunctions φm(r) as the potential φ(r) in
formulas (6) and (7), and scale by κm the factor E(z, t) as follows:
E(z, t) = κmem(z, t). Then Eqs. (7) and 8) take the form as

Ez m (r,z, t) = em (z, t) ε
− 1

2
0 κmφm (r)

Im (z, t) = − (κmc)−1 [∂tem (z, t) + 2γ em (z, t)]
(10)

where m = 1, 2, . . .. Eq. (3f) yields a relationship between Vm and em

as

Vm(z, t)−κ−1
m ∂zem(z, t)+2γ

∫ t

0

[
Vm

(
z, t′

)−κ−1
m ∂zem

(
z, t′

)]
dt′=0. (11)

Factually, this relationship is much simpler. If we introduce a
function as

f (z, t) =
∫ t

0

[
Vm

(
z, t′

)− κ−1
m ∂zem

(
z, t′

)]
dt′ (12)

and notice that the first pair in Eq. (11) is ∂tf(z, t), then Eq. (11)
yields an initial-value problem for the function f(z, t) as

∂tf (z, t) + 2γf (z, t) = 0 and f (z, t) |t=0 = 0 (13)
§ It is so because the cross section S is chosen as a singly-connected domain.
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where the initial condition follows from the mean-value theorem
applied to the integral in Eq. (12). Solving this problem results in
f(z, t) ≡ 0. Hence,

Vm (z, t) = κ−1
m ∂zem (z, t) . (14)

We shall operate henceforward with the field components taken as

Hm (r,z, t) = Im (z, t) µ
− 1

2
0 [z×∇⊥φm (r)]

Em (r,z, t) = Vm (z, t) ε
− 1

2
0 ∇⊥φm (r)

Ez m (r,z, t) = em (z, t) ε
− 1

2
0 κmφm (r) .

(15)

Substitution of the formulas (15) to Eq. (3a) yields
∂zVm (z, t) + c−1∂tIm (z, t)− κm em (z, t) = 0. (16)

Finally, the formulas (10) and (14), being substituted to Eq. (16),
results in the well known Telegraph equation [19], i.e.,

(κmc)−2 ∂2
t em + 2γ (κmc)−2 ∂tem − κ−2

m ∂2
zem + em = 0. (17)

Substitution of the fields (15) to Eq. (3c) yields identity, 0 = 0.

3.1. Main Results

3.1.1. Normalization of the Solutions to Dirichlet Problem

The TM -modal wave problem starts with solving the Dirichlet
boundary-value problem. Supplement that with the normalization
condition, which we choose as

∇2
⊥φm(r)+κ2

mφm(r)=0, φm(r)|r∈L =0, N 2
m

S

∫
S φ2

m(r)ds=N, (18)
where Nm is the normalization constant, and N is the “nominated”
number 1. That is, we take this number, 1, and assign the force
unit N = kgms−2 (newton). Evidently, that the constant, Nm, has
the physical dimension N

1
2 provided that the potential φm(r) is a

dimensionless quantity, see Example 1.
Example 1 Solve the problem (18) for a standard waveguide with

the rectangular cross section specified as 0 ≤ x ≤ a and 0 ≤ y ≤ b.
Separation of the variables in Helmholtz Eq. (18) yields the potential,
φm(r) ≡ φm(x, y), as

φm (x, y) ≡ φp, q (x, y) = sin (πp x/a) sin (πq y/b) , (19)
which corresponds to the eigenvalues distinct from zero,

κ2
m ≡ κ2

p, q = π2
[
(p/a)2 + (q/b)2

]
. (20)

The subscript parameter, m, is a doublet, (p, q), composed of the
integers, p = 1, 2, . . . and q = 1, 2, . . .. The normalization condition
yields Nm = 2N

1
2 .
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3.1.2. The Waveguide Modal Basis

Complete set of the normalized solutions to the problem (18) generates
a complete set of elements of a modal basis as

Hm (r) = z×∇⊥φm (r)
[
µ
− 1

2
0 Nm

]

Em (r) = ∇⊥φm (r)
[
ε
− 1

2
0 Nm

]

Zm (r) = zκmφm (r)
[
ε
− 1

2
0 Nm

]
(21)

where Nm is proportional to N
1
2 . Products [µ

− 1
2

0 N
1
2 ] and [ε

− 1
2

0 N
1
2 ]

have physical dimensions A (ampere) and V = kgm2A−1s−3 (volt),
respectively. Square root of the eigenvalues,

√
κ2

m = κm, and the
operator∇⊥, have dimension m−1 (inverse meter). Thus, the elements
Hm have dimension Am−1 (ampere per meter), and Em and Zm, both,
have dimension Vm−1 (volt per meter). Hence, the modal amplitudes
in Eq. (15) are the dimensionless quantities.

3.1.3. The Waveguide Evolutionary Equations

It is convenient to operate with the dimensionless variables, which we
introduce by scaling z and t as

ξ = κmz and τ = ωmt (22)

where κm and ωm = κmc are the cut-off wave number and the cut-off
frequency, physically. Then the modal TM -waves are presentable as

Hm =Im(ξ,τ)Hm(r) and Em =Vm(ξ,τ)Em(r)+em(ξ,τ)Zm(r). (23)

The modal amplitudes, dependent on (ξ, τ), are the dimensionless
quantities. The amplitude em(ξ, τ) should be found by solving
equation

∂2
τ em (ξ, τ) + 2%∂τem (ξ, τ)− ∂2

ξ em (ξ, τ) + em (ξ, τ) = 0 (24)

where % = γ/ωm is a dimensionless lossy parameter. The other
amplitudes are

Vm(ξ, τ)=∂ξem(ξ, τ) and Im(ξ, τ)=−∂τem(ξ, τ)−2%em(ξ, τ). (25)
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3.1.4. A Conclusion

The modal amplitude problem (24), (25) and the modal basis
problem (21) are autonomous. Tracing back analysis given in this
Section, a reader can be certain that the problems (21) and (24), (25)
were extracted from Maxwell’s equations with ∂t rigorously, in the
mathematical sense.

4. EXAMPLES OF SOLVING KLEIN-GORDON
EQUATION

Time derivative of the first order, ∂τ , can be eliminated from Eq. (24)
by applying a substitution for the expected solution, em(ξ, τ), as
follows:

em (ξ, τ) = e−%τ ẽm (ξ, τ) (26)

where ẽm(ξ, τ) is a new unknown function. Simple manipulations with
Eqs. (26) and (24) result in canonical Klein-Gordon Equation ( KGE )
as

∂2
τ ẽm (ξ, τ)− ∂2

ξ ẽm (ξ, τ) + η2ẽm (ξ, τ) = 0 (27)

and slightly changed formulas (25) to the form of

Vm =e−%τ∂ξ ẽm(ξ, τ) and Im =−e−%τ [∂τ ẽm(ξ, τ)+%ẽm(ξ, τ)] (28)

where η =
√

1− %2 ≥ 0, % = γ/ωm, and γ = σ/ (2ε0) is the lossy
parameter.

The modal basis problem, (18) and (21), is common for the time-
domain fields and also for the time-harmonic fields presentable in
the form (23). The modal amplitude problem rests upon solving the
KGE (27). This solution yields then the amplitude of the longitudinal
field component by formula (26). The amplitudes of the transverse
components can be calculated by formulas (28).

As an implementation of this scheme, let us look for the
amplitudes of the time-harmonic fields. The method of separation
of ξ- and τ -variables can be applied for solving the KGE (27). Exact
explicit solutions for the real-valued time-harmonic modal amplitudes
are obtained in two examples below.

Example 2 Let an expected solution to Eq. (27) be in the form
of

ẽm (ξ, τ) = Am sin [($τ − ξ Γm) + ϕm] (29)

where $ = ω/ωm is a dimensionless frequency, ω is a frequency
parameter, ωm = κmc, κm is square root of an eigenvalue from
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Dirichlet problem (9), c is the light speed. The constants, Am and
ϕm, are real-valued free numerical parameters‖. Substitution of the
function ẽm(ξ, τ) to Eq. (27) yields Γm = ±

√
$2 − η2 provided that

$2−η2 ≥ 0. In the sign doublet, (±), the upper sign corresponds to the
wave propagation lengthwise Oz-axis, and the lower sign corresponds
to the opposite direction. In order to simplify notations henceforth,
we now introduce two “phase functions” as

Φm(ξ, τ) = $τ−ξΓm+ϕm ≡ ωt−(z/c)
√

ω2−ω2
m+γ2+ϕm (30a)

Φ̊m(ξ, τ) = Φm(ξ, τ)−ϑm (30b)

where ϑm = sin−1(%/
√

$2 + %2) is a “lossy” phase shift. If % =
γ/ωm = 0, (i.e., γ = 0, the waveguide is lossless), then ϑm = 0 and
Φ̊m (ξ, τ) = Φm (ξ, τ).

Let us take the upper sign in (±Γm) and substitute solution (29)
to Eqs. (26) and (28). It results in the modal amplitudes of the TM -
waves as

e$
m (ξ, τ)=Am e−%τ sin [Φm (ξ, τ)] (31a)

V $
m (ξ, τ)=−Am

√
$2 − η2 e−%τ cos [Φm (ξ, τ)] (31b)

I$
m (ξ, τ)=−Am

√
$2 + %2 e−%τ cos

[
Φ̊m(ξ, τ)

]
, m = 1, 2, . . . . (31c)

Condition Γm = 0 yields an equation for the frequency parameter,
$cut-off. Solving this equation specifies so-called “cut-off” frequencies
as

$cut-off = η =
√

1− %2 (32)

where % = γ/ωm ≤ 1, ωm = κmc. Nominally admissible value of the
parameter γ = κmc yields ωcut-off = 0. The values of κm, m = 1, 2 . . .,
are called as the “cut-off wave numbers” of the lossless waveguides.

Notice that all information about the shape and size of the
contour, L, of the waveguide cross section, S, is accumulated just in
the numbers κm. For the cavity with a rectangular cross section, the
values of κm are obtained in Example 1. In a similar way, one can
easily find (analytically or numerically) these parameters, κm, for the
other singly-connected contours.

It should be noticed, as well, that the graphical presentations
of the amplitude in terms of ξ- and τ -variables are preferable. All
specificity of the waveguide contour L is already put away in κm,
see Eq. (22). Thus, the amplitudes for the rectangular and circular
waveguides look graphically equally.
‖ Involvement of two parameters, Am and ϕm, in the solution (29) is equivalent to
presentation that via two linearly independent sine and cosine functions as ẽm(ξ, τ) =
am sin(·) + bm cos(·) where (·) is (τω/ωm − ξ Γm), am = Am cos ϕm, bm = Am sin ϕm.
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Example 3 Let a cavity be a piece of the short-circuited
waveguide where 0≤z≤`. Apply the boundary condition, z×E
(r,z, t) = 0, at z = 0 and z = `; r ∈ S. This condition is equivalent to
∂ξ ẽm|z=0, ` = 0. Separation of the variables (ξ, τ) by factorization of
an expected solution to (27) as ẽm = Tm(τ)Xm(ξ) yields

T−1
m (τ) d2

dτ2 Tm (τ) + η2 = X−1
m (ξ) d2

dξ2 Xm (ξ) = −Λ2
m (33)

where Λ2
m > 0 is a real-valued constant of separation of the variables.

The first problem, {Xm(ξ) : d2

dξ2 Xm + Λ2
mXm = 0, ∂ξXm|z=0, ` = 0},

yields Xm(ξ) = cos(Λmξ) where Λm = πs/(κm`), s = 1, 2, . . ., and κm

is the waveguide cut-off wave number. The other problem, {Tm (τ) :
d2

dτ2 Tm + (Λ2
m + η2)Tm = 0}, yields Tm(τ) = Bm sin(τ

√
Λ2

m + η2 + ϕ̌m)
provided that

√
Λ2

m + η2 ≥ 0. The parameters, Bm and ϕ̌m, can be
specified by applying the appropriate initial conditions.

Introduce one more pair of the “phase functions” as

Ψms (τ) = τΩms + ϕ̌m ≡ t ωmΩms + ϕ̌m (34a)

Ψ̊ms (τ) = Ψms (ξ, τ)− δs (34b)

where a dimensionless frequency, Ωms, and a “lossy” phase shift, δs,
are

Ωms =
√

1+[πs/(κm`)]2 − %2, δs =sin−1
[
%/

√
1+[πs/(κm`)]2

]
. (35)

Then the amplitudes of the TM -cavity modes can be shortly written
as

I(c)
ms(z, τ)=−Bm

√
1 + [πs/(κm`)]2e−%τ cos

[
Ψ̊ms(τ)

]
cos(πsz/`) (36a)

V (c)
ms (z, τ)=−Bm[πs/(κm`)] e−%τ sin[Ψms(τ)] sin(πsz/`) (36b)

e(c)
ms(z, τ)=Bme−%τ sin[Ψms(τ)] cos(πsz/`), s = 1, 2, . . . (36c)

where the superscript, (c), implies “cavity”. Nominally admissible
values of the lossy parameter % = γ/ωm are within the interval
0 ≤ % ≤

√
1 + [πs/(κm`)]2.

5. THE KGE AND PARABOLIC CYLINDER
FUNCTIONS

Klein-Gordon Eq. (27) is relativistic. Hence, that must maintain its
form under action of the relativistic Lorentz transformations in any
inertial reference frame. Therefore, the solutions to KGE obey specific
properties of symmetry, as well. These symmetries were studied by
Miller within the framework of the Group Theory in [20]. Some Miller’s
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ideas were used in our previous publications [5, 9]. In this article, we
continue expansion of the group-theoretical results on development of
the time-domain electromagnetics.

The Group Theory operates with a so-called point transformation.
This implies, technically, that in addition to the independent variables
in Eq. (27), i.e., ξ and τ , one should introduce a pair of dependent
variables as u ≡ u(ξ, τ) and v ≡ v(ξ, τ). Then solution to
Eq. (27), ẽm(ξ, τ), can be interpreted as ẽm[u(ξ, τ), v(ξ, τ)]. Formal
substitution of the latter to Eq. (27) yields




[(∂τu)2 − (∂ξu)2]∂2
u +

[
(∂τv)2 − (∂ξv)2

]
∂2

v

+
[
∂2

τ u− ∂2
ξ u

]
∂u +

[
∂2

τ v − ∂2
ξ v

]
∂v

+2 [(∂τu) (∂τv)− (∂ξu) (∂ξv)] ∂2
uv + η2





ẽm (u, v) = 0 (37)

where the dependent variables are undefined as yet. Right now, one
can say only that (u, uξ, uτ , uξτ , uξξ, uττ ) and (v, vξ, vτ , vξτ , vξξ, vττ )
should exist.

Just the Group Theory proposes a way for definition of u(ξ, τ)
and v(ξ, τ) proceeding from the symmetry¶ of (27). In this article,
we consider one of the possible other 10 cases, see Appendix in [5].
Specifically, that looks as

ητ =
(
u2 + v2

)
/2 and ηξ = uv (38)

where −∞ < u < ∞ and 0 ≤ v < ∞. Inversion of Eq. (38) yields

u(ξ,τ)=
√

η

2

(√
τ +ξ+

√
τ−ξ

)
and v(ξ,τ)=

√
η

2

(√
τ +ξ−

√
τ−ξ

)
(39)

where we suppose initially that τ ≥ 0 and 0 ≤ ξ ≤ τ .
We can calculate now the variable coefficients, which are placed

in the square brackets in Eq. (37). The first pair of the coefficients,
which stands in front of the derivatives, ∂2

u and ∂2
v , are distinct from

zero and, respectively, are[
(∂τu)2 − (∂ξu)2

]
= −

[
(∂τv)2 − (∂ξv)2

]
= η2/

(
u2 − v2

)
. (40)

All the other coefficients are equal to zero. Finally, Eq. (37) looks as
1

u2 − v2
∂2

uẽm (u, v)− 1
u2 − v2

∂2
v ẽm (u, v) + ẽm (u, v) = 0. (41)

¶ Miller has established ten of so-called “orbits of symmetry.” These result in definition for
the eleven pairs of the dependent variables, {u(ξ, τ), v(ξ, τ)}. The first pair as u(ξ, τ) = ξ
and v(ξ, τ) = τ is trivial. This case directs electromagnetics to the time-harmonic field
approach. The other ten pairs are capable of elucidation of new aspects in the time-domain
electromagnetics. One can find a complete list of these pairs in Appendix [5].
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Virtually, the chosen symmetry transformation of Eq. (27)
rearranges that to its equivalent form (41). In other words, (41) holds
whenever (27) holds.

It is evident that Eq. (41) can be solved by separation of the
variables, u and v. To this aim, the solution should be factorized as
follows:

ẽm (u, v) = Um (u)Vm (v) . (42)

Substitution of the product (42) to Eq. (41) yields
d2

du2Um +
(
u2 + λ

)
Um = 0 and d2

dv2Vm +
(
v2 + λ

)
Vm = 0 (43)

where λ is a constant (possibly, complex-valued) of separation of the
variables.

Both Eq. (43) are pertained to the type of ordinary differential
equations for the parabolic cylinder functions. However, it is necessary
to rearrange their form to a canonical one (see [21]) which looks as

d2

dx2 y (x)− (
1
4x2 + a

)
y (x) = 0 (44)

In order to put in order Eq. (43), we slightly change the variables, u
and v, and the parameter λ, appropriately, what yields

d2

dů2U(̊u)−(
1
4 ů2+α

)
U(̊u)=0 and d2

d̊v2V(̊v)−(
1
4 v̊2+α

)
V(̊v)=0 (45)

where α is a new parameter, subscript (m) is omitted. The new
variables are

ů = u
√

i2 =
√

iη
(√

τ + ξ +
√

τ − ξ
)

(46a)

v̊ = v
√

i2 =
√

iη
(√

τ + ξ −
√

τ − ξ
)

(46b)

where i =
√−1 is the imaginary unit.

Both equations in Eq. (45) coincide (with accuracy to notations).
Therefore, we can take their solution as

U (̊u) = U (α, ů) and V (̊v) = U (α, v̊) (47)

where U(α, ·) is one of the possible form of the solutions+ to Eq. (44),
parameter α has a half-integer value, namely: α = −(2n + 1)/2,
n = 0, 1, 2, . . ..

Finally, we are ready to write down two linearly independent
solutions to the equations in (45). They are expressible via products of
+ The solutions to Eq. (44) can be expressed via confluent hypergeometric series (Kummer’s
and Whittaker’s functions). We use standard solutions denoted in [21] as U(α, x).
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the parabolic cylinder functions (47). Therefore, they are parametrized
by superscript (α) as

ê(α)
m (ξ, τ)=e−%τ [U (α, ů) U (α, v̊) + U (α, ů∗) U (α, v̊∗)] /2 (48a)

ĕ (α)
m (ξ, τ)=e−%τ [U (α, ů) U (α, v̊)− U (α, ů∗) U (α, v̊∗)] /2i (48b)

where ů∗ is ů complex conjugated and v̊∗ is v̊ complex conjugated.
These solutions satisfy Eq. (27). So long as the parabolic cylinder
functions with

α = − (2n + 1) /2 where n = 0, 1, 2, . . . (48c)
are convertible to the Hermite polynomials, calculations by formu-
las (48a)–(48c) result in the simple explicit expressions. In particular,
if n = 0 then

ê
(− 1

2)
m = e−%τ cos (ητ) and ĕ

(− 1
2)

m = −e−%τ sin (ητ) . (49)

One can form a linear combination of these solutions as

eη
m = amê

(− 1
2
)

m − bmĕ
(− 1

2
)

m ≡ e−%τAm sin (ητ + ϕm) (50)
where am and bm are numerical parameters which specify Am and ϕm

as

Am =
√

a2
m+b2

m and ϕm =sin−1 (am/Am)=cos−1 (bm/Am) . (51)

This linear combination one-to-one corresponds to Eq. (31a) provided
that the frequency parameter, $, coincides with the cut-off frequency,
η, see Eq. (32).

The modal amplitudes V η
m and Iη

m, which are generated by eη
m, can

be found by formulas (25). The results of calculations of V η
m and Iη

m

one-to-one correspond to Eqs. (31b), (31c) provided that $ = η. The
lossy phase shift, ϑm, from Eq. (30b) is found as ϑm = sin−1 % = cos−1 η
for this case.

As it follows from Eqs. (48a)–(48c), a countable set of other
solutions exists for the frequency $ = η. If n = 1 in (48c), the
formulas (48a), (48b) result in

ê(−3/2)
m (ξ, τ) = e−%τηξ sin (ητ) (52a)

ĕ(−3/2)
m (ξ, τ) = e−%τηξ cos (ητ) . (52b)

The case n = 2 yields one more pair of the solutions as

ê(−5/2)
m (ξ, τ) = e−%τ

[(
1/4− η2ξ2

)
cos (ητ)− ητ sin (ητ)

]
(53a)

ĕ(−5/2)
m (ξ, τ) = −e−%τ

[
ητ cos (ητ) +

(
1/4− η2ξ2

)
sin (ητ)

]
. (53b)

And so on. Thus, in the large, we obtained a new countable set
of exact solutions to the relativistic Maxwell’s equations with time
derivative.
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Remark The orbit of symmetry of KGE, where u(ξ, τ) = ξ and
v(ξ, τ) = τ hold, absorbs the time-harmonic solutions like (31a)–(31c)
and (36a)–(36c). In these solutions, the frequency parameter does not
suffer restrictions. In the orbit of symmetry, where Eqs. (46a), (46b)
hold, the frequency parameter is restricted by condition (32). The
solutions, oscillating with the cut-off frequency, appear to be arranged
in a new countable set of the fields generated by Eqs. (48a)–(48c).

6. THE INSTANT ENERGETIC CHARACTERISTICS

6.1. The General Energetic Relationships

Introduce a control volume, δV , limited by two consecutive waveguide
cross sections located at coordinates z and z + δz. Apply Poynting’s
theorem to the TM -modal field (23). Take the limit when δz → 0. On
this way∗, two energetic characteristics appear as

Pm z (ξ, τ) =
[

1
S

∫

S
z · Em×Hmds

]
VmIm =

[
cκ2

mN
]Pm z (ξ, τ) (54a)

Wm (ξ, τ) =
[
κ2

mN
]Wm (ξ, τ) (54b)

where factor [cκ2
mN ] has physical dimension Wm−2 (watt per meter2)

and factor [κ2
mN ] has physical dimension Jm−3 (joule per meter3).

If δV |δz→0 → 0, dimensional quantity Pm z specifies the modal
power flow through a fixed waveguide cross section. The dimensional
quantity Wm specifies the modal field energy density stored at the
same cross section. Dimensionless energetic quantities are presentable
via the dimensionless modal amplitudes as

Pm z (ξ, τ) = Im (ξ, τ) Vm (ξ, τ) (55a)
Wm (ξ, τ) = Wm

m (ξ, τ) +We
m (ξ, τ) (55b)

Wm
m (ξ, τ) = I2

m (ξ, τ) /2 (55c)
We

m (ξ, τ) =
[
V 2

m (ξ, τ) + e2
m (ξ, τ)

]
/2 (55d)

where Wm
m and We

m are the energy densities stored in the magnetic
and electric parts of the modal field, respectively. Mathematically,
characteristics (55a)–(55d) specify the global field properties in the
space of solutions.

Poynting’s theorem yields an energetic continuity equation as
∂ξPm z (ξ, τ) + ∂τWm (ξ, τ) + 2%

[
V 2

m (ξ, τ) + e2
m (ξ, τ)

]
= 0 . (56)

This is the time-domain law of conservation of the modal field energy,
physically. Mathematically, that specifies the local field properties in
the space solutions.
∗ One can find details of similar procedure in article [10].
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Notice in passing that the solutions, which were obtained in
Examples 2 and 3, satisfy the energetic continuity Eq. (56). Besides, all
the solutions expressible via the parabolic cylinder functions satisfy the
conservation of energy law (56), as well, for arbitrary α = −(2n+1)/2,
n ≥ 0.

Combination of Umov theorem [22] and Poynting’s theorem [23]
yields the definition for instant velocity of transportation of the modal
field energy as

vm (ξ, τ) = c
Pm z (ξ, τ)
Wm (ξ, τ)

(57)

where c is the light speed. One can find discussion on this topic in [10].

6.2. The Time-harmonic Energetic Waveguide Waves

Exact explicit solutions (31a)–(31c) make possible for a fresh look at
the energetic field properties in the time-domain. For the time being,
we ignore the phase shift, ϑm, in Eq. (30b). This results in Φ̊m = Φm

in Eq. (31a). Observation of Eqs. (31b), (31c) under this supposition
suggests to introduce a new energetic quantity as

S̊$
m(ξ, τ) = (1/2)

(
I$2
m − V $2

m

)
= (1/2)A2

me−2%τ cos2[Φm(ξ, τ)]. (58)
Observation of Eq. (31a) suggests to introduce one more energetic
quantity as

w$
m (ξ, τ) = (1/2) e$ 2

m = (1/2) A2
m e−2%τ sin2[Φm (ξ, τ)]. (59)

Notice that the quantity S̊$
m(ξ, τ) has the exact physical sense

provided that % = 0 because ϑm|%=0 = 0. That quantity species
difference of the energy density stored in the transverse components
of the magnetic and electric fields, see Eqs. (55c), (55d). In the
meanwhile, w$

m(ξ, τ) is the energy density stored in the longitudinal
component of the electric field. So, propagation of the TM -modal
electromagnetic wave with its amplitudes (31a)–(31c) is accompanied
with propagation of two antiphase energetic waves, (58) and (59). This
means, physically, that a periodical exchange by energy occurs between
S̊$

m(z, t) and w$
m(z, t).

Averaging these quantities over the period of oscillations, T =
2π/ω, yields

1
T

∫ t0+T
t0

S̊$
m (ξ, τ) dt = 1

T

∫ t0+T
t0

w$
m (ξ, τ) dt = (1/4) A2

m. (60)

So, the averaged values depend neither on time t0 nor on coordinate ξ.
Drop that supposition, Φ̊m = Φm, and for the general case

introduce a new energetic quantity as

S$
m (ξ, τ) = (1/2)

(
I$2
m − V $2

m

)
(61)
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where V $
m and I$

m are specified in Eqs. (31b), (31c). It seems natural
to name this quantity, S$

m(ξ, τ), as a “surplus” of the energy density
stored in the transverse field components of a modal wave.

Let us put Am = 1 in formula (59) (for the sake of simplicity)
and do the same in Eqs. (31a)–(31c) and (61). One can then study
the variations in time dependence of the energetic quantities S$

m(ξ, τ)
and w$

m(ξ, τ) in any waveguide cross section by specifying a chosen
coordinate ξ.

In Fig. 1, time dependence of the quantities S$
m(0, τ) and w$

m(0, τ)
are presented. It is evident that these quantities accomplish antiphased
oscillations. Hence, propagation of the TM -modal wave with its
amplitudes (31a)–(31c) is accompanied by the energetic wave process
where exchange by energy between S$

m(ξ, τ) and w$
m(ξ, τ) occurs.
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 wm
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 w m

(a) (b)

Figure 1. Exchange by energy between the surplus of energy,
Sm (ξ, τ); stored in the transverse field components and the energy,
wm (ξ, τ); stored in the longitudinal field component; $ = 1.3, ξ = 0,
and (a) % = 0, (b) % = 0.05.

In Fig. 2, time dependence of the power flow, P$
m z(ξ, τ), and the

energy density, W$
m(ξ, τ), are presented for the same values ξ = 0 and

Am = 1. Case (a) corresponds to the lossless waveguide, and case (b)
corresponds to the value % = 0.05 of the dimensionless lossy parameter
% = γ/ωm, where γ = σ/(2ε0) and ωm is the cut-off frequency.

Formula for the normalized by c velocity of transportation of the
time-harmonic modal field energy was derived by definition (57) with
making usage of formulas (55a)–(55d) and (31a)–(31c). The final result
is
v$

m(ξ,τ)
c

=
√

($2−η2) ($2+%2)
2 cos[Φm(ξ, τ)] cos[Φm(ξ, τ)−ϑm]
I$2
m (ξ, τ)+V $2

m (ξ, τ)+e$2
m (ξ, τ)

(62)

where ϑm = sin−1(%/
√

$2 + %2) is the lossy phase shift.
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Figure 2. Time dependence of the energy flow density, Pm(ξ, τ),
and the energy density, Wm(ξ, τ) for $ = 1.3, ξ = 0 and (a) % = 0,
(b) % = 0.05.
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Figure 3. Normalized by c instant velocity of transportation energy,
vm/c, for $ = 1.3, ξ = 0 and (a) % = 0, (b) % = 0.05, (c) % = 0.5.

In Fig. 3, variations of v$
m(0, τ)/c are presented. The maximal

values of v$
m/c never exceed 1. The minimal values of v$

m/c are actually
slightly negative if % 6= 0. This is caused by presence of the lossy phase
shift, ϑm, in (62).

6.3. The Time-harmonic Energetic Cavity Oscillations

Calculations by formulas (55c), (55d) and (36a)–(36c) of the energy
densities stored in the electric and magnetic parts, individually, for
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the cavity field yield

We
m=

1
2
B2

m

{
cos2

(
πs

z

`

)
+sin2

(
πs

z

`

)( πs

κm`

)2
}

e−2%τ sin2 Ψms(τ) (63a)

Wm
m =

1
2
B2

m

{
1+

( πs

κm`

)2
}

cos2
(
πs

z

`

)
e−2%τ cos2 Ψ̊ms(τ). (63b)

Perform averaging Eqs. (63a), (63b) as (1/`)
∫ `
0 (·) dz. It is evident

that
1
`

∫ `
0 cos2(πsz/`) dz = 1

`

∫ `
0 sin2(πsz/`) dz = 1

2 , s = 1, 2, . . . . (64)

Thus, the averaged values, W̄e
m and W̄m

m , depend on time as

W̄e
m (τ) = Bms e−2%τ sin2 Ψms (τ) (65a)

W̄m
m (τ) = Bms e−2%τ cos2 Ψ̊ms (τ) (65b)

where Bms = 1
4B2

m{1 + [πs/ (κm`)]2}.
If the cavity is lossless (i.e., if % = 0), then δs = 0, and hence,

Ψ̊ms = Ψms. In this case, Eqs. (65a) and (65b) describe antiphased
oscillations of the electric and magnetic field energy in the cavity. This
process is analogous to the oscillations of the kinetic and potential
energies of a pendulum.

Figure 4 exhibits just these oscillations of the averaged
quantities (65a), (65b).
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Figure 4. Oscilations of the electric and magnetic field energy stored
in the cavity W̄e

m(τ), W̄e
m(τ), for s = 2, km` = 10, ξ = 1 and (a) % = 0,

(b) % = 0.05.

In Fig. 5, the instant velocity of transportation of energy by the
cavity field is presented. Calculations were performed by formula



694 Tretyakov and Kaya

2 4 6 8 10 12 14

-0.4

-0.2

0

0.2

0.4

time-tau

 vm -lossles-(a)

 vm -loss y-(b)

 vm -lossy -(c )

Figure 5. Normalized by c instant velocity of transportation energy,
vm/c, for s = 2, km` = 10, ξ = 1 and (a) % = 0, (b) % = 0.05,
(c) % = 0.5.

(57). The needed amplitudes were taken from Eqs. (36a)–(36c). The
waveguide cross section is fixed by specifying ξ = 1. The normalized
by c velocity, vm/c, oscillates with respect to its averaged in time
value v̄m/c = 0. This implies, physically, that we observe a standing
energetic wave in the cavity.

7. SUMMARY OF THE RESEARCH FINDINGS

The system of Maxwell’s equations with ∂t is solved explicitly by a
simple method via the straightforward calculations. The solution is
obtained in Hilbert space L2 of the real-valued functions. The time-
domain modal fields are found in a form of the transverse-longitudinal
decompositions. Each of the field components is a product of two
factors. One factor is a vectorial element of the modal basis, dependent
only on transverse waveguide coordinates. The basis elements are
obtained with the required physical dimensions. The other factors
are the appropriate modal amplitudes (dimensionless), each of which
dependent solely on time, t, and axial waveguide coordinate, z. The
modal basis and modal amplitude problems are autonomous.

Besides the time-domain fields, their instant energetic character-
istics are obtained explicitly. The energetic waves, which propagate
accompanying the field waves, are established and analyzed. The ve-
locity of transportation of the field energy is obtained explicitly as the
function of the variables (t, z).

Existence of a new countable set of the waveguide modes is
established. Every modal field from this set oscillates with the same
cut-off frequency, but different modes have different amplitudes as the
polynomials in t and z.
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